
An Application of Finite Field:
Design and Implementation of
128-bit Instruction-Based Fast

Pseudorandom Number Generator

有限体の応用：
128ビット命令に基づく
高速擬似乱数生成器の

設計と実装

指導教官　松本眞教授

広島大学理学研究科数学専攻
M062821 斎藤睦夫

2007年 2月 9日

Abstract

(1) SIMD-oriented Mersenne Twister (SFMT) is a new pseudorandom
number generator (PRNG) which uses 128-bit Single Instruction Multiple
Data (SIMD) operations. SFMT is designed and implemented on C lan-
guage with SIMD extensions and also implemented on standard C without
SIMD. (2) Properties of SFMT are studied by using finite field theories,
and they are shown to be equal or better than Mersenne Twister (MT),
which is a widely used PRNG. (3) Generation speed of SFMT is measured
on Intel Pentium M, Pentium IV, AMD Athlon 64 and PowerPC G4. It is
shown to be about two times faster than MT implemented using SIMD.

1 Introduction

Computer Simulation is one of the most important techniques of modern science.
Recently, the scale of simulations is getting larger, and faster pseudorandom
number generators (PRNGs) are required. Power of CPUs for usual personal
computers is now sufficiently strong for such purposes, and necessity of efficient
PRNGs for CPUs on PCs is increasing. One such generator is Mersenne Twister
(MT) [10], which is based on a linear recursion modulo 2 over 32-bit words. An
implementation MT19937 has the period of 219937 − 1.

There is an argument that the CPU time consumed for function calls to
PRNG routines occupies a large part of the random number generation, and
consequently it is not so important to improve the speed of PRNG (cf. [13]).
This is not always the case: one can avoid the function calls by (1) inline-
expansion and/or (2) generation of pseudorandom numbers in an array at one
call.

Our aim of this paper is to design a fast MT-like PRNG (i.e. Linear Feed-
backed Shift Register) considering new features of modern CPUs on PCs.

1.1 Linear Feedbacked Shift Register (LFSR) generators

A LFSR method is to generate a sequence x0,x1,x2, . . . of elements Fw
2 by a

recursion

xi+N := g(xi,xi+1, . . . ,xi+N−1), (1)

where xi ∈ Fw
2 and g : (Fw

2)N → Fw
2 is an F2-linear function (i.e., the multipli-

cation of a (wN × w)-matrix from the right to a wN -dimensional vector) and
use it as a pseudorandom w-bit integer sequence. In the implementation, this
recursion is computed by using an array W[0..N-1] of N integers of w-bit size,
by the simultaneous substitutions

W[0]← W[1], W[1]← W[2], . . . , W[N− 2]← W[N− 1], W[N− 1]←g(W[0], . . . , W[N− 1]).

The first N − 1 substitutions shift the content of the array, hence the name
of LFSR. Note that in the implementation we may use an indexing technique
to avoid computing these substitutions, see [7, P.28 Algorithm A]. The array

1

W[0..N-1] is called ‘state array.’ Before starting the generation, we need to set
some values to the state array, which is called ‘initialization.’

Mersenne Twister (MT) [10] is an example with

g(w0, . . . ,wN−1) = (w0|w1)A + wM ,

where (w0|w1) denotes a concatenation of 32−r MSBs of w0 and r LSBs of w1,
r is an integer (1 ≤ r ≤ 31), A is a (32×32)-matrix for which the multiplication
wA is computable by a few bit-operations, and M is an integer (1 < M < N).
Its period is 232N−r − 1, chosen to be a Mersenne prime. To obtain a better
equidistribution property, MT transforms the sequence by a suitably chosen
(32× 32) matrix T , namely, MT outputs x0T,x1T,x2T, . . . (called tempering).

An advantage of F2-linear generators over integer multiplication generators
(such as Linear Congruential Generators [7] or Multiple Recursive Generators
[8]) was high-speed generation by avoiding multiplications. Another advantage
is that the behavior of generated pseudorandom number sequence is theoretically
well studied and its dimension of equidistribution can be calculated easily.

1.2 Single Instruction Multiple Data (SIMD)

Single Instruction Multiple Data (SIMD) [16] is a technique employed to achieve
data level parallelism. Typically, four 32-bit registers are combined into a 128-
bit register, and a single instruction operates on the 128-bit register. There
are two types of SIMD instructions. One is to operate four 32-bit registers
separately (e.g. addition and subtraction.) The Other is to operate on the
128-bit integer (e.g. 128-bit shift operation.)

SIMD is also called Multimedia Extension because main target applications
of SIMD are multimedia applications, which use huge data like image or sound.
LFSR use large internal state array, so SIMD is expected to accelerate its gen-
eration.

Streaming SIMD Extensions 2 (SSE2) [6, Chapter 4–5] is one of the SIMD
instruction sets introduced by Intel. Pentium M, Pentium 4 and later CPUs
support SSE2, but Itanium and Itanium 2 do not. AMD Athlon 64, Opteron
and Turion 64 also support SSE2. These CPUs have eight 128-bit registers and
each register can be divided into 8-bit, 16-bit, 32-bit or 64-bit blocks.

AltiVec [4] is another SIMD instruction-set supported by PowerPC G4 and
G5. These CPUs have thirty-two 128-bit registers and each register can be
divided into 8-bit, 16-bit or 32-bit blocks.

We tried to design a PRNG which can be implemented efficiently both in
SSE2 and AltiVec.

Intel C compiler has an ability to handle SSE2 instructions. GCC C com-
piler, which is more widely used, also has macros and inline functions to handle
SSE2 and AltiVec instructions directly.

2

2 SIMD-oriented Fast Mersenne Twister

In this article, we propose an MT-like pseudorandom number generator that
makes full use of SIMD: SFMT, SIMD-oriented Fast Mersenne Twister. We
implemented an SFMT with the period of a multiple of 219937 − 1, named
SFMT19937, which has a better equidistribution property than MT. SFMT
is faster than MT, even without using SIMD instructions.

SFMT is a LFSR generator based on a recursion over F128
2 . We identify the

set of bit {0, 1} with the two element field F2. This means that every arithmetic
operation is done modulo 2. A w-bit integer is identified with a horizontal vector
in Fw

2 , and + denotes the sum as vectors (i.e., bit-wise exor), not as integers.
We consider three cases: w is 32, 64 or 128.

2.1 The recursion of SFMT

We choose g in the recursion (1) as

g(w0, . . . ,wN−1) = w0A + wMB + wN−2C + wN−1D, (2)

where w0,wM , . . . are w(= 128)-bit integers (= horizontal vectors in F128
2), and

A,B, C, D are sparse 128 × 128 matrices over F2 for which wA,wB,wC,wD
can be computed by a few SIMD bit-operations. The choice of the suffixes
N − 1, N − 2 is for speed: in the implementation of g, W[0] and W[M] are
read from the array W, while the copies of W[N-2] and W[N-1] are kept in two
128-bit registers in the CPU, say r1 and r2. Concretely speaking, we assign
r2 ← r1 and r1 ← “the result of (2)” at every generation, then r2 (r1) keeps
a copy of W[N-2] (W[N-1], respectively). The merit of doing this is to use the
pipeline effectively. To fetch W[0] and W[M] from memory takes some time. In
the meantime, the CPU can compute wN−2C and wN−1D, because copies of
wN−2 and wN−1 are kept in the registers.

By trial and error, we searched for a set of parameters of SFMT, with the
period being a multiple of 219937−1 and having good equidistribution properties.
The degree of recursion N is d19937/128e = 156, and the linear transformations
A,B, C, D are as follows.

• wA := (w
128
<< 8) + w.

This notation means that w is regarded as a single 128-bit integer, and
wA is the result of the left-shift of w by 8 bits, ex-ored with w itself. The
shift of a 128-bit integer and exor of 128-bit integers are both in Pentium
SSE2 and PowerPC AltiVec SIMD instruction sets (SSE2 permits only a
multiple of 8 as the amount of shifting). Note that the notation + means
the exclusive-or in this article.

• wB := (w
32

>> 11)&(BFFFFFF6 BFFAFFFF DDFECB7F DFFFFFEF).

This notation means that w is considered to be a quadruple of 32-bit
integers, and each 32-bit integer is shifted to the right by 11 bits, (thus

3

W0

W122

W154

W155

128 bit

128
 << 8

 32
 >> 11

128
 >> 8

 32
 << 18

AND
0xBFFFFFF6
0xBFFAFFFF
0xDDFECB7F
0xDFFFFFEF

+

Figure 1: A circuit-like description of SFMT19937.

the eleven most significant bits are filled with 0s, for each 32-bit integer).
The C-like notation & means the bitwise AND with a constant 128-bit
integer, denoted in the hexadecimal form.

In the search, this constant is randomly generated as follows. Each bit in
the 128-bit integer is independently randomly chosen, with the probability
to choose 1 being 7/8. This is because we prefer to have more 1’s for a
denser feedback.

• wC := (w
128
>> 8).

The notation (w
128
>> 8) is the right shift of an 128-bit integer by 8 bits,

similar to the first.

• wD := (w
32

<< 18).

Similar to the second, w is cut into four pieces of 32-bit integers, and each
of these is shifted by 18 bits to the left.

All these instructions are available in both Intel Pentium’s SSE2 and Pow-
erPC’s AltiVec SIMD instruction sets. Figure 1 shows a concrete description of
SFMT19937 generator with period a multiple of 219937 − 1.

3 How to select the recursion and parameters.

We wrote a code to compute the period and the dimensions of equidistribution
(DE, see §3.2). Then, we search for a recursion with good DE admitting a fast
implementation.

4

3.1 Computation of a Period

LFSR by the recursion (1) may be considered as an automaton, with a state
space S = (Fw

2)N and a state transition function f : S → S given by (w0, . . . ,wN−1) 7→
(w1, . . . ,wN−1, g(w0, . . . ,wN−1)). As a w-bit integer generator, its output
function is o : S → Fw

2 , (w0, . . . ,wN−1) 7→ w0.
Let χf be the characteristic polynomial of f : S → S. If χf is primitive,

then the period of the state transition takes the maximal value 2dim(S) − 1 [7,
§3.2.2]. However, to check the primitivity, we need the integer factorization of
this number, which is often hard for dim(S) = nw > 10000. On the other hand,
the primarity test is much easier than the factorization, so many huge primes
of the form 2p − 1 have been found. Such a prime is called a Mersenne prime,
and p is called the Mersenne exponent, which itself is a prime.

MT and WELL[14] discard some fixed r-bits from the array S, so that nw−r
is a Mersenne exponent. Then, the primitivity of χf is easily checked by the
algorithm in [7, §3.2.2], avoiding the integer factorization.

SFMT adopted another method to avoid the integer factorization, the re-
ducible transition method (RTM), which uses a reducible characteristic polyno-
mial. This idea appeared in [5] [1][2], and applications in the present context
are discussed in detail in another article [15], therefore we only briefly recall it.

Let p be the Mersenne exponent, and N := dp/we. Then, we randomly
choose parameters for the recursion of LFSR (1). By applying the Berlekamp-
Massey Algorithm to the output sequence, we obtain the minimal polynomial
of the transition function f . (Note that a direct computation of det(tI − f) is
time-consuming because dim(S) = 19968.)

By using a sieve, we remove all factors of small degree from χf , until we
know that it has no irreducible factor of degree p, or that it has a (possibly
reducible) factor of degree p. In the latter case, the factor is passed to the
primitivity test described in [7, §3.2.2].

Suppose that we found a recursion with an irreducible factor of desired degree
p in χf (t). Then, we have a factorization

χf = φpφr,

where φp is a primitive polynomial of degree p and φr is a polynomial of de-
gree r ≤ wN − p. These are coprime, since we assume p > r. By putting
Vp := Kerφp(f) and Vr := Kerφr(f), we have a decomposition into f -invariant
subspaces

S = Vp ⊕ Vr,

For any element s ∈ S, we denote s = sp + sr for the corresponding decompo-
sition.

The period length of the state transition is the least common multiple of
that started from sp and that started from sr. Hence, if sp 6= 0, then the period
is a nonzero multiple of 2p − 1.

Thus, what we want to do is to avoid s ∈ S with sp = 0. This can be done
for example by obtaining a basis of Vr, and to discard s if s lies in the span

5

of Vr. However, this consumes some CPU time and some memory, since each
vector in Vr is 19937-dimensional.

A more efficient method is to use a simple sufficient condition on s =
(w0, . . . ,wN−1) for sp 6= 0.

Let

g : S ³ F128
2

s 7−→ w0

be the projection to the first 128-bit component, and consider g(Sr) ⊂ F128
2 .

Since dim(Sr) < 128, g(Sr) ⊂ F128
2 is a proper subspace. Thus, there is a

nonzero vector p ∈ F128
2 that is orthogonal to g(Sr) with respect to the standard

inner product.
We call such p a period certification vector, which is used in the initialization

as follows. After a random choice of s = (w0, . . . ,wN−1) at the initialization,
we compute the inner product of w0 and p. If it is 1, then sp 6= 0 and we use
s as the initial state. If it is 0, then we invert one bit in w0 so that the inner
product becomes 1.

An algorithm to obtain a period certification vector is as follows. The image
of a basis of S by the mapping φp(f) gives a generating set of Vr. By extract-
ing linearly independent vectors, we have a basis of Vr. Then, a basis of the
orthogonal space of Vr is obtained by a standard Gaussian elimination.

By computation, we obtained the following value.

Proposition 3.1 A 128-bit integer p =13c9e684 00000000 00000000 00000001
(in the hexadecimal form) is a period certificate vector for SFMT19937.

This implies that if the initial state s = (w0,w1, . . . ,wN−1) satisfies w0 ·p =
1, then the period of the SFMT19937 is a nonzero multiple of 219937 − 1.

Remark 3.2 The number of non-zero terms in χf (t) is an index measuring
the amount of bit-mixing. In the case of SFMT19937, the number of nonzero
terms is 6711, which is much larger than 135 of MT, but smaller than 8585 of
WELL19937c [14].

3.2 Computation of the dimension of equidistribution

We briefly recall the definition of dimension of equidistribution (cf. [3]).

Definition 3.3 A periodic sequence with period P

χ := x0,x1, . . . ,xP−1,xP = x0, . . .

of v-bit integers is said to be k-dimensionally equidistributed if any kv-bit pattern
occurs equally often as a k-tuple

(xi,xi+1, . . . ,xi+k−1)

6

for a period i = 0, . . . , P − 1. We allow an exception for the all-zero pattern,
which may occur once less often. (This last loosening of the condition is techni-
cally necessary, because the zero state does not occur in an F2-linear generator).
The largest value of such k is called the dimension of equidistribution (DE).

We want to generalise this definition slightly. We define the k-window set of
the periodic sequence χ as

Wk(χ) := {(xi,xi+1, . . . ,xi+k−1) | i = 0, 1, . . . , P − 1},

which is considered as a multi-set, namely, the multiplicity of each element is
considered.

For a positive integer m and a multi-set T , let us denote by m ·T the multi-
set where the multiplicity of each element in T is multiplied by m. Then, the
above definition of equidistribution is equivalent to

Wk(χ) = (m · Fvk
2) \ {0},

where m is the multiplicity of the occurrences, and the operator \ means that
the multiplicity of 0 is subtracted by one.

Definition 3.4 In the above setting, if there exist a positive integer m and a
multi-subset D ⊂ (m · Fvk

2) such that

Wk(χ) = (m · Fvk
2) \D,

we say that χ is k-dimensionally equidistributed with defect ratio #(D)/#(m ·
Fvk

2), where the cardinality is counted with multiplicity.

Thus, in Definition 3.3, the defect ratio up to 1/(P + 1) is allowed to claim the
dimension of equidistribution. If P = 219937 − 1, then 1/(P + 1) = 2−19937.
In the following, the dimension of equidistribution allows the defect ratio up to
2−19937.

For a w-bit integer sequence, its dimension of equidistribution at v-bit accu-
racy k(v) is defined as the DE of the v-bit sequence, obtained by extracting the
v MSBs from each of the w-bit integers. If the defect ratio is 1/(P + 1), then
there is an upper bound

k(v) ≤ blog2(P + 1)/vc.

The gap between the realized k(v) and the upper bound is called the dimension
defect at v of the sequence, and denoted by

d(v) := blog2(P + 1)/vc − k(v).

The summation of all the dimension defects at 1 ≤ v ≤ 32 is called the total
dimension defect, denoted by ∆.

There is a difficulty in computing k(v) when a 128-bit integer generator
is used as a 32-bit (or 64-bit) integer generator. SFMT generates a sequence

7

x0,x1,x2, . . . of 128-bit integers. Then, they are converted to a sequence of
32-bit integers x0[0],x0[1],x0[2],x0[3],x1[0],x1[1], . . ., where x[0] is the 32 LSBs
of x, x[1] is the 33rd–64th bits, x[2] is the 65rd–96th bits, and x[3] is the 32
MSBs. This is the so-called little-endian system (see §8 for an implementation
in a big-endian system).

Then, we need to modify the model automaton as follows. The state space
is S′ := S × {0, 1, 2, 3}, the state transition function f ′ : S′ → S′ is

f ′(s, i) :=
{

(s, i + 1) (if i < 3),
(f(s), 0) (if i = 3)

and the output function is

o′ : S′ → F32
2 , ((w0, . . . ,wN−1), i) 7→ w0[i].

We fix 1 ≤ v ≤ w, and let ok(s, i) be the k-tuple of the v MSBs of the
consecutive k-outputs from the state (s, i).

Proposition 3.5 Assume that f is bijective. Let k′ = k′(v) denote the maxi-
mum k such that

ok(−, i) : Vp ⊂ S → Fkv
2 , s 7→ ok(s, i) (3)

are surjective for all i = 0, 1, 2, 3. Take the initial state s satisfying sp 6= 0.
Then, the 32-bit output sequence is at least k′(v)-dimensionally equidistributed
with v-bit accuracy with defect ratio 2−p.

Moreover, if 4 < k′(v) + 1, then for any initial state with s = sp 6= 0 (hence
sr = 0), the dimension of equidistribution with defect ratio 2−p is exactly k′(v).

Proof Take s ∈ S with sp 6= 0. Then, the orbit of s by f has the form of
(Vp − {0}) × U ⊂ Vp × Vr, since p > r and 2p − 1 is a prime. The surjectivity
of the linear mapping ok′(−, i) implies that the image of

ok′(−, i) : Vp × U → Fkv
2

is m ·Fkv
2 as a multi-set for some m. The defect comes from 0 ∈ Vp, whose ratio

in Vp is 2−p. Then the first statement follows, since Wk′(χ) is the union of the
images ok′(−, i)((Vp − {0})× U) for i = 0, 1, 2, 3.

For the latter half, we define Li as the multiset of the image of ok′+1(−, i) :
Vp → F(k′+1)v

2 . Because of sr = 0, we have U = {0}, and the union of (Li−{0})
(i = 0, 1, 2, 3) as a multi-set is Wk′+1(χ). If the sequence is (k′+1)-dimensionally
equidistributed, then the multiplicity of each element in Wk′+1(χ) is at most
2p × 4/2(k′+1)v.

On the other hand, the multiplicity of an element in Li is equal to the car-
dinality of the kernel of ok′+1(−, i). Let di be its dimension. Then by the
dimension theorem, we have di ≥ p − (k′ + 1)v, and the equality holds if and
only if ok′+1(−, i) is surjective. Thus, if there is a nonzero element x ∈ ∩3

i=0Li,
then its multiplicity in Wk′+1(χ) is no less than 4× 2p−(k′+1)v, and since one of

8

ok′+1(−, i) is not surjective by the definition of k′, its multiplicity actually ex-
ceeds 4×2p−(k′+1)v, which implies that the sequence is not (k′+1)-dimensionally
equidistributed, and the proposition follows. Since the codimension of Li is at
most v, that of ∩3

i=0Li is at most 4v. The assumed inequality on k′ implies the
existence of nonzero element in the intersection. ¤

The dimension of equidistribution k(v) depends on the choice of the initial
state s. The above proposition implies that k′(v) coincides with k(v) for the
worst choice of s under the condition sp 6= 0. Thus, we adopt the following
definition.

Definition 3.6 Let k be the maximum such that (3) is satisfied. We call this
the dimension of equidistribution of v-bit accuracy, and denote it simply by
k(v). We have an upper bound k(v) ≤ bp/vc.

We define the dimension defect at v by

d(v) := bp/vc − k(v) and ∆ :=
w∑

v=1

d(v).

We may compute k′(v) by standard linear algebra. We used a more efficient
algorithm based on a weighted norm, generalising [3].

Here we briefly recall the method in [3]. Let us denote the output v-bit
sequence from an initial state s0 by

bij ∈ F2

o(s0) = (b10, b20, ..., bv0),
o(s1) = (b11, b21, ..., bv1),

....

We assign to the initial state so ∈ S a v-dimensional vector with components
in the formal power series A = F2[[t]]:

w(s0) =




∞∑

j=0

b1jt
j ,

∞∑

j=0

b2jt
j , ...,

∞∑

j=0

bvjt
j ,


 .

This assignment w : S → F v is an F2-linear function.
We consider the formal Laurent series field F = F2((t)) ⊃ A, and define its

norm and the norm on F v by
∣∣∣∣∣
∞∑

i=−m

ait
i

∣∣∣∣∣ := 2m (a−m 6= 0), |0| = 0

||(x1, ...xv)|| := max
i=1,2,...,v

{|xi|}.

9

The polynomial ring F2[t−1] is discrete in F , and consider an F2[t−1]-lattice
L ⊂ F v defined by

ei := (0, ..., 0, t−1, 0, ..., 0) the i-th component is t−1, others being 0
L := F2[t−1]〈e1, ..., ev, w(s)〉

Basic theorems used in [3] are the following.

Theorem 3.7 Suppose that the PRNG satisfies the maximal period condition.
If the covering radius of L is 2−k−1, then the dimension of the equidistribution
of the output v-bit sequence is k.

Theorem 3.8 The covering radius of L is 2−k−1 if and only if the shortest
basis of L has the norm 2−k.

We may apply this method to SFMT19937, but only as a 128-bit integer
generator, since SFMT19937 is not an F2-linear generator as 32 or 64-bit integer
generator. Instead, we need to check the surjectivity of

ok(−, i) : Vp → Fkv
2

for i = 0, 1, 2, 3. For simplicity we treat only the case i = 0, since other cases
follow similarly.

Let xj be the j-th output 128-bit integer of SFMT19937, and let bj,m ∈ F2

be its m-th bit (LSB considered 0-th bit). Then, the consecutive k tuples of
most significant v bits of the 32-bit integer output sequence is the rectangular
part in:

k tuples





xj [0] :

v bits︷ ︸︸ ︷
bj,31, bj,30, ..., bj,31−v+1, bj,31−v, ..., bj,0

xj [1] : bj,63, bj,62, ..., bj,63−v+1, bj,63−v, ..., bj,32

...
xj [3] : bj,127, bj,126, ..., bj,127−v+1, bj,127−v, ..., bj,96

...
xj+d k

4 e[k mod 4] : ...

The corresponding part in the 128-bit sequence is marked by the parentheses in
the following:

⌈
k

4

⌉
tuples





xj :

v bits︷ ︸︸ ︷
bj,127, ..., ...,

v bits︷ ︸︸ ︷
bj,95, ..., ...,

v bits︷ ︸︸ ︷
bj,63, ..., ...,

v bits︷ ︸︸ ︷
bj,31, ..., ..., bj,0

...

xj+d k
4 e−1 : bj,127, ..., bj,95, ...,

v bits︷ ︸︸ ︷
bj,63, ..., ...,

v bits︷ ︸︸ ︷
bj,31, ..., ..., bj,0︸ ︷︷ ︸

(k mod 4) 32-bit words

10

If we remove the last v× (k mod 4) bits, then the rest k
44v bits among the 32-bit

integers is identical to the same number of bits in the 128-bit integer sequence

⌈
k

4

⌉
tuples





xj :

v bits︷ ︸︸ ︷
bj,31, ...,

v bits︷ ︸︸ ︷
bj,63, ...,

v bits︷ ︸︸ ︷
bj,95, ...,

v bits︷ ︸︸ ︷
bj,127, ...,

....

(4)

We may apply the lattice method to this 4v-bit sequence, and let k′ be the
dimension of the equidistribution. Then, we have an estimation of k(v) as 32-bit
integer sequence by

4k′ ≤ k(v) < 4(k′ + 1).

To obtain the exact value of k(v), we introduce another norm, named weighted
norm, on F 4v. We consider a 4v-bit integer sequence as in (4), and define the
norm of weight type u (u = 0, 1, 2, 3) on F 4v as follows.

||(x1, ..., x4v)||u := max{(4−u)v
max
i=1
{|xi|}, 4v

max
i=4v−uv+1

{2|xi|}}

If u = 0, then this is the supreme norm treated already. It is easy to check
that this gives an ultra norm for any u.

Theorem 3.9 Let u to be an integer with 0 ≤ u ≤ 3, and let F v equipped with
the weighted norm of type u. Then, the covering radius of L with respect to
this norm is ≤ 2−r−1, if and only if

o(4r + u, 0) : Vp → F4r+u
2

is surjective.

Proof The surjectivity is equivalent to that there are enough points in L so
that its (4r+u)v bits corresponding to the weight-type u assume every possible
bit pattern. This implies that the covering radius of L is at most 2−r−1.

The converse follows in the same way. ¤
As explained above, by applying the usual (non-weighted) lattice method to

4v-bit sequence, we obtain a closest lower bound 4k′ ≤ k(v) < 4(k′ + 1). So,
using the above theorem for u = 1, 2, 3, we can check whether o(4k′ + u, 0) is
surjective or not, to obtain the maximum k0 such that o(k0, 0) is surjective.

A slightly modified method gives the maximum ki such that o(ki, i) is sur-
jective (for each i = 1, 2, 3). Now, k(v) is obtained as the minimum of ki,
i = 0, 1, 2, 3. Thus, the algorithm to compute k(v) is as follows.

Input: v
Output: k
Loop i = 0, 1, 2, 3

Loop weight-type u = 0, 1, 2, 3
Compute the norm of the shortest basis of 4v-bit integers

11

with respect to the weight-type u. Let 2−r−1 be the norm
of the shortest basis. Put ki,u := 4r + u.

End Loop
Let ki be the maximum of ki,u (u = 0, 1, 2, 3).

End Loop
Output the minimum value of ki (i = 0, 1, 2, 3) as k.

We use Lenstra’s reduction method to obtain a shortest basis from a gen-
erating set. Since the lattice L is independent of the weight type u, in this
algorithm, after obtaining a shortest basis with weight type 0, we may apply
Lenstra’s algorithm to this shortest basis with respect to the weight-type 1.
This is much faster than starting from the generating set in the definition of L.

A similar algorithm is applicable when SFMT19937 is considered as a 64-bit
integer sequence generator.

4 Comparison of speed

We compared two algorithms: MT19937 and SFMT19937, with implementa-
tions using and without using SIMD instructions.

We measured the speeds for four different CPUs: Pentium M 1.4GHz, Pen-
tium IV 3GHz, AMD Athlon 64 3800+, and PowerPC G4 1.33GHz. In returning
the random values, we used two different methods. One is sequential genera-
tion, where one 32-bit random integer is returned for one call. The other is
block generation, where an array of random integers is generated for one call
(cf. [7]). For detail, see §7 below.

We measured the consumed CPU time in second, for 108 generations of 32-
bit integers. More precisely, in case of the block generation, we generate 105

of 32-bit random integers by one call, and it is iterated for 103 times. For se-
quential generation, the same 108 32-bit integers are generated, one per a call.
We used the inline declaration inline to avoid the function call, and unsigned
32-bit, 64-bit integer types uint32 t, uint64 t defined in INTERNATIONAL
STANDARD ISO/IEC 9899 : 1999(E) Programming Language-C, Second Edi-
tion (which we shall refer to as C99 in the rest of this article). Implementations
without SIMD are written in C99, whereas those with SIMD use some standard
SIMD extension of C99 supported by the compilers icl (Intel C compiler) and
gcc.

Table 1 summarises the speed comparisons. The first four lines list the
CPU time (in second) needed to generate 108 32-bit integers, for a Pentium-M
CPU with the Intel C/C++ compiler. The first line lists the seconds for the
block-generation scheme. The second line shows the ratio of CPU time to that of
SFMT(SIMD). Thus, SFMT coded in SIMD is 2.10 times faster than MT coded
in SIMD, and 3.77 times faster than MT without SIMD. The third line lists the
seconds for the sequential generation scheme. The fourth line lists the ratio,
with the basis taken at SFMT(SIMD) block-generation (not sequential). Thus,

12

CPU/compiler return MT MT(SIMD) SFMT SFMT(SIMD)
Pentium-M block 1.122 0.627 0.689 0.298

1.4GHz (ratio) 3.77 2.10 2.31 1.00
Intel C/C++ seq 1.511 1.221 1.017 0.597

ver. 9.0 (ratio) 5.07 4.10 3.41 2.00
Pentium IV block 0.633 0.391 0.412 0.217

3GHz (ratio) 2.92 1.80 1.90 1.00
Intel C/C++ seq 1.014 0.757 0.736 0.412

ver. 9.0 (ratio) 4.67 3.49 3.39 1.90
Athlon 64 3800+ block 0.686 0.376 0.318 0.156

2.4GHz (ratio) 4.40 2.41 2.04 1.00
gcc seq 0.756 0.607 0.552 0.428

ver. 4.0.2 (ratio) 4.85 3.89 3.54 2.74
PowerPC G4 block 1.089 0.490 0.914 0.235

1.33GHz (ratio) 4.63 2.09 3.89 1.00
gcc seq 1.794 1.358 1.645 0.701

ver. 4.0.0 (ratio) 7.63 5.78 7.00 2.98

Table 1: The CPU time (sec.) for 108 generations of 32-bit integers, for four
different CPUs and two different return-value methods. The ratio to the SFMT
coded in SIMD is listed, too.

the block-generation of SFMT(SIMD) is 2.00 times faster than the sequential-
generation of SFMT(SIMD).

Roughly speaking, in the block generation, SFMT(SIMD) is twice as fast
as MT(SIMD), and four times faster than MT without using SIMD. Even in
the sequential generation case, SFMT(SIMD) is still considerably faster than
MT(SIMD).

Table 2 lists the CPU time for generating 108 32-bit integers, for four PRNGs
from the GNU Scientific Library and two recent generators. They are re-coded
with inline specification. Generators examined were: a multiple recursive gener-
ator mrg [8], linear congruential generators rand48 and rand, a lagged fibonacci
generator random256g2, a WELL generator well (WELL19937c in [14]), and
a XORSHIFT generator xor3 [13] [9]. The table shows that SFMT(SIMD) is
faster than these PRNGs, except for the outdated linear congruential generator
rand, the lagged-fibonacci generator random256g2 (which is known to have poor
randomness, cf. [12]), and xor3 with a Pentium-M.

5 Comparison of Dimension Defects

Table 3 lists the dimension defects d(v) of SFMT19937 (as a 32-bit integer
generator) and of MT19937, for v = 1, 2, . . . , 32. SFMT has smaller values of
the defect d(v) at 26 values of v. The converse holds for 6 values of v, but the

13

CPU return mrg rand48 rand random256g2 well xor3
Pentium M block 3.277 1.417 0.453 0.230 1.970 0.296

seq 3.255 1.417 0.527 0.610 2.266 1.018
Pentium IV block 2.295 1.285 0.416 0.121 0.919 0.328

seq 2.395 1.304 0.413 0.392 1.033 0.702
Athlon block 1.781 0.770 0.249 0.208 0.753 0.294

seq 1.798 0.591 0.250 0.277 0.874 0.496
PowerPC block 2.558 1.141 0.411 0.653 1.792 0.618

seq 2.508 1.132 0.378 1.072 1.762 1.153

Table 2: The CPU time (sec.) for 108 generations of 32-bit integers, by six other
PRNGs.

v MT SFMT v MT SFMT v MT SFMT v MT SFMT
d(1) 0 0 d(9) 346 1 d(17) 549 543 d(25) 174 173
d(2) 0 *2 d(10) 124 0 d(18) 484 478 d(26) 143 142
d(3) 405 1 d(11) 564 0 d(19) 426 425 d(27) 115 114
d(4) 0 *2 d(12) 415 117 d(20) 373 372 d(28) 89 88
d(5) 249 2 d(13) 287 285 d(21) 326 325 d(29) 64 63
d(6) 207 0 d(14) 178 176 d(22) 283 282 d(30) 41 40
d(7) 355 1 d(15) 83 *85 d(23) 243 242 d(31) 20 19
d(8) 0 *1 d(16) 0 *2 d(24) 207 206 d(32) 0 *1

Table 3: Dimension defects d(v) of MT19937 and SFMT19937 as a 32-bit integer
generator. The mark * means that MT has a smaller defect than SFMT at that
accuracy.

difference is small. The total dimension defect ∆ of SFMT19937 as a 32-bit
integer generator is 4188, which is smaller than the total dimension defect 6750
of MT19937.

We also computed the dimension defects of SFMT19937 as a 64-bit (128-bit)
integer generator, and the total dimension defect ∆ is 14089 (28676, respec-
tively). In some applications, the distribution of LSBs is important. To check
them, we inverted the order of the bits (i.e. the i-th bit is exchanged with the
(w − i)-th bit) in each integer, and computed the total dimension defect. It
is 10328 (21337, 34577, respectively) as a 32-bit (64-bit, 128-bit, respectively)
integer generator. Throughout the experiments, d′(v) is very small for v ≤ 11.
We consider that these values are satisfactorily small, since they are comparable
with MT for which no statistical deviation related to the dimension defect has
been reported, as far as we know.

14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5000 10000 15000 20000

WELL19937c
PMT19937

SFMT19937
MT19937

Figure 2: γk (k = 0, . . . , 20000): Starting from extreme 0-excess states, discard
the first k outputs and then measure the ratio γk of 1’s in the next 1000 outputs.

6 Recovery from 0-excess states

LFSR with a sparse feedback function g has the following phenomenon: if the
bits in the state space contain too many 0’s and few 1’s (called a 0-excess
state), then this tendency continues for considerable generations, since only a
small part is changed in the state array at one generation, and the change is
not well-reflected to the next generation because of the sparseness.

We measure the recovery time from 0-excess states, by the method intro-
duced in [14], as follows.

1. Choose an initial state with only one bit being 1.

2. Generate k pseudorandom numbers, and discard them.

3. Compute the ratio of 1’s among the next 32000 bits of outputs (i.e., in
the next 1000 pseudorandom 32-bit integers).

4. Let γk be the average of the ratio over all such initial states.

We draw graphs of these ratio γk (1 ≤ k ≤ 20000) in Figure 2 for the follow-
ing generators: (1) WELL19937c, (2) PMT19937 [15], (3) SFMT19937, and (4)
MT19937. Because of its dense feedback, WELL19937c shows the fastest recov-
ery among the compared. SFMT is better than MT, since its recursion refers to
the previously-computed words (i.e., W[N-1] and W[N-2]) that acquire new 1s,
while MT refers only to the words generated long before (i.e., W[M] and W[0]).
PMT19937 shows faster recovery than SFMT19937, since PMT19937 has two
feedback loops (hence the name of Pulmonary Mersenne Twister).

15

The speed of recovery from 0-excess states is a trade-off with the speed of
generation. Such 0-excess states will not happen practically, since the probabil-
ity that 19937 random bits have less than 19937×0.4 of 1’s is about 5.7×10−177.
The only plausible case is that a poor initialization scheme gives a 0-excess ini-
tial state. In a typical simulation, the number of initializations is far smaller
than the number of generations, therefore we may spend more CPU time in the
initialization than the generation. Once we avoid the 0-excess initial state by a
well-designed initialization, then the recovery speed does not matter, in a prac-
tical sense. Consequently, the slower recovery of SFMT compared to WELL is
not an issue, under the assumption that a good initialization scheme is provided.

128 bit

internal
array

g

g

user-
specified
array

copied
back to
internal
array

156

L

156

Figure 3: Block-generation scheme

7 Block-generation

Block-generation is introduced to avoid delay of function call. Moreover, branch
prediction feature and multi-stage pipeline of Modern CPUs fits to its large
counter loop, because conditional branch at the end of loop is assumed to
be jump back by static branch prediction feature. When branch prediction hits,
branch instruction doesn’t break the pipeline.

A large scale simulation which consumes huge pseudorandom numbers can
prepare them using block-generation before all or appropriate intervals.

In the block-generation scheme, a user of the PRNG specifies an array of
w-bit integers of the length L, where w = 32 or 64 and L is specified by the

16

user. In the case of SFMT19937, wL should be a multiple of 128 and no less
than N × 128, since the array needs to accommodate the state space (note that
N = 156). By calling the block generation function with the pointer to this
array, w, and L, the routine fills up the array with pseudorandom integers, as
follows. SFMT19937 keeps the state space S in an internal array of 128-bit
integers of length 156. We concatenate this state array with the user-specified
array, using the indexing technique. Then, the routine generates 128-bit integers
in the user-specified array by recursion (2), as described in Figure 3, until it fills
up the array. The last 156 128-bit integers are copied back to the internal
array of SFMT19937. This makes the generation much faster than sequential
generation (i.e., one generation per one call) as shown in Table 1.

8 Portability

Using CPU dependent features cause a portability problem. We prepare (1)
a standard C code of SFMT, which uses functions specified in C99 only, (2)
an optimized C code for Intel Pentium SSE2, and (3) an optimized C code for
PowerPC AltiVec. The optimized codes require icl (Intel C Compiler) or gcc
compiler with suitable options. Here we mention again that SFMT implemented
in standard C code is faster than MT.

There is a problem of the endian when 128-bit integers are converted into
32-bit integers. When a 128-bit integer is stored as an array of 32-bit integers
with length 4, in a little endian system such as Pentium, the 32 LSBs of the
128-bit integer come first. On the other hand, in a big endian system such
as PowerPC, the 32 MSBs come first. The explanation above is based on the
former. To assure the exactly same outputs for both endian systems as 32-bit
integer generators, in the SIMD implementation for PowerPC, the recursion (2)
is considered as a recursion on quadruples of 32-bit integers, rather than 128-bit
integers, so that the content of the state array coincides both for little and big
endian systems, as an array of 32-bit integers (not as 128-bit integers). Then,
shift operations on 128-bit integers in PowerPC differs from those of Pentium.
Fortunately, PowerPC supports arbitrary permutations of 16 blocks of 8-bit
integers in a 128-bit register, which emulates the Pentium’s shift by a multiple
of 8.

9 Concluding remarks

We proposed SFMT pseudorandom number generator, which is a very fast gen-
erator with satisfactorily high dimensional equidistribution property.

9.1 Trade-off between speed and quality

It is difficult to measure the generation speed of a PRNG in a fair way, since it
depends heavily on the circumstance. The WELL [14] generators have the best
possible dimensions of equidistribution (i.e. ∆ = 0) for various periods (21024−1

17

to 219937 − 1). If we use the function call to PRNG for each generation, then
a large part of the CPU time is consumed for handling the function call, and
in the experiments in [14] or [13], WELL is not much slower than MT. On the
other hand, if we avoid the function call, WELL is much slower than MT as
seen in Table 1 and Table 2.

Since ∆ = 0, WELL has a better quality than MT or SFMT in a theoretical
sense. However, one may argue whether this difference is observable or not. In
the case of an F2-linear generator, the dimension of equidistribution k(v) of v-
bit accuracy means that there is no constant linear relation among the kv bits,
but there exists a linear relation among the (k+1)v bits, where kv bits ((k+1)v
bits) are taken from all the consecutive k integers (k + 1 integers, respectively)
by extracting the v MSBs from each. However, the existence of a linear relation
does not necessarily mean the existence of some observable bias. According to
[11], it requires 1028 samples to detect an F2-linear relation with 15 (or more)
terms among 521 bits, by a standard statistical test. If the number of bits is
increased, the necessary sample size is increased rapidly. Thus, it seems that
k(v) of SFMT19937 is sufficiently large, far beyond the level of the observable
bias. On the other hand, the speed of the generator is observable. Thus, SFMT
focuses more on the speed, for applications that require fast generations.

Acknowledgments

The author is very grateful to Professor Makoto Matsumoto for his beneficial
advice and continuous encouragement throughout the course of this work.

References

[1] R.P. Brent and P. Zimmermann. Random number generators with period
divisible by a mersenne prime. In Computational Science and its Applica-
tions - ICCSA 2003, volume 2667, pages 1–10, 2003.

[2] R.P. Brent and P. Zimmermann. Algorithms for finding almost irreducible
and almost primitive trinomials. Fields Inst. Commun., 41:91–102, 2004.

[3] R. Couture, P. L’Ecuyer, and S. Tezuka. On the distribution of k-
dimensional vectors for simple and combined tausworthe sequences. Math.
Comp., 60(202):749–761, 1993.

[4] Sam Fuller. Motorola’s AltiVec Technology. http://www.freescale.com/
files/32bit/doc/fact_sheet/ALTIVECWP.pdf.

[5] M. Fushimi. Random number generation with the recursion xt = xt−3p ⊕
xt−3q. Journal of Computational and Applied Mathematics, 31:105–118,
1990.

[6] Intel 64 and IA-32 Architectures Optimization Reference Manual. http:
//www.intel.com/design/processor/manuals/248966.pdf.

18

[7] D. E. Knuth. The Art of Computer Programming. Vol.2. Seminumerical
Algorithms. Addison-Wesley, Reading, Mass., 3rd edition, 1997.

[8] P. L’Ecuyer. A search for good multiple recursive random number genara-
tors. ACM Transactions on Modeling and Computer Simulation, 3(2):87–
98, April 1993.

[9] G. Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14):1–6,
2003.

[10] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Trans.
on Modeling and Computer Simulation, 8(1):3–30, January 1998. http:
//www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.

[11] M. Matsumoto and T. Nishimura. A nonempirical test on the weight of
pseudorandom number generators. In Monte Carlo and Quasi-Monte Carlo
methods 2000, pages 381–395. Springer-Verlag, 2002.

[12] M. Matsumoto and T. Nishimura. Sum-discrepancy test on pseudoran-
dom number generators. Mathematics and Computers in Simulation, 62(3-
61):431–442, 2003.

[13] F. Panneton and P. L’Ecuyer. On the Xorshift random number generators.
ACM Transactions on Modeling and Computer Simulation, 15(4):346–361,
2005.

[14] F. Panneton, P. L’Ecuyer, and M. Matsumoto. Improved long-period gen-
erators based on linear reccurences modulo 2. ACM Transactions on Math-
ematical Software, 32(1):1–16, 2006.

[15] M. Saito, H. Haramoto, F. Panneton, T. Nishimura, and M. Matsumoto.
Pulmonary LFSR: pseudorandom number generators with multiple feed-
backs and reducible transitions. 2006. submitted.

[16] SIMD from wikipedia, the free encyclopedia. http://en.wikipedia.org/
wiki/SIMD.

19

Appendix

To compile the following C program with main function for test, type

cc -O3 -DNORMAL -DMAIN sfmt19937.c

and to make .o file which will be linked with your main program, type

cc -O3 -DNORMAL -c sfmt19937.c

If you have gcc version 3.4 or later and your CPU supports SSE2,

gcc -O3 -msse2 -DSSE2 -DMAIN sfmt19937.c

will make a test program with SSE2 feature. If you are using Macintosh
computer with PowerPC G4 or G5, and your gcc version is later 3.3 then

gcc -O3 -faltivec -DALTIVEC -DMAIN sfmt19937.c

will make a test program with AltiVec feature.
For Intel C Compiler for windows, the following command will make a

test program.

icl /O3 /QxBN /DSSE2 /DMAIN sfmt19937.c

Listing 1: sfmt19937.h
1 #include <inttypes.h>
2
3 inline uint32 t gen rand32(void);
4 inline uint64 t gen rand64(void);
5 inline void fill array32(uint32 t array[], int size);
6 inline void fill array64(uint64 t array[], int size);
7 void init gen rand(uint32 t seed);
8 void init by array(uint32 t init key[], int key length);

Listing 2: sfmt19937.c
1 #include <string.h>
2 #include <stdio.h>
3 #include <assert.h>
4 #include "sfmt19937.h"
5
6 #define MEXP 19937 /∗ Mersenne Exponent ∗/
7 #define WORDSIZE 128 /∗ word size ∗/
8 #define N (MEXP / WORDSIZE + 1) /∗ internal array size (128 bit)∗/
9 #define N32 (N ∗ 4) /∗ array size as 32 bit ∗/

10 #define N64 (N ∗ 2) /∗ array size as 64 bit ∗/
11
12 #define POS1 122 /∗ the pick up position ∗/
13 #define SL1 18 /∗ shift left as 32−bit registers ∗/
14 #define SL2 1 /∗ shift left as 128−bit registers ∗/
15 #define SR1 11 /∗ shift right as 32−bit registers ∗/
16 #define SR2 1 /∗ shift right as 128−bit registers ∗/
17 #define MSK1 0xdfffffefU /∗ bit mask 1 ∗/
18 #define MSK2 0xddfecb7fU /∗ bit mask 2 ∗/
19 #define MSK3 0xbffaffffU /∗ bit mask 3 ∗/
20 #define MSK4 0xbffffff6U /∗ bit mask 4 ∗/
21 #define PCV1 0x00000001U /∗ period certification vector 1 ∗/
22 #define PCV2 0x00000000U /∗ period certification vector 2 ∗/
23 #define PCV3 0x00000000U /∗ period certification vector 3 ∗/
24 #define PCV4 0x13c9e684U /∗ period certification vector 4 ∗/
25
26 #ifdef NORMAL
27 static uint32 t sfmt[N][4]; /∗ 128−bit internal state array ∗/
28 static uint32 t ∗psfmt32 = &sfmt[0][0];/∗ 32bit pointer ∗/
29 static uint64 t ∗psfmt64 = (uint64 t ∗)&sfmt[0][0];/∗ 64bit pointer ∗/
30 #endif /∗ NORMAL ∗/
31 #ifdef SSE2
32 #include <emmintrin.h>
33 static m128i sfmt[N];
34 static uint32 t ∗psfmt32 = (uint32 t ∗)&sfmt[0];/∗ 32bit pointer ∗/
35 static uint64 t ∗psfmt64 = (uint64 t ∗)&sfmt[0];/∗ 64bit pointer ∗/
36 #endif /∗ SSE2 ∗/
37 #ifdef ALTIVEC
38 static vector unsigned int sfmt[N];
39 static uint32 t ∗psfmt32 = (uint32 t ∗)&sfmt[0];/∗ 32bit pointer ∗/
40 static uint64 t ∗psfmt64 = (uint64 t ∗)&sfmt[0];/∗ 64bit pointer ∗/
41 #endif /∗ ALTIVEC ∗/
42 static int idx; /∗ index counter (32−bit) ∗/
43 static int initialized = 0; /∗ initialized flag ∗/

1

44 static int big endian; /∗ endian flag ∗/
45 static uint32 t pcv[4] = {PCV1, PCV2, PCV3, PCV4};
46
47 #ifdef NORMAL
48 struct W128 T { /∗ 128−bit data structure ∗/
49 uint32 t a[4];
50 };
51 typedef struct W128 T w128 t; /∗ 128−bit data type ∗/
52
53 inline static void rshift128(uint32 t out[4], const uint32 t in[4],
54 int shift);
55 inline static void lshift128(uint32 t out[4], const uint32 t in[4],
56 int shift);
57 inline static void gen rand array(w128 t array[], int size);
58 #endif /∗ NORMAL ∗/
59 #ifdef SSE2
60 inline static m128i mm recursion(m128i ∗a, m128i ∗b,
61 m128i c, m128i d, m128i mask);
62 inline static void gen rand array(m128i array[], int size);
63 #endif /∗ SSE2 ∗/
64 #ifdef ALTIVEC
65 inline static void gen rand array(vector unsigned int array[], int size);
66 inline static vector unsigned int vec recursion(vector unsigned int a,
67 vector unsigned int b,
68 vector unsigned int c,
69 vector unsigned int d);
70 inline static void vec swap(vector unsigned int array[], uint32 t size);
71 #endif /∗ ALTIVEC ∗/
72 inline static void gen rand all(void);
73 static void endian check(void);
74 static void period certification(void);
75
76 #ifdef NORMAL
77 /∗∗
78 ∗ This function simulates SIMD 128−bit right shift by the standard C.
79 ∗ The 128−bit integer given in in[4] is shifted by (shift ∗ 8) bits.
80 ∗ This function simulates the LITTLE ENDIAN SIMD.
81 ∗/
82 inline static void rshift128(uint32 t out[4], const uint32 t in[4],
83 int shift) {
84 uint64 t th, tl, oh, ol;
85
86 th = ((uint64 t)in[3] << 32) | ((uint64 t)in[2]);
87 tl = ((uint64 t)in[1] << 32) | ((uint64 t)in[0]);
88

89 oh = th >> (shift ∗ 8);
90 ol = tl >> (shift ∗ 8);
91 ol |= th << (64 − shift ∗ 8);
92 out[1] = (uint32 t)(ol >> 32);
93 out[0] = (uint32 t)ol;
94 out[3] = (uint32 t)(oh >> 32);
95 out[2] = (uint32 t)oh;
96 }
97
98 /∗∗
99 ∗ This function simulates SIMD 128−bit left shift by the standard C.

100 ∗ The 128−bit integer given in in[4] is shifted by (shift ∗ 8) bits.
101 ∗ This function simulates the LITTLE ENDIAN SIMD.
102 ∗/
103 inline static void lshift128(uint32 t out[4], const uint32 t in[4],
104 int shift) {
105 uint64 t th, tl, oh, ol;
106
107 th = ((uint64 t)in[3] << 32) | ((uint64 t)in[2]);
108 tl = ((uint64 t)in[1] << 32) | ((uint64 t)in[0]);
109
110 oh = th << (shift ∗ 8);
111 ol = tl << (shift ∗ 8);
112 oh |= tl >> (64 − shift ∗ 8);
113 out[1] = (uint32 t)(ol >> 32);
114 out[0] = (uint32 t)ol;
115 out[3] = (uint32 t)(oh >> 32);
116 out[2] = (uint32 t)oh;
117 }
118 #endif /∗ NORMAL ∗/
119 /∗∗
120 ∗ This function represents the recursion formula.
121 ∗/
122 #ifdef NORMAL
123 inline static void do recursion(uint32 t r[4], uint32 t a[4], uint32 t b[4],
124 uint32 t c[4], uint32 t d[4]) {
125 uint32 t x[4];
126 uint32 t y[4];
127
128 lshift128(x, a, SL2);
129 rshift128(y, c, SR2);
130 r[0] = a[0] ˆ x[0] ˆ ((b[0] >> SR1) & MSK1) ˆ y[0] ˆ (d[0] << SL1);
131 r[1] = a[1] ˆ x[1] ˆ ((b[1] >> SR1) & MSK2) ˆ y[1] ˆ (d[1] << SL1);
132 r[2] = a[2] ˆ x[2] ˆ ((b[2] >> SR1) & MSK3) ˆ y[2] ˆ (d[2] << SL1);

2

133 r[3] = a[3] ˆ x[3] ˆ ((b[3] >> SR1) & MSK4) ˆ y[3] ˆ (d[3] << SL1);
134 }
135 #endif /∗ NORMAL ∗/
136 #ifdef SSE2
137 inline static
138 #if defined(GNUC)
139 attribute ((always inline))
140 #endif
141 m128i mm recursion(m128i ∗a, m128i ∗b,
142 m128i c, m128i d, m128i mask) {
143 m128i v, x, y, z;
144
145 x = mm load si128(a);
146 y = mm srli epi32(∗b, SR1);
147 z = mm srli si128(c, SR2);
148 v = mm slli epi32(d, SL1);
149 z = mm xor si128(z, x);
150 z = mm xor si128(z, v);
151 x = mm slli si128(x, SL2);
152 y = mm and si128(y, mask);
153 z = mm xor si128(z, x);
154 z = mm xor si128(z, y);
155 return z;
156 }
157 #endif /∗ SSE2 ∗/
158 #ifdef ALTIVEC
159 inline static attribute ((always inline))
160 vector unsigned int vec recursion(vector unsigned int a,
161 vector unsigned int b,
162 vector unsigned int c,
163 vector unsigned int d) {
164
165 const vector unsigned int sl1
166 = (vector unsigned int)(SL1, SL1, SL1, SL1);
167 const vector unsigned int sr1
168 = (vector unsigned int)(SR1, SR1, SR1, SR1);
169 const vector unsigned int mask = (vector unsigned int)
170 (MSK1, MSK2, MSK3, MSK4);
171 const vector unsigned char perm sl = (vector unsigned char)
172 (1, 2, 3, 23, 5, 6, 7, 0, 9, 10, 11, 4, 13, 14, 15, 8);
173 const vector unsigned char perm sr = (vector unsigned char)
174 (7, 0, 1, 2, 11, 4, 5, 6, 15, 8, 9, 10, 17, 12, 13, 14);
175
176 vector unsigned int v, w, x, y, z;
177 x = vec perm(a, perm sl, perm sl);

178 v = a;
179 y = vec sr(b, sr1);
180 z = vec perm(c, perm sr, perm sr);
181 w = vec sl(d, sl1);
182 z = vec xor(z, w);
183 y = vec and(y, mask);
184 v = vec xor(v, x);
185 z = vec xor(z, y);
186 z = vec xor(z, v);
187 return z;
188 }
189 #endif /∗ ALTIVEC ∗/
190 /∗∗
191 ∗ This function fills the internal state array with psedorandom
192 ∗ integers.
193 ∗/
194 #ifdef NORMAL
195 inline static void gen rand all(void) {
196 int i;
197 uint32 t ∗r1, ∗r2;
198
199 r1 = sfmt[N − 2];
200 r2 = sfmt[N − 1];
201 for (i = 0; i < N − POS1; i++) {
202 do recursion(sfmt[i], sfmt[i], sfmt[i + POS1], r1, r2);
203 r1 = r2;
204 r2 = sfmt[i];
205 }
206 for (; i < N; i++) {
207 do recursion(sfmt[i], sfmt[i], sfmt[i + POS1 − N], r1, r2);
208 r1 = r2;
209 r2 = sfmt[i];
210 }
211 }
212 #endif /∗ NORMAL ∗/
213 #ifdef SSE2
214 inline void gen rand all(void) {
215 int i;
216 m128i r, r1, r2, mask;
217 mask = mm set epi32(MSK4, MSK3, MSK2, MSK1);
218
219 r1 = mm load si128(&sfmt[N − 2]);
220 r2 = mm load si128(&sfmt[N − 1]);
221 for (i = 0; i < N − POS1; i++) {
222 r = mm recursion(&sfmt[i], &sfmt[i + POS1], r1, r2, mask);

3

223 mm store si128(&sfmt[i], r);
224 r1 = r2;
225 r2 = r;
226 }
227 for (; i < N; i++) {
228 r = mm recursion(&sfmt[i], &sfmt[i + POS1 − N], r1, r2, mask);
229 mm store si128(&sfmt[i], r);
230 r1 = r2;
231 r2 = r;
232 }
233 }
234 #endif /∗ SSE2 ∗/
235 #ifdef ALTIVEC
236 inline static void gen rand all(void) {
237 int i;
238 vector unsigned int r, r1, r2;
239
240 r1 = sfmt[N − 2];
241 r2 = sfmt[N − 1];
242 for (i = 0; i < N − POS1; i++) {
243 r = vec recursion(sfmt[i], sfmt[i + POS1], r1, r2);
244 sfmt[i] = r;
245 r1 = r2;
246 r2 = r;
247 }
248 for (; i < N; i++) {
249 r = vec recursion(sfmt[i], sfmt[i + POS1 − N], r1, r2);
250 sfmt[i] = r;
251 r1 = r2;
252 r2 = r;
253 }
254 }
255 #endif /∗ALTIVEC ∗/
256 /∗∗
257 ∗ This function fills the user−specified array with psedorandom
258 ∗ integers.
259 ∗ @param array an 128−bit array to be filled by pseudorandom numbers.
260 ∗ @param size number of 128−bit pesudorandom numbers to be generated.
261 ∗/
262 #ifdef NORMAL
263 inline static void gen rand array(w128 t array[], int size) {
264 int i;
265 uint32 t ∗r1, ∗r2;
266
267 r1 = sfmt[N − 2];

268 r2 = sfmt[N − 1];
269 for (i = 0; i < N − POS1; i++) {
270 do recursion(array[i].a, sfmt[i], sfmt[i + POS1], r1, r2);
271 r1 = r2;
272 r2 = array[i].a;
273 }
274 for (; i < N; i++) {
275 do recursion(array[i].a, sfmt[i], array[i + POS1 − N].a, r1, r2);
276 r1 = r2;
277 r2 = array[i].a;
278 }
279 for (; i < size; i++) {
280 do recursion(array[i].a, array[i − N].a, array[i + POS1 − N].a, r1, r2);
281 r1 = r2;
282 r2 = array[i].a;
283 }
284 }
285 #endif /∗ NORMAL ∗/
286 #ifdef SSE2
287 inline static void gen rand array(m128i array[], int size) {
288 int i, j;
289 m128i r, r1, r2, mask;
290 mask = mm set epi32(MSK4, MSK3, MSK2, MSK1);
291
292 r1 = mm load si128(&sfmt[N − 2]);
293 r2 = mm load si128(&sfmt[N − 1]);
294 for (i = 0; i < N − POS1; i++) {
295 r = mm recursion(&sfmt[i], &sfmt[i + POS1], r1, r2, mask);
296 mm store si128(&array[i], r);
297 r1 = r2;
298 r2 = r;
299 }
300 for (; i < N; i++) {
301 r = mm recursion(&sfmt[i], &array[i + POS1 − N],
302 r1, r2, mask);
303 mm store si128(&array[i], r);
304 r1 = r2;
305 r2 = r;
306 }
307 /∗ main loop ∗/
308 for (; i < size − N; i++) {
309 r = mm recursion(&array[i − N], &array[i + POS1 − N],
310 r1, r2, mask);
311 mm store si128(&array[i], r);
312 r1 = r2;

4

313 r2 = r;
314 }
315 for (j = 0; j < 2 ∗ N − size; j++) {
316 r = mm load si128(&array[j + size − N]);
317 mm store si128(&sfmt[j], r);
318 }
319 for (; i < size; i++) {
320 r = mm recursion(&array[i − N], &array[i + POS1 − N],
321 r1, r2, mask);
322 mm store si128(&array[i], r);
323 mm store si128(&sfmt[j++], r);
324 r1 = r2;
325 r2 = r;
326 }
327 }
328 #endif /∗ SSE2 ∗/
329 #ifdef ALTIVEC
330 inline static void gen rand array(vector unsigned int array[], int size)
331 {
332 int i, j;
333 vector unsigned int r, r1, r2;
334
335 r1 = sfmt[N − 2];
336 r2 = sfmt[N − 1];
337 for (i = 0; i < N − POS1; i++) {
338 r = vec recursion(sfmt[i], sfmt[i + POS1], r1, r2);
339 array[i] = r;
340 r1 = r2;
341 r2 = r;
342 }
343 for (; i < N; i++) {
344 r = vec recursion(sfmt[i], array[i + POS1 − N], r1, r2);
345 array[i] = r;
346 r1 = r2;
347 r2 = r;
348 }
349 /∗ main loop ∗/
350 for (; i < size − N; i++) {
351 r = vec recursion(array[i − N], array[i + POS1 − N], r1, r2);
352 array[i] = r;
353 r1 = r2;
354 r2 = r;
355 }
356 for (j = 0; j < 2 ∗ N − size; j++) {
357 sfmt[j] = array[j + size − N];

358 }
359 for (; i < size; i++) {
360 r = vec recursion(array[i − N], array[i + POS1 − N], r1, r2);
361 array[i] = r;
362 sfmt[j++] = r;
363 r1 = r2;
364 r2 = r;
365 }
366 }
367 inline static void vec swap(vector unsigned int array[], uint32 t size)
368 {
369 int i;
370 const vector unsigned char perm = (vector unsigned char)
371 (4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11);
372
373 for (i = 0; i < size; i++) {
374 array[i] = vec perm(array[i], perm, perm);
375 }
376 }
377 #endif /∗ ALTIVEC ∗/
378 /∗∗
379 ∗ This function checks ENDIAN of CPU and set big endian flag.
380 ∗/
381 static void endian check(void) {
382 uint32 t a[2] = {0, 1};
383 uint64 t ∗pa;
384
385 pa = (uint64 t ∗)a;
386 if (∗pa == 1) {
387 big endian = 1;
388 } else {
389 big endian = 0;
390 }
391 }
392
393 /∗∗
394 ∗ This function generates and returns 32−bit pseudorandom number.
395 ∗ init gen rand or init by array must be called before this function.
396 ∗ @return 32−bit pseudorandom number
397 ∗/
398 inline uint32 t gen rand32(void)
399 {
400 uint32 t r;
401
402 assert(initialized);

5

403 if (idx >= N32) {
404 gen rand all();
405 idx = 0;
406 }
407 r = psfmt32[idx++];
408 return r;
409 }
410
411 /∗∗
412 ∗ This function generates and returns 64−bit pseudorandom number.
413 ∗ init gen rand or init by array must be called before this function.
414 ∗ The function gen rand64 should not be called after gen rand32,
415 ∗ unless an initialization is again executed.
416 ∗ @return 64−bit pseudorandom number
417 ∗/
418 inline uint64 t gen rand64(void)
419 {
420 uint32 t r1, r2;
421
422 assert(initialized);
423 assert(idx % 2 == 0);
424
425 if (idx >= N32) {
426 gen rand all();
427 idx = 0;
428 }
429 r1 = psfmt32[idx];
430 r2 = psfmt32[idx + 1];
431 idx += 2;
432 return ((uint64 t)r2 << 32) | r1;
433 }
434
435 /∗∗
436 ∗ This function generates pseudorandom 32−bit integers in the
437 ∗ specified array[] by one call. The number of pseudorandom integers
438 ∗ is specified by the argument size, which must be at least 624 and a
439 ∗ multiple of four. The generation by this function is much faster
440 ∗ than the following gen rand function.
441 ∗
442 ∗ @param array an array where pseudorandom 32−bit integers are filled
443 ∗ by this function. The pointer to the array must be \b ”aligned”
444 ∗ (namely, must be a multiple of 16) in the SIMD version, since it
445 ∗ refers to the address of a 128−bit integer. In the standard C
446 ∗ version, the pointer is arbitrary.
447 ∗

448 ∗ @param size the number of 32−bit pseudorandom integers to be
449 ∗ generated. size must be a multiple of 4, and greater than or equal
450 ∗ to 624.
451 ∗/
452 inline void fill array32(uint32 t array[], int size)
453 {
454 assert(initialized);
455 assert(idx == N32);
456 assert(size % 4 == 0);
457 assert(size >= N32);
458 #ifdef NORMAL
459 gen rand array((w128 t ∗)array, size / 4);
460 memcpy(psfmt32, array + size − N32, sizeof(uint32 t) ∗ N32);
461 #endif
462 #ifdef SSE2
463 gen rand array((m128i ∗)array, size / 4);
464 #endif
465 #ifdef ALTIVEC
466 gen rand array((vector unsigned int ∗)array, size / 4);
467 #endif
468 idx = N32;
469 }
470
471 /∗∗
472 ∗ This function generates pseudorandom 64−bit integers in the
473 ∗ specified array[] by one call. The number of pseudorandom integers
474 ∗ is specified by the argument size, which must be at least 312 and a
475 ∗ multiple of two. The generation by this function is much faster
476 ∗ than the following gen rand function.
477 ∗
478 ∗ @param array an array where pseudorandom 64−bit integers are filled
479 ∗ by this function. The pointer to the array must be ”aligned”
480 ∗ (namely, must be a multiple of 16) in the SIMD version, since it
481 ∗ refers to the address of a 128−bit integer. In the standard C
482 ∗ version, the pointer is arbitrary.
483 ∗
484 ∗ @param size the number of 64−bit pseudorandom integers to be
485 ∗ generated. size must be a multiple of 2, and greater than or equal
486 ∗ to 312.
487 ∗/
488 inline void fill array64(uint64 t array[], int size)
489 {
490 assert(initialized);
491 assert(idx == N32);
492 assert(size % 2 == 0);

6

493 assert(size >= N64);
494 #ifdef NORMAL
495 gen rand array((w128 t ∗)array, size / 2);
496 memcpy(psfmt64, array + size − N64, sizeof(uint64 t) ∗ N64);
497 if (big endian) {
498 int i;
499 uint32 t x;
500 uint32 t ∗pa;
501 pa = (uint32 t ∗)array;
502 for (i = 0; i < size ∗ 2; i += 2) {
503 x = pa[i];
504 pa[i] = pa[i + 1];
505 pa[i + 1] = x;
506 }
507 }
508 #endif
509 #ifdef SSE2
510 gen rand array((m128i ∗)array, size / 2);
511 #endif
512 #ifdef ALTIVEC
513 gen rand array((vector unsigned int ∗)array, size / 2);
514 vec swap((vector unsigned int ∗)array, size / 2);
515 #endif
516 idx = N32;
517 }
518
519 /∗∗
520 ∗ This function initializes the internal state array with a 32−bit
521 ∗ integer seed.
522 ∗/
523 void init gen rand(uint32 t seed)
524 {
525 int i;
526
527 psfmt32[0] = seed;
528 for (i = 1; i < N32; i++) {
529 psfmt32[i] = 1812433253UL
530 ∗ (psfmt32[i − 1] ˆ (psfmt32[i − 1] >> 30)) + i;
531 }
532 idx = N32;
533 endian check();
534 period certification();
535 initialized = 1;
536 }
537

538 /∗∗
539 ∗ This function certificate non−zero multiple of period 2ˆ{19937}
540 ∗/
541 static void period certification(void) {
542 int inner = 0;
543 int i, j;
544 uint32 t work;
545
546 for (i = 0; i < 4; i++) {
547 work = psfmt32[i] & pcv[i];
548 for (j = 0; j < 32; j++) {
549 inner ˆ= work & 1;
550 work = work >> 1;
551 }
552 }
553 /∗ check OK ∗/
554 if (inner == 1) {
555 return;
556 }
557 /∗ check NG, and modification ∗/
558 for (i = 0; i < 4; i++) {
559 work = 1;
560 for (j = 0; j < 32; j++) {
561 if ((work & pcv[i]) != 0) {
562 psfmt32[i] ˆ= work;
563 return;
564 }
565 work = work << 1;
566 }
567 }
568 }
569
570 #ifdef MAIN
571 #define BLOCK SIZE 100000
572 #ifdef NORMAL
573 static uint64 t array[BLOCK SIZE / 2][2];
574 #endif
575 #ifdef SSE2
576 static m128i array[BLOCK SIZE / 4];
577 #endif
578 #ifdef ALTIVEC
579 static vector unsigned int array[BLOCK SIZE / 4];
580 #endif
581 int main(void) {
582 int i;

7

583 uint32 t ∗array32 = (uint32 t ∗)array;
584 uint64 t ∗array64 = (uint64 t ∗)array;
585 uint32 t r32;
586 uint64 t r64;
587
588 /∗ 32 bit generation ∗/
589 init gen rand(1234);
590 fill array32(array32, BLOCK SIZE);
591 init gen rand(1234);
592 for (i = 0; i < 1000; i++) {
593 printf("%10"PRIu32"Ã", array32[i]);
594 if (i % 5 == 4) {
595 printf("\n");
596 }
597 r32 = gen rand32();
598 if (r32 != array32[i]) {
599 printf("\nmismatchÃatÃ%dÃarray32:%"PRIx32
600 "Ãgen:%"PRIx32"\n", i, array32[i], r32);
601 return 1;
602 }
603 }
604 /∗ 64 bit generation ∗/
605 init gen rand(1234);
606 fill array64(array64, BLOCK SIZE / 2);
607 init gen rand(1234);
608 for (i = 0; i < 1000; i++) {
609 printf("%20"PRIu64"Ã", array64[i]);
610 if (i % 3 == 2) {
611 printf("\n");
612 }
613 r64 = gen rand64();
614 if (r64 != array64[i]) {
615 printf("\nmismatchÃatÃ%dÃarray32:%"PRIx64
616 "Ãgen:%"PRIx64"\n", i, array64[i], r64);
617 return 1;
618 }
619 }
620 printf("\n");
621 return 0;
622 }
623 #endif

8

	shuuron1.pdf
	appendix.pdf

