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Abstract

The unknotting or triple point cancelling number of a surface link F is the least
number of 1-handles for F such that the 2-knot obtained from F by surgery along
them is unknotted or pseudo-ribbon, respectively. These numbers have been often
studied by knot groups and Alexander invariants. On the other hand, quandle col-
orings and quandle cocycle invariants of surface links were introduced and applied
to other aspects, including non-invertibility and triple point numbers. In this paper,
we give lower bounds of the unknotting or triple point cancelling numbers of surface
links by using quandle colorings and quandle cocycle invariants.
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1 Introduction

A surface link S is a locally flat closed oriented surface in Euclidean 4-space.
When S is connected, it is called a surface knot. When S is a 2-sphere, it is
also called a 2-knot. A surface knot S is unknotted if S bounds a handlebody
in R4, and a surface link S is unknotted if S is the split union of unknotted
surface knots. A diagram for a surface link will be defined in §2. A surface
link S is a pseudo-ribbon if there is a diagram of S without triple points. It is
known that any surface link S can be transformed to an unknotted one, or a
pseudo-ribbon, by attaching a finite number of 1-handles to S (cf. [4,12,16]).
The unknotting number u(S), and the triple point cancelling number τ(S), of
S is defined to be the least number of such 1-handles, respectively (cf. [13,16–
18,20,22,27]). By definition, the inequality τ(S) ≤ u(S) holds.
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For surface links S and S ′, we denote the split union and a connected sum of
S and S ′ by S

∐
S ′ and S]S ′, respectively. The split union and a connected

sum of n copies of a surface link S are denoted by
∐

n S and ]nS, respectively.
It is easy to see that u(S]S ′) ≤ u(S) + u(S ′) and τ(S]S ′) ≤ τ(S) + τ(S ′).

R. H. Fox [11] introduced the notion of p-colorings for classical links which is
the same notion of colorings by the dihedral quandle of order p (cf. [6,8,24]).
The notion of p-colorings of surface links are also defined similary and will
be given in §2. When all sheets are colored by the same element, we call the
coloring a trivial coloring, which is also regarded as a p-coloring in this paper.
(It is not in [11].) From now on, we always assume that p is an odd prime
integer. We denote the set of p-colorings of a surface link S by Colp(S), which
is isomorphic to Zm

p as linear space for some integer m, where Zp = Z/pZ. Its
linear space structure is given in §2.

Remark 1.1 Miyazaki [22] proved that u(σα]σα+2) = 1 where σα is a spun
2-bridge knot S(α, 1) in Schubert form for odd α. (See [2] for the definition of
spun knots.) Using Corollary 2.11 in §2, we have u(σα]σα′) = 2 for (α, α′) 6= 1
(see Example 4.2).

These concepts will be explained in §2.

For a quandle X , the associated group, GX =< x ∈ X|x ∗ y = yxy−1 >,
was introduced in [8,15,21]. The quandle cocycle invariants Φκ were defined
by using 3-cocycles κ valued in a GX -module M (cf. [1,5–7]). The values of a
quandle cocycle invariant are regarded as multi-sets of elements of M where
repetitions of the same elements are allowed. For an element g ∈ M and a
multi-set A, let ag(A) be the number of g in A. And let Oκ(S) be the set of
X-colorings which contribute 0 in Φκ(S) where 0 is the identity element of M .
By definition, |Oκ(S)| = a0(Φκ(S)). The following two theorems are our main
results.

Theorem 1.2 Let S be a surface link and let κ be a 3-cocycle of the dihedral
quandle X of order p valued in a GX-module M . And let m be an integer such
that the set of p-colorings of S is isomorphic to Zm

p . If pm−l > a0(Φκ(S)) for
some l ∈ Z, then l + 1 ≤ τ(S).

Theorem 1.3 Let S and S ′ be surface links and κ be a 3-cocycle of the di-
hedral quandle X of order p valued in a GX-module M . And let m, m′ be
integers such that the set of p-colorings of S and S ′ are isomorphic to Zm

p and

Zm′

p , respectively. If Oκ(S
∐

S ′) forms a linear subspace of Colp(S
∐

S ′) and

pm+m′
−l > a0(Φκ(S

∐
S ′)) for some l ∈ Z, then l + 1 ≤ τ(S]S ′).

Remark 1.4 Let S, S ′, κ, m and m′ be as in Theorem 1.3. Then, Colp(S
∐

S ′)
∼= Zm+m′

p . By Theorem 1.2, if pm+m′
−l > a0(Φκ(S

∐
S ′)) for some l ∈ Z, then
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l +1 ≤ τ(S
∐

S ′), and hence l ≤ τ(S]S ′) (see Lemma 1.5(2)). Therefore, The-
orem 1.3 gives a better lower bound than this obvious application of Theorem
1.2.

The following lemma is easily seen.

Lemma 1.5 Let S and S ′ be surface links. Then,

(1) τ(S]S ′) ≤ τ(S
∐

S ′).
(2) τ(S

∐
S ′) ≤ τ(S]S ′) + 1.

Corollary 1.6 Let κ be a 3-cocycle of the dihedral quandle X of order p valued
in a GX-module M . Let S and S ′ be surface knots with u(S) = u(S ′) = 1 such
that |Colp(S)| = |Colp(S

′)| = a0(Φκ(S
∐

S ′)) = p2. Then τ(S]S ′) = u(S]S ′) =
2.

Corollary 1.7 Let κ be a 3-cocycle of the dihedral quandle X of order p
valued in a GX-module M . Let S be a surface knot with u(S) = 1 such that
|Colp(S)| = p2 and a0(Φκ(

∐
n S)) = pn. Then τ(]nS) = u(]nS) = n.

Examples of these corollaries are given in §4.

Remark 1.8 Using Corollary 1.6, we see that there are infinitely many pairs
(S, S ′) of surface knots such that τ(S]S ′) = τ(S) + τ(S ′) (cf.[17,20]). See §4.

In §2, we will study the set of p-colorings. We will recall the quandle cocycle
invariants in §3. Our main results are proved in §4 and some examples are also
given there.

2 Quandle colorings of surface links

A quandle (cf. [8,15,19,21]) is a set X with a binary operation ∗ : X×X −→ X
satisfying the following properties:

(Q1) For any x ∈ X , x ∗ x = x.
(Q2) For any x1, x2 ∈ X , there is a unique x3 ∈ X such that x1 = x3 ∗ x2.
(Q3) For any x1, x2, x3 ∈ X, (x1 ∗ x2) ∗ x3 = (x1 ∗ x3) ∗ (x2 ∗ x3)

Example 2.1 The set Zp is a quandle under the binary operation a ∗ b =
2b− a, which is called the dihedral quandle of order p and denoted by Rp.

For a surface link S in R4, modifying it slightly if necessary, we may assume
that the projection π : S −→ R3 is a generic map. The singularity of the
projection consists of double point curves, isolated triple points and isolated
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branch points. Removing a small regular neighborhood of the under-curve of
the double curve, we have a compact surface in R3. We call it a diagram for
the surface link S. Sheets are connected components of a diagram. Let D be
the diagram of S, and Σ(D) the set of sheets of D. Using the orientation of S
and R3, we give an orientation normal of each sheet of D. In a neighborhood
of each triple point, there are eight regions that are separated by the sheets
of D. The region into which normals point is called the target region of a
given triple point (Fig.1(2)). Along each double point curve d, the sheet triple
around d is the triple (h1, h2, h

′) where h1 and h2 are the under-sheets and h′

is the over-sheet such that the orientation normal of h′ points from h1 to h2.
See Fig.1(1).

A map C : Σ(D) −→ X to a quandle X is a X-coloring of D if for the
sheet triple (h1, h2, h

′) around each d, C(h1) ∗ C(h′) = C(h2) (Fig.1(1)). We
denote the set of all X-colorings of D by ColX(D). For two diagrams D and
D′ representing the same surface link S, there is a one-to-one correspondence
between ColX(D) and ColX(D′) through Roseman moves, which are analogues
of Reidemeister moves for surface knots and links. Hence, we also denote it
by ColX(S). This is equal to the set of quandle homomorphisms from the
fundamental quandle of S to X (cf. [8,15]). We remark that ColRp

(D) =
Colp(D) (i.e. ColRp

(S) = Colp(S)).

Lemma 2.2 Let D be a diagram of a surface link S. Then, the set of p-
colorings of D forms a linear space (over Zp) which is isomorphic to Zm

p for
some integer m with k − s ≤ m ≤ k, where k is the number of sheets of D
and s is the number of connected components of double curves excluding triple
points.

PROOF. We regard Map(Σ(D),Zp), the set of all maps from Σ(D) to Zp,
as a linear space over Zp by (f + f ′)(h) = f(h) + f ′(h) and (af)(h) = a(f(h))
in Zp where h ∈ Σ(D), a ∈ Zp. Let h1, · · · , hk be sheets of D and d1, · · · , ds

be the double curves. Then, Map(Σ(D),Zp) is isomorphic to the linear space
spanned by {h1, · · · , hk} over Zp. We denote it by < h1, · · · , hk >p. For each
double curve di, whose sheet triple is (hi1 , hi2 , hi3), the condition hi1 ∗ hi3 =
hi2 in Rp implies a relator ri = −hi1 − hi2 + 2hi3 . Therefore, Colp(D) ∼=<
h1, · · · , hk|r1, · · · , rs >p is a linear space isomorphic to Zm

p for some integer m
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with k − s ≤ m ≤ k.

Example 2.3 Let S be a spun trefoil knot and D be a diagram of S illustrated
in Fig.2(1). Then, Col3(D) ∼=< h1, h2, h3, h4|r1, r2, r3 >3 where r1 = 2h1−h2−
h3, r2 = −h1 +2h2−h3 and r3 = −h2 +2h3−h4. Now, let A be a (3, 4)-matrix
over Z3 given by;

A =




2 −1 −1 0

−1 2 −1 0

0 −1 2 −1




.

Then, dim < r1, r2, r3 >3= rankA = 2. Therefore, Col3(D) ∼= Col3(S) ∼= Z2
3.

Lemma 2.4 Let S and S ′ be surface links such that S ′ is obtained from S by
attaching a 1-handle H̃. Then, there are a diagram D of S, a diagram D′ of
S ′ and a 1-handle H in R3 such that D′ is obtained from D by attaching H.

PROOF. Moving the surface link S and 1-handle H̃ by an ambient isotopy
in R4, we obtain such a diagram D of S, a diagram D′ of S ′ and a 1-handle
H . (See [4,12].)

Let D, D′ and H be as in Lemma 2.4. Let E1 and E2 be sheets in Σ(D) such
that one attaching disk of H is in E1 and the other is in E2, and let E ′ be
a sheet in Σ(D′) such that the belt sphere of H is in E ′. Then, Σ(D′) =
(Σ(D)\{E1, E2}) ∪ {E ′}. A surjective map π : Σ(D) −→ Σ(D′) is defined
by π(E1) = π(E2) = E ′ and π(R) = R for any R 6= E1, E2. And a map
φ : ColX(D′) −→ ColX(D) is defined by φ(c′) = c′ ◦ π.

Lemma 2.5 The map φ is injective.

PROOF. If φ(c′1) = φ(c′2), then c′1 ◦ π = c′2 ◦ π. Since π is a surjective map,
c′1 = c′2. Therefore, φ is injective.
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It is easily seen that φ is linear when X = Rp. And by Lemma 2.5, Colp(D
′) ∼=

φ(Colp(D
′)). In the proof of Lemma 2.2, we have Colp(D) ∼=< h1, · · · , hk|r1, · · ·

, rs >p where h1, · · · , hk are the sheets of D and r1, · · · , rs are the relators
derived from the double point curves d1, · · · , ds of D. Now, E1 = hj1 and
E2 = hj2 for some j1, j2 ∈ {1, · · · , k}. Since Colp(D

′) ∼= φ(Colp(D
′)) ∼=<

h1, · · · , hk|r1, · · · , rs, hj1 = hj2 >p, we have the following proposition.

Proposition 2.6 Let S, S ′ be surface links such that S ′ is obtained from S by
attaching a 1-handle. Let m be the integer with Colp(S) ∼= Zm

p . Then, Colp(S
′)

is a linear subspace of Colp(S) such that Colp(S
′) ∼= Zm

p or Zm−1
p .

Example 2.7 Let S be a spun trefoil and D be the diagram of S illustrated
in Fig.2(1). Let D′ and D′′ be the diagrams illustrated in Fig.2(2) and (3),
respectively. They are diagrams of surface knots obtained from S by attaching
a 1-handle. Let h1, · · · , h4, r1, r2, r3 be as in Example 2.3 and let r4, r5 be
relators such that r4 = h1−h2, r5 = h1−h4. Then, Col3(D

′) ∼= φ(Col3(D
′)) ∼=<

h1, h2, h3, h4|r1, r2, r3, r4 >3 and Col3(D
′′) ∼= φ(Col3(D

′′)) ∼=< h1, h2, h3, h4|r1,
r2, r3, r5 >3. Now, we consider (4, 4)-matrices B and C over Z3 given by;

B =




2 −1 −1 0

−1 2 −1 0

0 −1 2 −1

1 −1 0 0




, C =




2 −1 −1 0

−1 2 −1 0

0 −1 2 −1

1 0 0 −1




.

Then, dim < r1, r2, r3, r4 >3= rankB = 3 and dim < r1, r2, r3, r5 >3=
rankC = 2. Therefore, Col3(D

′) ∼= Z3 and Col3(D
′′) ∼= Z2

3.

Lemma 2.8 Let S and S ′ be surface links. Let m and m′ be integers such
that Colp(S) ∼= Zm

p and Colp(S
′) ∼= Zm′

p , respectively. Then, Colp(S]S ′) ∼=

Zm+m′
−1

p .

PROOF. Since Colp(S
∐

S ′) ∼= Colp(S)
⊕

Colp(S
′) ∼= Zm+m′

p , by Proposition

2.6, we have Colp(S]S ′) ∼= Zm+m′
−1

p or Zm+m′

p . We consider a p-coloring C of
S

∐
S ′ such that C(E) = 0 if E ∈ Σ(D), C(E ′) = 1 if E ′ ∈ Σ(D′) where D and

D′ are diagrams of S and S ′, respectively. By Lemma 2.5, C 6∈ φ(Colp(S]S ′)),
and hence Colp(S]S ′) 6∼= Zm+m′

p . (This implies that the relator hj1 = hj2 in the
paragraph above Proposition 2.6 is not a consequence of the relators derived
from the double point curves of D

∐
D′.) Therefore, Colp(S]S ′) ∼= Zm+m′

−1
p .

Proposition 2.9 Let S1, · · · , Sw be surface links whose component numbers
are n1, · · · , nw, respectively, and let m1, · · · , mw be integers such that for each
i, the set of p-colorings of Si is isomorphic to Zmi

p . Then, (m1 + · · ·+ mw)−
(n1 + · · ·+ nw) ≤ u(S1] · · · ]Sw).
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PROOF. Put m = m1+· · ·+mw and n = n1+· · ·+nw. Let S be the connected
sum S1] · · · ]Sw. If m−n−1 ≥ u(S), then there is a set of m−n−1 1-handles
such that the surface link S ′ obtained from S by attaching these 1-handles is
an unknotted surface link. Since the component number of S is n−(w−1), the
component number of S ′ is at most n− (w− 1). Hence, |Colp(S

′)| ≤ pn−(w−1).
On the other hand, by Lemma 2.8, |Colp(S)| = pm−(w−1). By Proposition 2.6,
|Colp(S

′)| ≥ p(m−(w−1))−(m−n−1) = pn−(w−2). This is a contradiction.

Remark 2.10 For a surface link S, Colp(S) is related to a homology group of
a double branched cuver for S. Specifically, in [25], the relation between core
group and fundamental group of double branched cover for S is discussed, and
by abelianizing, it gives a relation between Colp(S) and the homology of double
branched cover for S. (Such a relation is given by Fox in the classical case.)
Then, Miyazaki’s ([22]) inequality ρ(S) ≤ u(S) will related to the exponent
mi in Proposition 2.9, since the case t = −1 that Miyazaki uses at the bottom
of page 83 in [22] would be related to the rank of homology of the double
cover. Thus, Proposition 2.9 will also follow from Miyazaki’s inequality.

Corollary 2.11 For each i with 1 ≤ i ≤ w, let Si be a surface knot with
u(Si) = 1 such that |Colp(Si)| = p2. Then, u(S1] · · · ]Sw) = w.

PROOF. By Proposition 2.9, 2w − w = w ≤ u(S1] · · · ]Sw). On the other
hand, u(S1] · · · ]Sw) ≤ u(S1) + · · ·+ u(Sw) = w. Thus, u(S1] · · · ]Sw) = w.

3 Quandle cocycle invariants

Let X be a quandle and fix the associated group. In [6], the quandle homol-
ogy was defined to construct invariants of classical knots or surface links. N.
Andruskiewitsch and M. Graña [1] provided generalizations of quandle ho-
mology theory. Now, we review quandle homology theory of GX -module (cf.
[1,5,7,28]). The original idea of this theory appeared in [9] and in §4 of [10].

Consider the free ZGX -module Cn(X) = GXXn with basis Xn for n > 0. Put
C0(X) = ZGX and Cn(X) = 0 for n < 0. We define ∂n : Cn(X) −→ Cn−1 by

∂n(x1, · · · , xn) = (−1)n ∑n
i=1[(−1)i[xi, xi+1, · · · , xn](x1, · · · , x̂i, · · · , xn)

−(−1)i(x1 ∗ xi, · · · , xi−1 ∗ xi, xi+1, · · · , xn)]

for n > 1, ∂1(x1) = −x1 + 1, and ∂n = 0 for n < 1, where

[x1, x2, · · · , xn] = ((· · · (x1 ∗ x2) ∗ x3) ∗ · · · ) ∗ xn.
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In particular, the 3-cocycle condition for a 3-cochain κ is written as

wκx,y,z + κx∗z,y∗z,w + (y ∗ z) ∗ w)κx,z,w + κy,z,w

=(((x ∗ y) ∗ z) ∗ w)κy,z,w + κx∗y,z,w + (z ∗ w)κx,y,w + κx∗w,y∗w,z∗w

for any x, y, z, w ∈ X where κx,y,z = κ(x, y, z). We call this condition a rack
3-cocycle condition. When κ further satisfies κx,x,y = κx,y,y = 0, we call κ a
quandle 3-cocycle, or a 3-cocycle.

Let D be a diagram of a surface link S. Let γ be an arc from the region at
infinity of R3 to the target region of a triple point t. Assume that γ intersects
D transversely in some points thereby missing double point curves, branch
points and triple points (Fig.3). Let hi, i = 1, · · · , k, in this order, be the
sheets of D that intersect γ from the region at infinity to the triple point t.
Let X be a finite quandle and let κ be a 3-cocycle valued in a GX-module M .
For a coloring C, we define the Boltzmann weight at the triple point t by

B(C, t) = ε(t)(C(h1)
ε(h1)C(h2)

ε(h2) · · ·C(hk)
ε(hk))κx,y,z ∈ M

where x, y and z are the sheets around t such that z is the top sheet, y
is the middle sheet from which the orientation normal of z points, and x
is the bottom sheet from which the orientation normals of y and z point.
The sign ε(t) is the sign of the triple point t. The exponent ε(hi) is 1 if
the arc γ crosses the sheet hi against its normal, and is −1 otherwise, for
i = 1, · · · , k. The value B(C, t) does not depend on the choice of γ. The
family Φκ(S) = {

∑
t B(C, t)}C∈ColX(D) is called the quandle cocycle invariant

with respect to 3-cocycle κ (cf. [5,7]), where
∑

t is taken over all crossing of
D. It does not depend on the choice of diagram D of the surface link S.

For two multi-sets A′ and A′′, we use notation A′
m
≤ A′′ when g ∈ A′ implies

ag(A
′) ≤ ag(A

′′), where ag(A) is the number of g in A. (This is different from
the one in [5,7].)

Let S be a surface link and D be a diagram of S. The triple point number of
D, t(D), means the number of triple points of D. The triple point number of
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S, t(S), is the minimal number of t(D) among all diagrams D of S.

Lemma 3.1 Let S be a surface link and κ be a 3-cocycle. If there is a non-zero
element of M in Φκ(S), then t(S) ≥ 1, and hence τ(S) ≥ 1.

PROOF. If t(S) = 0, then all elements of Φκ(S) are 0.

Lemma 3.2 Let S and S ′ be surface links such that S ′ is obtained from S by

attaching a finite number of 1-handles. Then, Φκ(S
′)

m
≤ Φκ(S).

PROOF. Let D, D′ and H be as in Lemma 2.4. We may identify the triple
points {t1, · · · , tu} of D with that of D′. Let γi be arcs in R3 from the re-
gion at infinity to the triple point ti for any i with 1 ≤ i ≤ u such that
γi intersects D transversely in some points thereby missing double point
curves, branch points, triple points and 1-handle H . Let φ be the map as
in §2. Then

∑
ti

B(c′, ti) =
∑

ti
B(φ(c′), ti). Since φ is injective (Lemma 2.5),

Φκ(S
′)

m
≤ Φκ(S).

4 Proofs of main results and examples

PROOF. [Proof of Theorem 1.2] If l ≥ τ(S), there is a set of l 1-handles
such that the surface link S ′ obtained from S by attaching these 1-handles is
a pseudo-ribbon surface link, i.e. t(S ′) = 0. By Proposition 2.6, |Colp(S

′)| ≥

pm−l. On the other hand, Φκ(S
′)

m
≤ Φκ(S) by Lemma 3.2, and hence a0(Φκ(S))

≥ a0(Φκ(S
′)). By assumption, |Colp(S

′)| ≥ pm−l > a0(Φκ(S)) ≥ a0(Φκ(S
′)).

Therefore, there are colorings which contribute non-zero elements of M in
Φκ(S

′). By Lemma 3.1, t(S ′) ≥ 1. This is a contradiction.

PROOF. [Proof of Theorem 1.3] By assumption, Oκ(S
∐

S ′) is a subspace of
Colp(S

∐
S ′), and hence a0(Φκ(S

∐
S ′)) = ps for some integer s. Applying the

same argument as in §2 to Oκ(S
∐

S ′), we have a0(Φκ(S]S ′))(= |Oκ(S]S ′)|) =
ps or ps−1. Consider a p-coloring C of S

∐
S ′ such that C(E) = 0 if E ∈ Σ(D),

C(E ′) = 1 if E ′ ∈ Σ(D′) where D and D′ are diagrams of S and S ′, respec-
tively. Then C contributes 0 ∈ M in Φκ(S

∐
S ′). Therefore, |Colp(S]S ′)| =

pm+m′
−1 and a0(Φκ(S]S ′)) = ps−1. If pm+m′

−l > a0(Φκ(S
∐

S ′))(= ps), then
p(m+m′

−1)−l > ps−1(= a0(Φκ(S]S ′)). By Theorem 1.2, the inequality l + 1 ≤
τ(S]S ′) holds.
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PROOF. [Proofs of Corollary 1.6 and 1.7] Let D and D′ be diagrams of S and
S ′, respectively. By combination of trivial colorings of D and D′, the number
of p-colorings that contribute 0 in Φθp

(S
∐

S ′) is at least p2. By assumption,
Oκ(S

∐
S ′) ∼= Z2

p. Applying Theorem 1.3 to S and S ′ with m = m′ = 2
and l = 1, we have 2 ≤ τ(S]S ′). On the other hand, τ(S]S ′) ≤ u(S]S ′) ≤
u(S) + u(S ′) = 2. We have Corollary 1.6. By a similarly argument, we have
Corollary 1.7.

For twist spun 2-bridge knots, the following proposition have been known.
(See [29] for the definition of twist spun knots.)

Proposition 4.1 ([18,20,27]) Let S be an r-twist spun 2-bridge knot. Then,

(1) τ(S) = 0 and u(S) = 1 for r = 0.
(2) τ(S) = u(S) = 1 for r ≥ 2.

Example 4.2 Let σα be a spun 2-bridge knot S(α, 1) in Schubert form for
odd α. If (α, α′) 6= 1, then there is an odd prime q that is a divisor common to α
and α′. It is easy to see that |Colq(σα)| = |Colq(σα′)| = q2. On the other hand,
by Proposition 4.1(1), u(σα) = u(σα′) = 1. By Corollary 2.11, u(σα]σα′) = 2.
Furthermore, This example also appeared in [22], page 83, Remark 2.

Example 4.3 (1) Mochizuki’s 3-cocycle θp valued in Zp, which is a generator
of the third quandle cohomology group of Rp with trivial action, was given in
[3,23]. By [6,26], we have |Col3(Tr)| = |Col3(Tr+6)| = a0(Φθ3

(Tr

∐
Tr+6)) = 32

where Tr is the r-twist spun trefoil for an even integer r with r 6≡ 0 (mod 6).
On the other hand, by Proposition 4.1(2), u(Tr) = u(Tr+6) = 1. By Corollary
1.6, we have τ(Tr]Tr+6) = u(Tr]Tr+6) = 2.
(2) Associated with θp, the quandle cocycle invariants of twist spun 2-bridge
knots are calculated in [14]. By an argument similarly to (1), we have triple
point cancelling numbers of some of 2-knots that are connected sum of twist
spun 2-bridge knots. For example, we have τ(Fr]Fr′) = u(Fr]Fr′) = 2 for even
numbers r and r′ with r ≡ 2, 8 (mod 10) and r′ ≡ 4, 6 (mod 10) where Fr is
the r-twist spun figure eight knot.

Example 4.4 In [5,7], a 3-cocycle κ of R3 with wreath product action was
given, where κ is valued in Z3. And the cocycle invariants of twist spun
3-colorable knots (up to 9-crossing) associated with κ was calculated. Ac-
cording to their calculation, we have |Col3(S)| = 32, a0(Φκ(

∐
n S)) = 3n or

|Col3(−S)| = 32, a0(Φκ(
∐

n(−S))) = 3n for a 2r-twist spin of S of 77, 911, 915 or
917 with r 6= 0. (These classical knots are 2-bridge knots.) On the other hand,
by Proposition 4.1(2), u(S) = 1. Since τ(K) = τ(−K) and u(K) = u(−K)
for any surface link K, by Corollary 1.7, we have τ(]nS) = u(]nS) = n.
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