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Fluctuating reaction rates and their application to problems of gene expression
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A reduced description is presented for noisy chemical reactions in small systems, such as cells. We show
that, even when the number of molecules of a chemical species is small, its elimination from the description is
possible provided that its characteristic time scale is short. The resulting effective chemical reaction has a
reaction rate which fluctuates in time. The strength of the fluctuations depends on the time scale of the
eliminated species as well as its variance. We derive the master equation of the reduced system, which includes
additional terms of a diffusive kind, yielding a contribution towards fluctuations from the eliminated species.
The stochastic kinetic equation for the reduced system is also derived. Finally, these results are applied to some
problems of gene expression.
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[. INTRODUCTION molecule number is small. In Sec. I, we develop a reduction
technigque by studying a set of reactions that is often ob-
A large number of chemical species coexist in a cell, andserved in biological systems. Temporal coarse-graining is es-
many chemical reactions are involved even in individual cellsential for the reduction. A fast reaction variable can be
events. Their characteristics are quite heterogeneous. Theiminated even though the average number of molecules
numbers of molecules of each type are subject to strongnhvolved is small. The resulting effective chemical reaction
variation and distributed from just a few to tens of thousandshas a reaction rate which fluctuates in time. The strength of
The characteristic time scales of the changes in the concefhe fluctuations is proportional to the time scale of the elimi-
tration of each species are also strongly heterogeneous amdted variable as well as to its dispersion. In Sec. Ill, we
vary from seconds to several hours. When some moleculegerive a master equation for the reduced system, which in-
are present in small amounts, this implies stochastic evolug|yges additional terms of a diffusive kind, yielding a contri-
tion for such molecules. Stochastic aspects of cell reactiong,tion toward fluctuations from the eliminated species. The
have recently attracted much attent[dn-3]. As an example,  corresponding stochastic kinetic equation for the reduced
the reactions of gene expression have been stydidd-11. system is also derived.
Here, transcri_ption of a single gene gives _rise to a few co_pies In Sec. IV, these general results are applied to a model
of mMRNA which in turn may produce, via the translation genetic system. The model describes the expression of a
process, only tens of specific protein molecules. In such S'tUsingIe gene in the absence of any regulation, but explicitly
ations, the classical kinetic description becomes deficient a”lqesolving both the transcription and translation stages. Since
fluctuations due to the discrete stochastic nature of the conpe characteristic time scale of the number of molecules of a
sidered reactions must be taken into account. given type of mRNA is much faster than that of the protein
The full stochastic description is provided by a masterproducts, it is further eliminated, even though the mRNA
equation that specifies the evolution of the joint probability yyolecule number is small. We find the approximate effective
distribution for discrete numbers of all the reacting mol- j3ster equation of the reduced system and compare its pre-
ecules. However, for a cellular system involving a great vagjictions with the exact solutions which are available for this

riety of reactions, such a description is not efficient and masimple model. In Sec. V, brief concluding remarks are of-
be impossible. A coarse-grained description is necessary fggre(d.

such systems. For master equations, coarse-graining with re-
spect to volume size is well knowid 2]. However, this tech-
nique is not applicable to small systems. Thus, coarse-
graining with respect ttimeis necessary. Coarse-graining of
master equations with respect to time has been studied in
detail by Gillespie[13]. He showed that temporal coarse-
graining is essential for the derivation of stochastic kinetic In this section, we study a set of chemical reactions con-
equationschemical Langevin equationfrom master equa- sisting of two chemical species with different characteristic
tions. time scales. The chemical species with the slower time scale
The problem that we want to address in this publication iss generated from the other one. The number of molecules
how to eliminate a fast intermediate reaction even when thevith the faster characteristic time scale can be small. Thus,
the concentration of this component can be noisy. Even in
such a case, we show that the fast chemical component can
*Electronic address: shibata@hiroshima-u.ac.jp be eliminated. As a result, a “fluctuating reaction rate,”

II. ELIMINATION OF A FAST BUT NOISY
CHEMICAL VARIABLE AND THE FLUCTUATING
REACTION RATE
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which is a reaction rate fluctuating in time, enters into thesimplicity we choose chemical reactions that do not change

description. the number ofY molecules. Thus, any statistical and dynami-
Consider chemical reactions consisting of two chemicakal properties of the number &f molecules are not affected

speciesX andY. X is synthesized fron¥, Y—X. ForY, by this reaction.

some other synthesis and degradation or depletion reactions, Let X(t) andY(t) be the numbers ok andY molecules,

which we do not specify here, are assumed. Thus, the numespectively. The evolution equation X{t) is given by

ber of Y molecules is also time dependent. We postulate that

the characteristic time scale of the numbeiYafolecules is -
much faster than that of molecules. This also suggests that X(1)=7(kY(1),1) = 7(AX(1),1). )
the chemical reaction for synthesizingy Y— X, does not
significantly affect evolution of the number of molecules of Here, («(t),t) is a shot noise representing a random series
Y. of pulses. Whenever a reaction event takes place, a pulse
Many kinds of biological reactions in a cell can be in- appears in the evolution equation. This shot noise process is
cluded in this type of reaction. Below, the three examples of nonhomogeneous Poisson process, in which the probability
gene expression, transcriptional regulation, and enzymatiof having a pulse per unit time ig(t). Mathematically,
reaction are considered. n(k(t),t) is a series of functions that are distributed with
(1) Gene expression can be described by the transcriptiofiequencyx(t), and the time of occurrence of tlé&function
processG—M+G, M—, and the translation procedd is statistically independent. If a reaction occurs at tim@
—P+M, P—, in which G stands for a geneM stands for =1,2,...),then n(x(t),t)==,-,6(t—t;). The number of
its MRNA transcript, and® stands for its protein produfs]. reaction events taking place within an interyalt+ 7] is a
The characteristic time scale of mMRNA is much faster tharPoisson random variable. i stands for this number, the
that of the protein product. Thus, mMRNA corresponds to theprobability distribution ofn is given by
fast componenY, and the protein product correspondsxto
(2) Transcriptional regulation is described by the regula- t+r
tion processG;« R+ G,, and the transcription process, proﬁ’f K(t’)dt’zn]
—M+G,, M—, in which G, andG; are the active and in- t
active states of the gene, aRdis a repressor protein which t+r n
inactivates the gene by binding to its operator region. When f K(t,)dt'}
the characteristic time scale of the transition between two _ L7t exp{ _ IHTK(t’)dt’)
gene states is faster than that of mRNA, the transcription n! t '
process is included in the present type of reaction. In this 3)
case, the active states of the gene and mRNA correspond to
Y and X, respectively.
(3) Many enzymatic and signal transduction reactions aravhich depends on the function(t).
described by the Michaelis-Menten sche®i¢ E—~ES—E Next, we consider the situation in which the characteristic
+P. Suppose that synthesis and the degradation or depletidine scaler. of Y(t) is much shorter than the characteristic
reactions are present for the substi@térhus, the number of time scalery of X(t), i.e., 7x>7.. We do not impose any
molecules ofS is time dependent. In such a case, the fluc-condition on the concentration of. Thus, the concentration
tuations ofS can affect the generation of product moleculesof Y can be small. Even in this case, it is possible to elimi-
[14]. If a reaction of the Michaelis-Menten type does nothate the variable/(t) from Eg. (2).
affect the dynamics of the number of substrate molec@es,  (a) Eliminating the fast chemical compone@ne of the
corresponds te. ways to eliminate the variablé(t) is to solve the evolution
Here we are interested in a reduced description of th€quation forY(t) within a short time interval and then use
reaction for the end product. As we shall see, the fast the short interval solution of(t) for the evolution ofX(t).
chemical components can be eliminated from the reactiohVithin the short time interval, i (t) changes frequently and
scheme, and then we obtain the reduced description. In ordé(t) does not change so much, the detailed behavif(of
to acquire the reduction method, we consider the chemicatannot much influence the behaviorX(t).
reactions betweeK andy, In this case, we choose a time scaldéhat satisfies the
following conditions(similar to the arguments by Gillespie
k A [13]). The time scaler is small enough so thax(t) and
Y—=X+Y, X—, (1) other time dependent parameters change only slightly. On the
other hand; must be so large thaf(t) is stationary. Within
in which k and\ are rate constants. We assume that someuch a time intervatr, we replace the evolution equation for
synthesis and degradation or depletion reactionsYfare  Y(t) by the stationary-state properties ¥ft), such as the
present, which are not specified in this section. Thus, thenean value, the variance, and the characteristic time scale of
number ofY molecules is also time dependent. For the syn-Y. Then we have an evolution equation ¥ft) that does not
thesis reaction, it is enough to consider the situation in whictinclude the detailed behavior &f(t). The evolution equa-
the variation of the number of molecules is not influenced tion obtained describes the temporally coarse-grained behav-
by the synthesis reaction of the moleculesXof Here, for  ior of X(t).
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We first consider the synthesis reaction>6fin reaction The variance dy(t)?) of y is given by
(1). The number of reaction events occurring within a time
interval[t,t+ 7] is then given by

1 (t+7 (t+7
A rogn r A+
(oy(t) >_7'2ft ft C(t',t")dt'dt", )

t+7
n:f n(kY(t"),t")dt’. (4)
t whereC(t’,t") is the time correlation function of(t), de-

. . . . .fiRed as
This process is a nonhomogeneous Poisson process, in whic

the probability that a reaction event takes place depends on C(t' ) =([Y(t) = (YADIYA) = (Y(t"))]). (10)
time, i.e., the probability that a reaction event takes place per '

unit time is given bykY(t). Then, in terms of the integral of Note that(sy(t)2) depends on the time scale ¥f The vari-
Y(t), the probablllty distribution oh for a partlcular real- ance< é‘y(t)Z) can be expanded as a series of the powers of

ization of Y(t) is given by 1/7 for large 7, and the leading term is proportional torl/
. Let B(t)? be the coefficient of the leading term of the vari-
prob[f p(kY(t"),t)dt' =n Y(t)} ance ofy(t), i.e.,(8y(t)?)=B(t)% r+ O(1/7%). For larger,
t the higher-order terms can be neglected. Therefore, using

a(t)=(y(t)) and B(t)?, the probability distribution of(t)

t+71 n H '
[kf Y(t’)dt’} is written as
t t+7
- n! exr’(_kﬁ Y(t')dt ) ) 1 p( [y—a(t)]z) W
y)=———exp ———|.
(5) V2mB(t)? T 2B(t)2 T
Lety(t) be the short time average ¥{t), Instead of consideringy explicitly, this R(y) is used for
1 (tor calculatingQ,,. We should notice tha8(t)? depends on the
y(t)= _J Y(t')dt’, (6)  time scale ofY(t) as well as on the variance ¥{(t). As the
Tt time scale ofY increases, the fluctuations become stronger.

S ) (b) Reduced evolution equation and the fluctuating reac-
and Py be the probability distribution ofi for a giveny. tjon rate The probability thaiX is generated per unit time is
Substitutingy(t) into Eg. (5), we find that kY(t). If the interval[t,t+ 7] is much shorter than the char-

[ky(t)7]" acteristic time scale oX(t), this probability is well approxi-
—— 277 a—kyl)r 7) mated by a short time average kY(t). Thus, within such
n! an interval, the probability is given biyy(t). Therefore, in-
stead of Eq(2), the evolution equation foX(t) is given by

nly

Suppose thatQ,, is the probability distribution of the
numbern of reaction events occurring within the interval G
[t,t+7]. The distributionQ, is obtained by integratin@,, X(1) = nky(t),H) = 7(AX(1),1). (12)

over all possible realization of Thus, itis given by On the other hand, since the interyajt+ 7] is much longer

than the characteristic time scale ¥f a large number of
Qﬁf PryR(y)dy (8) reaction events to changé have occurred in the interval.
Therefore, the distribution of the time averagés well ap-

whereR(y) is the probability distribution of in the interval ~ Proximated by the Gaussian distribution, as we have dis-

[t,t+ 7]. cussed. Then, usin@(y) given by Eq.(11), y(t) is ex-
Now we consider an approximation of the probability dis- Pressed as

tribution R(y). Note that the properties 62(y) depend on

7. For instance, the variance of the time averggkecreases

astincreases. As we discussed above, sincemuch larger

than the characteristic time scale¥ft), 7., a large num-

ber of reaction events of synthesis and degradation or deplgvhere A’ denotes a statistically independent random variable

tion of Y are occurring within the interval. This implies that which follows a normal distribution with zero mean and unit

the central limit theorem is applicable for the temporal avervariance. This implies that(t) can be rewritten as

agey, even though the mean concentratigh) itself can be

small. Thus, the time averageis described by the mean y(t)=a(t)+ B(1)&(1), (14
value and the fluctuation about it and the probability distri-

bution R(y) is well described by a Gaussian distribution. where&(t) is the Gaussian random variable wité(t))=0
Note thatr is still much shorter than the time scaleXft).  and(&(t")&(t"))=4(t' —t"). Hence, we have the evolution
Hence, in this intervat, X(t) is far from a stationary state. equation forX(t) given by

Sincey is the concentrationy cannot be negative. The con- _

dition for this is discussed later. X(t)=nk[ a(t)+ B(1)&E1M)],)— n(AX(t),t), (15

1
Y(I)Za(t)+,3(t)TTN, (13
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where the evolution o (t) does not explicitly appear, and lll. EVOLUTION EQUATIONS FOR REACTIONS
thusY(t) is eliminated. WITH FLUCTUATING REACTION RATES
This evolution equation implies that the chemical reaction

. i In the previous section, we introduced a chemical reaction
is rewritten as

with a fluctuating reaction rate. In this section, we derive the
evolution equations for such reactions. We first obtain the
kla(t)+B(1)E(t)] A . . .
— X, X—, (16) master equation for such reactions. Then we derive the sto-
chastic kinetic equation and the Fokker-Planck equation.
where the reaction probability per unit time is given by Thus, in this section we consider the chemical reaction

ky(t)=Kk[ a(t)+ B(t)&(t)]. Here, the reaction probability K[ a(t)+ B ED)] N

per unit time is not a constant but fluctuates in time. In this — X, X— (23

way, chemical reactions that involve a fast but noisy chemi- _ o

cal concentration can be described by a “fluctuating reactioryvhere the production rate of fluctuates in time. Hereg(t)

rate.” is the Gaussian white noise with(¢(t))=0 and
Since the reaction probability and the averaged concentrd£(t")§(t")) = &(t" —t"). While we derive the fluctuating re-

tion y cannot be negative, the time scale should be carefull@ction rate from a particular reaction scheme, the notion of a

chosen. For this, the standard deviatioryshust be smaller fluctuating reaction rate is not restricted to this case. For

than the average value wf This condition is always satisfied instance, one may imagine the case in which the reaction rate

if 7 is sufficiently large. Notice that the standard deviation ofof an enzymatic reaction depends on the internal dynamical

y is given byB?%/7. Thus, if the time scale satisfies state of the enzyme, and the internal state fluctuates in time
according to some evolution rule. This has been discussed
g2 extensively from a different point of viepl5].
T > (17)
« A. Master equation

Here, we derive the master equation for the react&s).
For simplicity, « and 8 are supposed to be time-independent
' constants.
First we consider only the synthesis procesXofor this
) 5 process, lein be the number of chemical reaction events
B =2(5Y*) 7, (18 taking place within the intervdlt,t+ r]. Let W,(t) be the
probability distribution ofn given by

this description is valid.
From the viewpoint of nonequilibrium statistical physics
the noise intensity3? is

where 7. is the characteristic time scale %f
AMD"

- Wal(t)={ ——e® (24)
Te= f #(s)ds, (19 '

0 with
and ¢(t) is the time correlation function defined by t+r
)\(t)=f k[ a+ BE&(s)]ds. (25

t

(Y()Y(0))=(Y?)
d(t)= . (200 The distribution)V,, can be calculated by considering the

2
(8Y%) generating functiorf(s) given by
The time scaler determined from the number scafim *
and the fluctuation strengih should be much larger tham . f(s)= E s"W, (26)
Then it follows that n=0
kZBZ
&n)? — _ —1)2
. ( 52) .. (21) exp[(s Dkar+(s=1)?——1|. (27)
Using f(s), the distributionWV,, is obtained as
On this time scale, the time correlation of the reaction rate of
synthesizingX is approximated by & function. This condi- 1 d"f(s)
tion, given by Eq.21), implies Wn_m ds (28)
s=0
N> \(8Y9) 7. (22 This probability distribution\V,, gives the transition prob-

ability that the number oK molecules increases hyin the
This condition can be used to estimate the accuracy of thimterval[t,t+ 7]. Let X give the number oK andPy(t) give
description. the probability distribution o at timet. Then we have
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* probability distribution ofn is approximated by a Gaussian
Py(t+ 7)22 Wi Px_i(t). (29 distribution. The mean value and the variancen¢f) are
=0 calculated from Eq(8). The mean valuén(t)) and the vari-

2 .
Expanding the right hand side of E@9), it follows that ance(4n?) are given by

(n(t))y=ka(t)r and (on(t)?)=ka(t)7+k?B(1)%r.

kZBZ
Py(t+7)= 1—(ka— 3 )TPX(t)-l-(ka—kZ,Bz) (33
k232 Therefore, the probability distribution functio@,, is
><Tpx,l(t)+TT7>X,2(t)+O(TZ). (30
1

This implies the master equation n= J2mlka(t) 7+ K2B(1)27]
dPx(t) k?pB? k(D12

S =Kal Px a0 = PO+ 5[ Px(t) = 2Px (1) o p( S Ul G [

2k k
P, 31) [ka(t) T+k*B(1)°7]

. . . Here,n is a continuous number written as
where only the synthesis process is taken into account. Tak-

ing the degradation process into account also, we obtain the 5 5
master equation for considered react{@3) in the form n(t) =ka(t) 7+ Vka(t) + kBN, (35
dPy(t) k22 whereVis a statistically independent random variable obey-
dt :ka[PX—l(t)_Px(t)]+T[Px(t)_2PX—1(t) ing a normal distribution with the mean being zero and the
variance being unity.
+ Px—2(D]FN(X+ 1) Py 1 (1) = XPx(1)]. (32) For the degradation process, we repeat a similar discus-

S ~sion. The number of degradation reaction events occurring
Here the diffusion like term corresponds to the fluctuationgpside the interva[t,t+ ] is given by

of the reaction rate.

We derive this master equation in a formal way. However, t+r
as we pointed out in the previous section, this description is n:f (A X(t"))dt’. (36)
not valid on a short time scale. Thus, one should choose the t
appropriate time scale carefulligee the discussion in the
previous section Actually, the transition probabilityy,, ~ As we have discussed, the interyalt+ 7] is so short that
might be negative if one ignored the condition. Note that athe change in the numbet(t) is slight. This condition is
similar diffusionlike term was obtained in a different way by explicitly given by A [{"7X(t")dt’<X(t), or by 7<1\.
Kepler and Elston in Ref.7] in a special case of transcrip- Since the change iX(t) is small,X(t) in Eq. (36) is well
tional regulation of gene expression. approximated by the time average ¥{t), given by x(t)

=(1/7)[{77X(t")dt’. Then the number of reactions is

B. Stochastic kinetic equation and the Fokker-Planck equation

If the number ofX molecules is much larger than unity, n= ftﬂn()\x(t))dt’_ (37

the description can be further reduced. In this case, it is pos- t

sible to choose a short interdl t + 7] satisfying the follow-

ing conditions. The intervat is short enough that(t) and The interval[t,t+ 7] also satisfies the condition that it is

B(t) are considered as constants inside the interval, and th#o long that the number of reaction events occurring within

change in the number of is so slight that the reaction rate this interval is much larger than unity, i.e.x(t) 7>1. Then

of degradation is replaced by its average value within thighe distribution ofn is approximated by a Gaussian distribu-

interval, i.e., byax(t) wherex(t) is the time average of(t)  tion. Thereforen is given by

in the considered interval. At the same timealso satisfies

the condition that it is long enough that the number of reac- n=Ax(t) 7+ VAX() NV, (38)

tions taking place within the interval is much larger than

unity, i.e., ka(t)7>1 andAx(t)>1. (See the discussion in where\is a statistically independent random variable obey-

Ref.[13].) ing a normal distribution with the mean being zero and the
We first consider the synthesis reaction X%f Let n(t) variance being unity.

give the number of chemical reactions taking place in the Therefore, the number of molecules at tima+ 7 is
interval [t,t+ 7]. The probability distribution oh is given

by Eq. (8) with Egs.(7) and(11). As we mentioned above, X(t+7)=x(t) +Ka(t) 7= AXT
the number of reaction events taking place inside the interval
is much larger than unity. Thuka(t) 7> 1. In this case, the +Vka(t) +K2B(t) 2+ AxNVT, (39
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whereis a statistically independent random variable obey- o
. B . . . (oX6)
ing a normal distribution with the mean being zero and the Protein ooo%
variance being unity. This equation then implies the stochas- ° )
. . . . degradation
tic kinetic equation transmi(y (~60min.)
dx ol
T _ 2 2 mRNA_—_- .
It ka(t) —Ax+ Vka(t) +k2B(1)2+Ax&(1),  (40) . / gradaton
transcription (~2min.)
where &(t) is a Gaussian white noise witf¢(t))=0 and DNA e
(meé))=ot—t). gene
Finally, the probability distribution ok obeys the follow-
ing Fokker-Planck equation: FIG. 1. A single gene expression in a procaryote. The typical
time scales of degradation of mMRNA and protein products are
IP(x,1) d 19 shown in the figure. The parameters are the transcriptiorkgatbe
—_ _ o 2 2 .
a 3X(ka(t) A 2 5x[ka(t)+k A1) translation ratek, the degradation rate of the protein produets,

and the degradation rate of mMRNRA,.

+AX] |P(x,1). (42

minor. Then, a single gene expressiorffectivelywritten as

Note that this equation can also be obtained by applying the
Kramers-Moyal expansion to the master equation given by
Eq. (32).

) Ao
G—-M+G, M—,

IV. GENE EXPRESSION k A
) . ) M—P+M, P—, (42
In this section, we study the gene expression processes of
a single gene as an application of the method developed in

the previous sections. We show that the transcription readVNereG stands for the gend4 stands for its MRNA tran-

tions can be eliminated and introduce a “fluctuating transla-script' andP stands for its protein produdfig. 1. The

tion rate.” Finally, we determine the intensity of the noise of Parameters are the transcription riggthe translation ratk,
gene expression. The result shows good agreement with mil® degradation rate of the protein products, and the deg-
croscopic models and experiments. radation rate\, of mMRNA. L

The number of MRNA molecules of a given type in a cell !N the case of a procaryote, the half-life time of the
is typically less than ten copies. Under these conditions, be"RNA transcript, given by log 2j, is typically a few min-
cause of the stochastic nature of chemical reactions, the nurHt€S, whereas the half-life time of the protein, given by
ber of protein product molecules is subject to stochastic timé®d 2/A, is about one hour or a few hours. Therefore, for gene
evolution. Several recent experiments on the noise of gen®XPression processes, we can consider a short time interval
expression indicate the existence of strong né®8]. The which is much longer than the half-life tlme _of the mRNA
noise of gene expression has been studied theoreticallj@nscript but much shorter than the half-life time of the pro-
[1,4,6,7, suggesting that this noise can be much strongeFe'” product. .ThIS means thatsahsﬂes the conditions &/
than Poissonian noise. McAdams and Arkin investigated the” 7> 1/Ao. Within the time intervalr, many events of syn-
elementary gene expression process in detail and discussE¥Sis and degradation of the mRNA transcript take place.
the biological relevance of stochastic gene expres§ign Thus, the process of transcription is essentially in a station-
Thattai and van Oudenaarden studied the noise in the gerfdy State, although the number of MRNA molecules could be
expression system using simple models and showed that tfefeW within a cell, suggesting the existence of strong mo-
noise in gene expression is linearly proportional to the transtecular noise. Thus, for gene expression processes, we expect
lation efficiency, that is, to the average number of proteint© @pply the method developed in the previous sections, and
products produced by one mRNA molec(i]. This result to eliminate the detailed description of the chemical reaction
was then experimentally verified by the same grp@ip for mRNA. _ o ,

Several models have been proposed for gene expression Accordmg to Sec. Il, in order to eliminate the_reacnons of
[1,6,11. Even in the simplest case, a lot of processes ar(;_siynthe5|s and degradation of mMRNA, we consider the §hort
taking place, such as binding of RNA polymerd&NAP) time average of the number of mMRNA _molecules. In partlc.u—
and initiation of transcription, transcription progression of!ar, we need the average and the variance of the short time
RNAP, binding of ribosome and RNase on mRNA, and tran-2verage. Le¥ be the number of mRNA molecules. The evo-
scription progression of ribosomé4]. We begin with the lution equation for the distribution functioR(Y,t) of Y is
model proposed by Thattai and van Oudenaaf@énwhere
the state of gene expression is described by the numbers ofP(Y 1)
MRNA and protein product molecules. Other processes in-——— =Kol P(Y=1H) = P(Y, D]+ X[ (Y+1)P(Y+11)
cluded in gene expression could affect the behavior, but their
contributions with respect to the noise of gene expression are -YP(Y,t)]. (43
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Lety(t) be the time average of(t) during the time interval  dPy(t) kok
[t,t+ 7], dt :)\_O[Px—l(t)_Px(t)]"‘)\[(X“' 1) Px+a(t)

1(eer Kok?
y<t>=;ft Y(t)dt'. (44 ~XPUOI+ — 5 [Pu(t) = 2Px-1(t) + Px—2(t)].
0

By solving Eq.(43), the average of is calculated as (51)

If the number of protein product molecules is much larger
<y>:ﬁ (45) than gnity, i.e.,kok/)\(?x»l, a stochastic kinetic _equation
No describes the evolution of the number of protein product
molecules. Letx be that number. As follows from Sec. I,
for sufficiently larget such thatY(t) is in a stationary state. this stochastic kinetic equation is

The variance of is given by ,
x=kob—Ax+ \Vkob(1+2b)+Ax&(t) (52)

<éy2)=ift+rft+TC(t’ t")dt’ dt” (46) whereb is the translation efficiency, i.e., the mean number of
)t t ' ' protein product molecules per a single transcript given by
b=Kk/\g. Hereg(t) is the Gaussian white random noise with
whereC(t’,t") is the time correlation function defined by ~ (£(1))=0 and(&(t)&(t"))=&(t—t’). Since the number of
mMRNA molecules fluctuates in time, the noise intensity is
Ct/ ) = (YY) — (YWY (L"), (47) larger than that corresponding to a simple Poisson process.
The probability distribution function forx(t) obeys the

If t'=t">0, it follows that Fokker-Planck equation

XY __ 39 kob—\ L kob(1+2b
C(t/ tlr):ﬁef)xo(t'ft”). at - & 0 X 55[ 0 ( )
1 A’O
Substituting thisC(t’,t") into Eq.(46), we have the variance FAX]TPOGD). ©3

of y(t) for sufficiently larget given by ) ] )

Now we solve this equation to study the evolution of the
1 K 1 mean and of the variance of the number of protein product
- _20 . _2(efxor_ 1)—. (489  molecules. Ifx=0 at timet=0, the mean value of(t) is

)\O T )\O 7-2

(oy?)

k
_ . (x())=b(1-e M) (54)
According to Sec. I, we calculate and 8 defined there. As A
we have discussed; is large enough so that(t) is in a
stationary state. In the present case, this meanstimmuch

larger than the decay timeNyd, i.e., 7=1/\y. Then we have (8x(1)2) = (x(1)2) = (x(1))2=[1+b(1+e ) |(x(1)).
5

while the variance ok(t) is

and /32:2—k20. (49 The same expression can be obtained by directly solving the

Ao master equation, under the condition that the degradation rate
of the protein is much smaller than that of mRIN&. In this

Hence, the gene expression is effectively described by case, the Fano factor, defined as the variance divided by the

mean value, is given by

_)\_0,

Kla+BE(1)] N
— P+G, P— (50) v=1+b(1+e M. (56)

with Eq. (49), where¢ is Gaussian white noise witf¢(t)) Hence, the molecular noise is stronger than that correspond-
=0 and(&(t)&(t’))=48(t—t’). In this way, a “fluctuating ing to a Poisson distribution. Wheris sufficiently largev
translation rate” is introduced for the gene expression pro=1+b. The solution obtained directly from the reaction
cess by eliminating the transcription process. Note that thecheme(42) is v=1+k/(Ag+\) [6]. In the present case,
strength of stochasticity in the fluctuating translation rate dexo>\. Thus, the reaction scheme with the fluctuating reac-
pends on the characteristic time scale of the change in thion rate gives a good approximation of the original reaction
number of MRNA transcript molecules. scheme. The strength of the noise1+b was experimen-

Let X denote the number of protein product molecules.tally confirmed by Ozbudalkt al. [9].
Using the results of Sec. lll, the master equation for reaction In biology textbooks, it has been argued that the lifetime
(50) is of mMRNA in procaryotes is chosen in such a way that the
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cells respond to environmental change as quickly as possiblshould be used as the variables. For instance, when one stud-
But additionally the lifetime of mMRNA should be constrained ies a system including a genetic network, the protein concen-
with respect to the strength of the noise of the gene productrations should be used as the variables, and the mMRNA num-
i.e., the generated protein. If the lifetime of mMRNA getsbers can be eliminated even if they are small. One should not
longer, the noise of the protein product becomes larger.  adopt the concentration of MRNA as a variable instead of the
protein concentrationl 8.
V. CONCLUDING REMARKS As we discussed in Sec. Il, the strength of the noise that
_ _ _ affects the behavior of the downstream reaction is given by
_In_ this paper, we hav_e stud|ed_ a reduc'_uon method tOB:2(5Y2>Tc [see Eq(18)]. Since the relative variation of

eliminate a fast intermediate chemical reaction. In order tcbiven by the standard deviation divided by the mean value is
develop such a method, it is essential to consider coarsgiormally proportional to the inverse of the mean value,
graining with respect to time. This methqd is particularly W” 1/m' the relative noise strength given by
applicable to small systems, such as reactions in a cell. Aftep, s oronortional to\7./(Y). This indicates that the in-
applying this method, we (_)btamed a redu_ced description | rease of the mean vald¥) and the increase of the charac-
terms of an effective chemical reaction which has a fluctuat; i velocity of the change, 4/ (the decrease of the char-

10 e e, e dored e s uatons 19 e tme s, convouesaualyo educing e
’ 4 effects of noise on the downstream reaction. In a cell, reac-

fusive kind. The stochastic kinetic equation and the Fokker:

Planck equation were also derived. As an apolication of Outions constitute cascades. In such a situation, it is important
d . PP OUhow the behavior of upstream chemical species affects the

would be applicable for reducing the description of moreB%havior of the downstream reactions. The small numbers
com Iicatedpé)ituations In our futgre work re(;)uced descri themselves indicate strong noise in the concentrations. How-
-omp L - C pever, the characteristic time scale is essential as well to con-
tions of autoregulation, transcriptional regulation, and oper- -
. . - trol the noise.

ons might be obtained, for examgl&6]. This is necessary
for studying the stochastic behavior of large genetic net-
works[10,17. _ ACKNOWLEDGMENTS
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