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Abstract

In this paper we consider the problem of testing for parameter changes in ARIMA
models based on the cusum test. The proposed test procedure is applicable to testing
for the change from stationary models to nonstationary models, and vice versa. The
idea is to transform the time series via differencing to make the whole time series as a
combination of stationary subseries. For this task, we propose a graphical method to
identify the right order of differencing. Then the cusum test statistic proposed by Lee
et al. (2003) is constructed based the differenced time series. Simulation study and real
data analysis are provided for illustration.

Key words : Test for parameter changes, cusum test, ARIMA model, graphical method,
autocovariance function, and Brownian bridge.

1 Introduction

The problem of testing for parameter changes in time series models has been an important
issue among statisticians and econometricians. There are a large number of articles as to
the change point analysis in iid samples, linear models and time series models. See, for
example, Brown, Durbin and Evans (1975), Wichern, Miller and Hsu (1976), Picard (1985),
Inclán and Tiao (1994), Bai (1994), Csörgő and Horváth (1997), and Lee and Park (2001),
and the papers cited therein. Recently, Lee, Ha, Na and Na (2003) proposed a cusum test
aimed at testing for a parameter change in time series models. The cusum test not only
deals with the classical mean and variance change problem, but also covers a more general
parameter case, such as the coefficients in RCA and ARCH models. The cusum method
turns out to perform adequately in a large class of time series models and to be useful
for allocating the locations of changes (cf. Lee, Na and Na (2004), Lee and Lee (2004),
and Lee and Na (2004), and Lee, Toktsu and Maekawa (2004)). However, despite its wide
applicability, attention was only paid to stationary time series models. This motivates us
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to consider the change point problem for nonstationary models, particularly, the most well
known ARIMA models.

In handling the problem in stationary ARMA models, it is natural to employ a test
based on the ACF (autocovariance function) since the ACF characterizes ARMA models.
For instance, one can use the cusum test introduced by Lee et al. (2003). However, if
time series are nonstationary, their method is no longer applicable since it is based on the
stationary assumption. Therefore, to apply the method to nonstationary ARIMA models,
one has to transform the time series data to make a combination of stationary subseries.
A simple way is to do differencing repeatedly until all subseries have stationary properties.
In this case, however, one encounters the question as to determining the right order of the
differencing to ensure the stationarity. Of course, if we deal with this task for ARIMA
models with no changes, it is nothing but an ordinary model selection problem. However,
in the presence of changes, it is not an easy task to design a suitable method in a formal
manner. Thus, we propose a graphical method to determine the right order of differecing.

The basic idea is to examine the plot of the averaged partial sum of squares of observa-
tions. For example, if time series are stationary, the averaged partial sum converges to its
second moment by a law of large numbers. Furthermore, if the time series are random walk,
the partial sums exhibit a hyperbolic trend. Therefore, the partial sum at lag t divided by
t2 lies in a certain boundary. Similar reasoning is applicable to other ARIMA processes,
and even to the time series with structural changes. Once the order is determined, one can
conduct the cusum test based on the differenced time series immediately.

The organization of this paper is as follows. In Section 2, we present the cusum test
for ACF. In Section 3, we explain the visual method to determine the differecing order. In
Section 4, we perform a simulation study to examine whether the proposed method works
properly or not. In Section 5, we apply our method to 3-month Euroyen interest rate data.
Finally, we provide concluding remarks in Section 6.

2 Test for parameter change

Let {Xt} be an ARIMA time series, and suppose that one wishes to test the following
hypotheses:

H0 : Xt, t = 1, . . . , n, follow an ARIMA(p, d, q) model vs.
H1 : Xt, t = 1, . . . , l, 1 ≤ l < n, follow the ARIMA(p, d, q) model

and Xt, t = l + 1, . . . , n, follow another ARIMA(p
′
, d

′
, q
′
) model.

If the orders d and d
′
are known, one can test H0 vs. H1 applying Lee et al.’s (2003) method
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to (1 − B)DXt, where D denotes the maximum of d and d
′
. In the following we describe

the test procedure.
Put xt

′ = (1−B)dXt. Under H0, we assume that

φ(B)xt
′ = θ(B)εt,

where εt are iid random variables with mean 0, variance σ2
ε , E|ε1|4λ < ∞ for some λ > 1,

and φ(B) = 1−φ1B−· · ·−φpB
p and θ(B) = 1+ θ1(B)+ · · ·+ θqB

q. Set xt = (1−B)DXt.
For |h| < n, define

γ̂n(h) =
1
n

n−|h|∑

t=1

(xt − x̄n)(xt+|h| − x̄n), x̄n =
1
n

n∑

t=1

xt,

and let {hn} be a sequence of positive integers, such that as n →∞,

hn →∞ and hn = O(nβ) for some β ∈ (0, (λ− 1)/2λ).

Let κ̂4 be a consistent estimator of the kurtosis κ4 of ε1, which, for instance, can be obtained
by fitting a long AR(q) model to data and calculating the residuals (cf. Lee and Wei (1999)).
Set

Γ̂ij = κ̂4γ̂n(i)γ̂n(j) +
hn∑

r=−hn

(γ̂n(i + r)γ̂n(j + r) + γ̂n(i− r)γ̂n(j + r)) , i, j = 0, . . . , m.

Theorem 4.2 of Lee et al. (2003) shows that if we put

Sn(s) =
(

[ns]√
n

(
γ̂[ns](0)− γ̂n(0)

)
, . . . ,

[ns]√
n

(
γ̂[ns](m)− γ̂n(m)

))′
, 0 ≤ s ≤ 1,

then under H0,
S ′n(s)Γ̂−1Sn(s) w−→ ||W◦

m+1(s)||2,
where Γ̂ denotes the (m + 1)× (m + 1) matrix whose (i, j)-th component is Γ̂ij , and W◦

m+1

denotes an (m + 1)-dimensional standard Brownian bridge. As a result,

Tn := sup
0<s<1

S ′n(s)Γ̂−1
n Sn(s) w−→ T := sup

0<s<1
||W◦

m+1(s)||2.

We reject H0 if Tn is large. The critical values are presented in Lee et al. (2003). Recall
that one can detect multiple change points following the Dk plot method in Iclán and Tiao
(see also Section 5). In Section 4, we will see through a simulation study that the test
statistic performs adequately.
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3 Graphical method to identify D

In this section we consider the case that d and d
′
are unknown. As mentioned earlier, if the

time series has parameter changes, it is not easy to identify the correct orders. Therefore,
here we develop a graphical method to estimate them. Suppose that δt are iid random
variables with zero mean and unit variance. Denote

yj(1) =
j∑

i=1

δi and yj(k) =
j∑

i=1

yi(k − 1), k ≥ 2.

Let

Wn(u) = n−1/2
[nu]∑

i=1

δi, 0 ≤ u ≤ 1,

and let W (u) denote a standard Brownian motion. Define

W (2)(u) =
∫ u

0
W (u)du and W (k) =

∫ u

0
W (k−1)(u)du, k ≥ 3.

From Donsker’s invariance principle (cf. Billingsley (1968)), we may write that

yj(1) = n1/2Wn(j/n)
d' n1/2W (j/n)

for large n, and

yj(2) = n3/2{
j∑

i=1

Wn(i/n)/n} ' n3/2
∫ j/n

0
Wn(u)du

d' n3/2
∫ j/n

0
W (u)du = n3/2W (2)(j/n).

Similarly, we obtain yj(k)
d' nk−1/2W (k)(j/n), and thus

n−2k
t∑

j=1

(yj(k))2
d' n−1

t∑

j=1

(W (k)(j/n))2 '
∫ t/n

0
(W (k)(u))2du,

which implies that for t close to n,

t−2k
t∑

j=1

(yj(k))2
d'

∫ 1

0
(W k(u))2du = OP (1).

The above argument indicates that one can estimate the order d in Xt = (1 − B)dδt via
examining the shape of the function g1 : t → t−1 ∑t

i=1 X2
i and g2k : t → t−2k ∑t

i=1 X2
i ,

k ≥ 1. For example, if d = 2, it is anticipated that g1 and g2 explode fast, g4(t) are within
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some boundary, and g6(t) have the values close to 0. From the same reasoning, if g2k, k < d,
explode, g2d(t) lie in some boundary, and g2(d+1)(t) have values close to 0, then one can select
d as the correct order. In fact, this reasoning is still true for δt in a class of linear processes
including ARMA processes and strong mixing processes such as GARCH(1,1) processes (cf.
Carrasco and Chen (2002)). Moreover, the graphical method is still valid for determining
the correct order D even for time series with structural changes in ARIMA models. Figures
1-4 are concerned with the change from an ARIMA(1,1,1) model to an ARMA(1,1) model.
From those figures, one can easily reason that D is equal to 1. Meanwhile, Figures 5-8 deal
with the change from an ARMA(1,1) model to an ARIMA(1,1,1) model. Similarly, we can
easily see that D = 1.

As mentioned earlier, it should be emphasized that designing a formal decision rule is
not feasible since one has to take account of all possible cases including both stationary
and nonstationary processes with parameter changes. Since the graphical method is not
rigorous in terms of mathematics, one might be able to claim that the selected order is only
a candidate. Thus, here we discuss on the issue of checking the correctness of the selected
order.

Suppose that D is chosen by the graphical method. Letting xt = (1−B)DXt, where Xt

denote original data, we follow the testing procedure in Section 2 with xt’s to find change
points. If the test detects the change points, say, ti, i = 1, . . . , k, we perform a unit root test
for all the subseries xti−1+1, . . . , xti , i = 1, . . . , k + 1, where t0 = 0 and tk+1 = the number
of xt’s. On the other hand, if there are no change points, we conduct the unit root test
for the whole series {xt}. Firstly, if unit roots exist at least in one of those subseries, we
decide that the D is not the correct order. In this case, we completely ignore the obtained
result, including the change points, since nonstationary processes are involved. Then we
repeat the same procedure with the updated order D + 1. By continuing until we do not
find any unit roots, we can finally determine the correct order. Secondly, if no unit roots
are detected with D, one may speculate that D might be overestimated. Note that the
overestimation does not affect the locations of change points since our test is based on the
structure of autocorrelations. If the test shows the presence of change points, we perform
a unit root test based on (1 − B)(D−1)Xt for all the subseries; otherwise we do it for the
whole series. If the unit root is detected at least for one of those series, we conclude that
D is the right order. Otherwise, we repeat the same procedure with D − 1. Here, we can
keep the obtained change points unlike before. In general, if a unit root is detected for
(1−B)D−lXt for some 1 ≤ l ≤ D, we determine the right order to be D− l +1. Otherwise,
it is determined to be 0. Following this way, we can eventually determine the correct order.
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4 Simulation results

In this section, we evaluate the performance of the test statistics Tn in Section 2 through
a simulation study. The empirical sizes and powers are calculated at a nominal level of
0.1. Here m = 1, hn = n1/4 and q = [(log n)2] are used for Tn, and the critical value is
2.054. In order to examine the performance of Tn, we consider the ARIMA(1,d,1) process
(1 − B)d(1 − φB)Xt = (1 + θB)εt, where εt are iid standard normal r.v.’s, and X0 = 0.
The empirical sizes and powers are calculated with sets of 300, 500 and 800 observations
generated from an ARIMA(1,d,1) model. Tables 1-5 summarize the empirical sizes and
powers for the following alternative hypothesis.

H1 : (1−B)d(1− φB)Xt = (1 + θB)εt, t = 1, · · · [n/2],

(1−B)d
′
(1− φ′B)Xt = (1 + θB)εt, t = [n/2] + 1, · · ·n,

where θ = 0.2 and φ and φ
′
are assumed to vary, taking values of 0.2, 0.5 and 0.8. Table

1 shows that the empirical sizes and powers are reasonably good unless φ is close to 1.
Actually, it is well known that high correlation damages statistical inferences. In actual
practice, however, highly correlated time series can be regarded to form a unit root process,
so that this case can be classified into the category that d and d′ are equal to 1. Tables 2-5
also exhibit that the procedure based on the time series {(1−B)DXt}, where D is obtained
through the graphical method in Section 3, performs adequately.

5 Real data analysis

In this section we analyze a real data set and demonstrate that our method presented in
the previous sections is properly applicable. For this task, we analyze the 3-month Euroyen
interest rate data set obtained from International Financial Statistics over the period from
07/1989 to 12/2002: the time series {Xt}, t = 1, . . . , 162, is plotted in Figure 9. First, we
apply the graphical method in Section 3 to determine D. Figures 10 and 11 manifestly
suggest that we can choose D = 1. Now, for testing for parameter changes, we utilize the
test statistic Tn with m = 1 for the differenced time series xt = (1−B)Xt. At the nominal
level of 0.1, the critical value is 2.054 (cf. Lee et al. (2003)). As a consequence, it appears
that there is one parameter change. The change point can be selected by examining the Dk

plot, where Dk = S ′n(k/n)Γ̂−1Sn(k/n). Since Dk is maximized at k = 50, we can see that
the parameter change occurs at the lag 50: the vertical lines in Figure 9 and 12 indicate
the location of the change point. Now, as we described in the Remark of Section 3, we
perform Dickey-Fuller’s unit root test for the two subseries of {(1−B)Xt}. Since the result
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indicates that there are no unit roots, we perform the unit root test for the original {Xt}.
The result shows that the first subseries has a unit root while the second has no unit roots.
Threfore, we conclude that D should be equal to 1. By fitting ARIMA(p, d, q) models,
d = 0, 1 and p, q ≤ 2, to the two original subseries (using AIC), we obtain that the first
subseries {X1t} of {Xt} follows the ARIMA(1,1,1) model and the second subseries {X2t}
follows the ARMA(1,2) model as follows:

(1−B)(1− 0.927B)X1t = (1− 0.731B)εt, t = 1, 2, · · · , 50,

and
(1− 0.961B)X2t = (1 + 0.289B + 0.351B2)εt, t = 51, 52, · · · , 162.

6 Concluding remarks

In this paper, we proposed a method for detecting parameter change points in ARIMA
models based on the cusum test in Lee et al. (2003) and the graphical method introduced in
Section 3. The graphical method was designed to determine the correct order of differencing,
based on which we transform the time series data to form a combination of stationary
subseries. The simulation study in Section 4 demonstrated that the graphical method
and the cusum test performs appropriately. This method was applied to a real data set,
the 3-month Euroyen interest rate data. As a result, we could detect one change point: it
turned out that the first subseries before the point follows an ARIMA model and the second
subseries after it follows an ARMA model. This result strongly advocates the validity of our
method in actual practice. Our method, however, should not be used to every data set. In
particular, if data has high volatility and jumps, our method will be likely to lead to a wrong
conclusion. Therefore, in advance of using it, one should carefully check whether or not a
given time series data can be handled within the framework of ARIMA models. However,
insofar as the data is generated from ARIMA models, our method is feasibly applicable.
Overall, we conclude that our method can be a functional tool to detect change points in
ARIMA models.
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Table 1. ARIMA(1,0,1); φ → φ′; θ = 0.5

φ 0.2 0.5 0.8

φ′ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

300 .080 .672 1.00 .424 .164 .896 .926 .660 .612
n 500 .124 .836 1.00 .774 .134 .992 1.00 .910 .512

800 .082 .954 1.00 .938 .128 .998 1.00 .990 .426

Table 2. ARIMA(1,0,1)→ ARIMA(1,1,1); φ → φ′; θ = 0.5

φ 0.2 0.5 0.8

φ′ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

300 1.00 1.00 1.00 .998 1.00 1.00 .722 .998 1.00
n 500 1.00 1.00 1.00 1.00 1.00 1.00 .914 1.00 1.00

800 1.00 1.00 1.00 1.00 1.00 1.00 .986 1.00 1.00

Table 3. ARIMA(1,1,1)→ ARIMA(1,0,1); φ → φ′; θ = 0.5

φ 0.2 0.5 0.8

φ′ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

300 .950 .994 .742 .998 1.00 .996 1.00 1.00 1.00
n 500 1.00 1.00 .932 1.00 1.00 1.00 1.00 1.00 1.00

800 1.00 1.00 .992 1.00 1.00 1.00 1.00 1.00 1.00

Table 4. ARIMA(1,1,1)→ ARIMA(1,2,1); φ → φ′; θ = 0.5

φ 0.2 0.5 0.8

φ′ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

300 1.00 1.00 1.00 .996 1.00 1.00 .726 .996 1.00
n 500 1.00 1.00 1.00 .998 1.00 1.00 .918 1.00 1.00

800 1.00 1.00 1.00 1.00 1.00 1.00 .990 1.00 1.00
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Table 5. ARIMA(1,2,1)→ ARIMA(1,1,1); φ → φ′; θ = 0.5

φ 0.2 0.5 0.8

φ′ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

300 .960 .992 .766 1.00 1.00 1.00 1.00 1.00 1.00
n 500 1.00 1.00 .914 1.00 1.00 1.00 1.00 1.00 1.00

800 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Figure 1: Change from (1−B)(1− 0.5B)Xt = (1 + 0.5B)εt to (1− 0.5B)Xt = (1 + 0.5B)εt

Figure 2: 1
t

∑t
i=1 X2

i plot for the series in Figure 1

Figure 3: 1
t2

∑t
i=1 X2

i plot for the series in Figure 1
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Figure 4: 1
t4

∑t
i=1 X2

i plot for the series in Figure 1

Figure 5: Change from (1− 0.5B)Xt = (1 + 0.5B)εt to (1−B)(1− 0.5B)Xt = (1 + 0.5B)εt

Figure 6: 1
t

∑t
i=1 X2

i plot for the series in Figure 5

Figure 7: 1
t2

∑t
i=1 X2

i plot for the series in Figure 5

Figure 8: 1
t4

∑t
i=1 X2

i plot for the series in Figure 5
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Figure 9: The plot of 3-month Euroyen interest rate
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Figure 10: The plot of g1 for 3-month Euroyen interest rate
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Figure 11: The plot of g2 for 3-month Euroyen interest rate
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Figure 12: The plot of Dk for 3-month Euroyen interest rate
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