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Abstract

Shell of the adult hermit crab has some important roles for its fitness. In the same
time, the shell size often limits the body growth of its owner. To grow the body size
larger, the individual must change the shell to another larger shell. If the individual
cannot get another larger one, the individual has to suppress the body size growth as
the occupied shell size allows. Growth suppression would result in the lower fitness.
With a simple mathematical model, we consider the criterion about whether the
individual should try to change the shell or not in order to get the higher fitness.
We show that the optimality of a shell change behavior has a relation with the body
size and the season length for the shell change. They also affect the optimal timing
for the shell change. It is implied that the probability of the success in a shell change
and the cost for the shell change behavior do not affect the optimal timing for the
shell change at all but significantly do the optimality of the behavioral choice.

Key words: hermit crab, optimal behavior, optimal timing, body size,
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1 Introduction

About 800 species of hermit crabs carry empty snail shells as their shelter
(Hazlett, 1981; Kuhlmann, 1992; Angel, 2000; Rotjan et al., 2004). In general,
the hermit crab grows up to adult after the period of zoea floating in seawater
like planktons. Zoea period is 2-5 weeks for the species of the shallow sea.
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Although the adults are terrestrial, they move to sea for hatching eggs. After
several molts in the zoea period, the individual seeks a shell. Only such indi-
vidual that succeeds in getting its shell can grow up to adult and can increase
the body size after several shell changes (Reese, 1962; Hazlett, 1981; Rotjan
et al., 2004).

Some species show the reproductive activity throughout year, and the others
do only in some specific months. For example, Calcinus laevimanus in Hawaii
shows a reproductive behavior throughout year except for the period from
November to Feburary, while Clibanarius zebra inhabiting in the same region
breeds almost just in August (Reese, 1963).

How could the hermit crab get a new shell? We can observe two types of
behavior. The first is to obtain a shell just after the snail dies, that is, a vacant
shell. In general, such a shell after the snail’s death is buried, destroyed and
swept away by waves. Even though a hermit crab can encounter such a shell,
it may not meet its requirement. The second is to obtain a shell which another
crab has, that is a ritualizing behavior. Attacker hermit crab rocks, shakes, and
rapps the defender. When the defender gives up its shell, the attacker quickly
gets into the defender’s shell, and at the same time the ejected defender gets
into the attacker’s one. In a sence, two crabs exchange the shells from each
other (Hazlett, 1981).

A merit to carry the shell is the defense against predators (Hazlett, 1981;
Kuhlmann, 1992; Angel, 2000; Rotjan et al., 2004). When a predator comes
near, the hermit crab pulls its body into the shell and covers the shell with its
claw. Individual with a small shell is much likely subjected to the predation,
for instance, by fish (Hazlett, 1981). The shell contributes to the tolerance
against some physical stresses, too (Reese, 1969). In some cases, hermit crabs
die for the desiccation or the change of osmotic stress. Specoes inhabiting
in the high intertidal region utilizes the shell to retain sufficient water in it
(Bertness, 1981b).

Another merit of the shell is to increase the reproductive success. For female,
the shell is to guard its eggs. Some decapod crustacea have difficulty to move
with keeping own eggs under the abdomen, whereas the shell is beneficial for
the egg protection against predation and physical stresses. As for the repro-
duction success, the larger shell makes it easier for male to grep the female and
guard her from the other males. In the case when male hermit crabs contend
for a female, the male with the larger shell could get advantage against the
other with the smaller.

On the other hand, the hermit crab has some disadvantages due to keeping
the shell. Carrying it requires the cost, although it is beneficial for its survival.
Actually, the oxygen consumption by Coenobita compressus without shell is
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estimated to be 67 % of that with a shell (Herreid and Full, 1986).

Besides, even when an individual seeks a new shell, it could not always get
an appropriate one. Even when the shell becomes damaged or unsuitable for
growing the body size, it is in general not easy to find and obtain an appropri-
ate another one. Indeed, the shell selection of hermit crab usually occurs after
a lengthy period of investigation (Neil and Elwood, 1986; Brown et al., 1993;
Côté et al., 1998; Benvenuto and Gherardi, 2001). It is suggested that some
individuals should have to restrict the growth of body size even when there
would be enough food to grow up the body size (Markham, 1968; Childress,
1972; Bach et al., 1976; Fotheringham, 1976; Bertness, 1981a; Floeter et al.,
2000).

The shell size could limit the reproductive success (Childress, 1972; Bertness,
1981a,b; Hazlett, 1989; Hazlett and Baron, 1989; Elwood et al., 1995; Côté et
al., 1998; Floeter et al., 2000). For female, the shell size determines the total
amount of eggs that could be kept in the shell. For male, the smaller individual
with the smaller shell could get the less opportunity for successful mating than
the larger one could (Childress, 1972; Bach et al., 1976; Fotheringham, 1976,
1980; Bertness, 1981a). For several tropical species, it is observed that berried
females are with inadequate shell (Bertness, 1981a,b).

The shell is closely related to the survival and the reproductive success of her-
mit crab. From the viewpoint of the survival or/and the reproductive success,
what is the best timing for the shell change? What condition is required for the
case that the individual could expect the greater advantage from the suppres-
sion of body size growth without changing the shell than from the body size
growth with changing the shell? In this paper, we will consider these problems
with a mathematical modeling, focusing how the strategy to get the maximal
reproductive success depends on the body size and the season length for a
shell change. As far as we could have known, our work would be a pioneer one
with a mathematical model about these problems.

2 Assumptions

BODY SIZE

Body size of hermit crab is a function of time. If an individual could use the
larger shell, the body size grows up to the larger size as long as the occupied
shell could allow.
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SHELL CHANGE

We assume that the individual could take such a behavior as to change the
shell to the larger one except in the breeding season. That is, the individual
can choose the behavior of the shell change only in the period between two
subsequent breeding seasons, say, the inter-breeding season. Furthermore, it is
assumed that the individual could change the shell only once in each inter-
breeding season. In our modeling, the length of inter-breeding season is given
by a constant T . In reality, the cycle of hermit crab’s shell changes is not well
known (Gilchrist, 2003). However, in this paper, according to the shell change,
we focus on the hermit crab’s behavioral choice to maximize the expected
reproductive success, that is, on the decision about whether the individual
chooses the behavior to seek and change its shell to a new one or not, which
is assumed to correlate positively to the reproductive success. In this reason,
we assume that the purpose of the behavioral choice about the shell change
is to maximize the reproductive success in the subsequent breeding season.
So we construct our model with the above-mentioned inter-breeding season,
although its given constant length T is a mathematical simplification in our
modeling.

When an individual with body size x tries to change the shell to another larger
one, the probability that the individual succeeds in getting a larger shell is
assumed to be given by ϕ. For mathematical simplification and clarification of
our arguments, we assume that the probability ϕ is constant independently of
the body size, although it may generally a function of body size x. Thus, the
probability that the individual fails to get the larger shell is given by 1 − ϕ.
We ignore the handling time for the shell change in our modeling. So, a shell
change is assumed to occur at a moment in the inter-breeding season if it is
successful.

ENERGY RESERVE

For our mathematical modeling, we define the energy reserve of individual.
The energy reserve changes due to the energy input and output by feeding and
homeostasis etc., which in general depend on the body size. We assume that
the greater energy reserve at the beginning of the breeding season promises
the greater reproductive success in the breeding season. Since the behavioral
choice in the inter-breeding season can significantly affect the energy reserve,
the individual should choose the behavior to make the energy reserve as much
as possible at the beginning of the subsequent breeding season. So we consider
the optimality of the behavioral choice with regard to the maximization of
the energy reserve at the beginning of the next breeding season, that is, the
terminal energy reserve at the end of the considered inter-breeding season.
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When an individual with body size x tries to change the shell, the individual
is assumed to have to pay an energy cost m for the behavior to seek an
appropriately larger shell, independently of the consequence of the behavior,
that is, whether the individual succeeds in getting the larger shell or not.
The energy cost m includes, for instance, an energy consumption to search an
appropriate shell. In addition, we may consider an increase of the predation
risk during the shell searching behavior, too. In this paper, we assume that
the energy cost m is constant independently of the body size as well as the
probability ϕ is.

3 Modeling

Suppose that the body size grows up from x to x + δx in a time interval
[t, t + ∆t]. Meantime, the energy reserve of the individual changes by E(x +
δx, t + ∆t) − E(x, t), where E(x, t) denotes the energy reserve at time t and
body size x. On the other hand, we assume that the net accumulated energy
uptake u(x) until the body size becomes x has such a unimodal nature that
it monotonically increases for the body size less than a critical value and
decreases for the body size more than it. The decrease of net accumulated
energy uptake could be regarded as due to the high energy requirement for
the homeostasis with the large body size. In our model, we use the following
parabolic function for u(x):

u(x) = −b (x − c)2 + const., (1)

where b and c are positive constants.

The change of the energy reserve in [t, t + ∆t] can be now given by

E(x + δx, t + ∆t) − E(x, t) = u(x + δx) − u(x). (2)

With δx → 0 and ∆t → 0, we can obtain the following partial differential
equation for the energy reserve E(x, t) at time t and body size x:

G(x)
∂E(x, t)

∂x
+

∂E(x, t)

∂t
=

du(x)

dx
G(x), (3)

where G(x) is the growth function for the body size:

G(x) =
dx(t)

dt
. (4)
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In our model, we assume that the body size grows in a logistic manner:

x(t) = x(t; x0, k) =
k

1 +
(

k
x0

− 1
)
e−rt

, (5)

where x0 is the initial body size at t = 0, and r is the intrinsic rate of body
size growth. The carrying capacity k is now translated to mean the maximal
body size allowed by the occupied shell size.

We assume that, if an individual succeeds in its shell change, the individual
gets a new shell larger than the previours one, so that the carring capacity
for the body size changes from k to k + ∆k after the shell change. In this
model, we assume that the increment ∆k of carrying capacity is a constant
regardless of the previous or the new shell size. Besides, we assume that the
intrinsic growth rate r is constant independently of the body size x and the
shell change behavior. When the individual fails in changing the shell, the
body size growth is limited by the same carrying capacity k.

From (1) and (3), we can get E(x, t) as the following function E(x) :

E(x, t) = E(x) = E(x0, 0) + b (x0 − c)2 − b (x − c)2 . (6)

At first, we consider the case when the individual does not try to change the
shell through the inter-breeding season. The terminal energy reserve Eunchange

at t = T in this case is

Eunchange(x0) = E(Xu), (7)

where Xu is the following terminal body size at t = T (see Fig. 1):

Xu = x(T ; x0, k) =
k

1 +
(

k
x0

− 1
)
e−rT

. (8)

Next, we consider the case when the individual tries to change the shell at
time t = τ (0 ≤ τ ≤ T ). If the shell change fails, the terminal energy reserve
at time t = T is given by E(Xu)−m, where the positive constant m means the
energy cost to seek a new shell. In this case, the terminal body size at t = T
is given by (8) because the failure of the shell change makes the individual
keep the occupied shell and the body size unchange. On the other hand, if the
individual succeeds in the shell change at t = τ , we can get the energy reserve
E(Xτ ) at t = T , given by

E(Xτ ) = E(Xu) − m + b (Xu − c)2 − b (Xτ − c)2 , (9)
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Fig. 1. Temporal variations of the body size and the energy reserve. Illustrative
explanation. The solid curve shows the case when the individual tries and succeeds
in a shell change at t = τ .

where the terminal body size Xτ at t = T is given by

Xτ = x(T − τ ; x(τ ; x0, k), k + ∆k) =
k + ∆k

1 +
(

k+∆k
x(τ ;x0,k)

− 1
)
e−r(T−τ)

. (10)

This case is assumed to occur with probability ϕ. The size Xτ is larger than
Xu given by (8) because the successful shell change serves the increase of
carrying capacity by ∆k (see Fig. 1). Besides, we note that Xτ is monotonically
decreasing in terms of τ with Xτ=0 = x(T ; x0, k + ∆k) > Xτ=T = Xu.

Lastly, we can obtain the expected terminal energy reserve Echange(x0, τ) at
t = T in the case when the individual with the initial body size x0 at t = 0
tries to change the shell at t = τ (0 ≤ τ ≤ T ):

Echange(x0, τ) = (1 − ϕ){E(Xu) − m}
+ϕ

{
E(Xu) − m + b (Xu − c)2 − b (Xτ − c)2

}
. (11)

Now, we consider the expected advantage by the shell change behavior. It can
be estimated by the energy increment ∆E(x0, τ) = Echange(x0, τ)−Eunchange(x0)
expected in case of choosing the shell change behavior at time τ (0 ≤ τ ≤ T ),
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compared to the case without choosing it:

∆E(x0, τ) = −m + ϕ
{
b (Xu − c)2 − b (Xτ − c)2

}
. (12)

If ∆E(x, τ) is positive, the expected energy gain is larger by choosing the shell
change behavior than by keeping the occupied shell. In such case, the choice of
the shell change behavior in the inter-breeding season is expected to result in
the larger energy reserve at the beginning of the subsequent breeding season,
that could eventually serve the greater reproductive success in the breeding
season.

It should be remarked that, in our modeling, the behavioral choice is assumed
to depend not on the actual energy gain obtained in case of the successful shell
change but on the expected energy gain when the individual would choose the
behavior to seek the larger shell. Hence, even when ∆E(x0, τ) < 0, it is likely
that the successful shell change could give a sufficiently large energy gain. In
such a case, the probability of the successful shell change is so small that the
energy gain with the shell change behavior is expected to result in much small.

4 Timing for the shell change

Let us consider the timing t = τ ∗ (0 ≤ τ ∗ ≤ T ) for a shell change, which
maximizes Echange(x0, τ). Since Xτ is monotonically decreasing in terms of τ ,
we can find from (11) and (12) that τ ∗ = 0 if

Xτ=0 ≤ c. (13)

With this condition, Echange(x0, τ) is monotonically decreasing in terms of
τ (0 ≤ τ ≤ T ). In contrast, we have τ ∗ = T if

Xu ≥ c. (14)

Then Echange(x0, τ) is monotonically increasing in terms of τ .

If and only if

Xu < c < Xτ=0, (15)

we have τ ∗ = τm such that 0 < τm < T . From (11), we can explicitly obtain
the expression of τm as follows: given by
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Fig. 2. Dependence of τ∗ on (a) the carrying capacity k and (b) the length of the
inter-breeding season T . Numerical calculation with T = 200.0 for (a), k = 9.0 for
(b). Commonly r = 0.02; c = 10.0; x0 = 5.0; ∆k = 1.5.

τm =
1

r
ln

[
(k + ∆k)

{
1

c
−

(
1

x0

− 1

k

)
e−rT

}
− 1

]
+

1

r
ln

k

∆k
+ T

=
1

r
ln

[
1 − k

∆k
(k + ∆k)

(
1

Xu

− 1

c

)]
+ T

=
1

r
ln

[
1 + erT k

∆k
(k + ∆k)

(
1

c
− 1

Xτ=0

)]
. (16)

In this case, Echange(x0, τ) has the unique maximal extremum at τ = τm.

From (16), we can find that, as T gets larger, (T−τm)/T gets smaller (Fig. 2(b)).
This means that, as the length of the inter-breeding season gets longer, the
optimal timing of a shell change behavior tends to be relatively later within
the inter-breeding season.

5 Optimality of the shell change behavior

If and only if ∆E(x0, τ) > 0, the choice of the shell change behavior at t = τ
makes sense in order to expect the greater terminal energy reserve at t = T . In
case of ∆E(x0, τ) > 0, we call the shell change behavior optimal. The optimal
timing τ = τopt (0 ≤ τopt ≤ T ) for a shell change is to maximize Echange(x0, τ)
with ∆E(x0, τ) > 0.

When τ = T with (14), we can easily find that ∆E(x0, T ) = −m < 0. Thus,
if (14) is satisfied, the shell change behavior is not optimal. Thus, from the
viewpoint of the optimal shell change, it never occurs at the end of inter-
breeding season.

For τ = τm given by (16), the necessary and sufficient condition for ∆E(x0, τm) >
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0 is given by

Xu

1 −
√

β
< c (17)

with β = (1/bc2)(m/ϕ) < 1. Therefore, with the condition (15) for τ ∗ = τm,
the necessary and sufficient condition for τopt = τm is given by

Xu

1 −
√

β
< c < Xτ=0 (18)

with β < 1. When τopt = τm, if the shell change is successful, from (10) and
(16), the terminal body size Xτ at the end of inter-breeding season is given
by Xτ=τm = c.

For τ = 0, from (12), the condition for ∆E(x0, 0) > 0 is given by

(
1 − Xu

c

)2

−
(
1 − Xτ=0

c

)2

≥ β. (19)

With the condition (13) for τ ∗ = 0, we can get the following condition for
τopt = 0, that is the case when a shell change at the beginning of inter-breeding
season is optimal:


c

1 −
√(

1 − Xu

c

)2

− β

 ≤ Xτ=0 ≤ c;

Xu ≤ c
(
1 −

√
β

)
.

(20)

When τopt = 0, if the shell change is successful, the terminal body size Xτ is
given by (10) with τ = 0, that is, Xτ=0 = x(T ; x0, k + ∆k).

These results indicate that, if the shell change behavior is optimal, the con-
dition that β < 1 is necessary. In case of β ≥ 1, the shell change behavior is
never optimal.
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Fig. 3. (x0, T )-dependence of the optimal behavioral choice. Numerical calculations
for (18) and (20). (a) β = 0.02 with k = 8.0; (b) β = 0.041 with k = 8.0; (c)
β = 0.06 with k = 8.0; (d) β = 0.041 with k = 7.0. Commonly, r = 0.02; c = 10.0;
∆k = 2.2. The dark region is for τopt = 0, and the light dark one for τopt = τm. The
case of (a) is when k/(1 −

√
β) < c < k + ∆k, while those of (b) and (c) are when

k/(1 −
√

β) < c < k + ∆k. The case of (d) is when k + ∆k < c.

6 Discussion

Length of the inter-breeding season

For our model, in Fig. 3, we numerically show the parameter region for the
optimal shell change behavior. In the case when the shell change behavior is
optimal for a given initial body size, the optimal timing for the shell change
behavior significantly depends on the length of the inter-breeding season (see
also Fig. 2(b)). When β is sufficiently small, that is, when the shell change
is sufficiently easy with small m and large ϕ, the shell change behavior is
optimal for any inter-breeding season longer than a critical value (Fig. 3(a)). In
contrast, for sufficiently large β, the shell change behavior cannot be optimal.

If the occupied shell and the body size are sufficiently small, as in case of
Fig. 3(d), the shell change behavior is optimal except for when the inter-
breeding season is sufficiently short.

In case of Fig. 3(b) or 3(c), the shell change behavior could be optimal only for
an intermediate length of the inter-breeding season. For sufficiently short or
sufficiently long inter-breeding season, it cannot be optimal. As a consequence,
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for sufficiently short inter-breeding season, the shell change behavior cannot
be optimal. Further, from Figs. 2(b) and 3(a, b), we find that, as the inter-
breeding season gets longer, the optimal timing for the shell change behavior
tends to be relatively later.

In conclusion, the length of the breeding season could affect the optimality
of a shell change behavior. Only with an intermediate length of the breeding
season, the shell change behavior would be optimal. As the breeding season is
longer, the individual would show the shell change behavior relatively earlier
in the inter-breeding season. In other words, in an environment with long
breeding season, the individual would show the shell change behavior relatively
early in the inter-breeding season. In a harder environment with short breeding
season, the individual would not show the shell change behavior and suppress
the body size growth.

Initial body size

In our model, the initial body size means the body size at the beginning of
inter-breeding season. So it becomes greater year by year. As indicated in
Fig. 3, we could find some cases with an upper limit of the initial body size
for which the shell change behavior could be optimal. If the initial body size is
larger than the upper limit, the increment of the net energy uptake following
the body size growth is so low while the energy consumption is so large that the
individual could not compensate the cost for the shell change behavior until
the end of inter-breeding season, or that the expected terminal energy reserve
becomes too small to compensate the cost due to sufficiently small probability
ϕ, or that the individual cannot get a sufficient large increase of the terminal
energy reserve with the shell change due to too short inter-breeding season.

In contrast, as shown in Fig. 3, the shell change behavior is not optimal for
the individual with sufficiently small initial body size, either. This implies that
the shell change behavior is not optimal for the individual in the earlier stage
of the body size growth. The individual would begin the shell change behavior
after its body size grows sufficiently large.

Further, we can show that, when a shell change behavior is optimal for a
length of the inter-breeding season, the optimal timing for the shell change
behavior becomes relatively later in the inter-breeeding season as the body
size gets larger (see Fig. 2(a)).
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Fig. 4. A temporal variation of the body size x and the energy reserve E. Upward
arrows indicate the moment of a shell change. Numerical calculation with r = 0.05;
x(0) = 1.0; kt=0 = 5.0; ∆k = 1.0; b = 1.0; c = 10.0; T = 6.0; E(x(0)) = 4.0; m = 1.5;
ϕ = 1. The length of breeding season = 2.0. (a) body size; (b) energy reserve with
no cost for the breeding activity; (c) energy reserve with a time-proportionally
increasing cost for breeding activity (cost per time = 0.1). Except for the cost of
the shell change or the breeding activity, no cost is charged in these calculations. In
these calculations, as the result, every shell change appears at the beginning of an
inter-breeding season.

Body size growth

We illustrate some examples of the history of the body size growth in our
model, making use of numerical calculations (Fig. 4). Since the body size grows
fundamentally in a logistic manner, it asymptotically approaches its saturated
value, the carrying capacity determined by the occupied shell size, as shown
in Fig. 4(a). If the shell is successfully changed to an appropriately larger one,
the growth rate is changed with the shell change, so that the growth curve
of the body size shows a cuspidal point at the moment of the shell change,
indicated by upward arrows in Fig. 4. The shell change occurs in the period
with an intermediate body size, while it does not with sufficiently small or
large body size.

As indicated in Fig. 4(b), the energy reserve is monotonically increasing in
time except for the moment of the shell change if no cost is charged in the
breeding season. In contrast, as shown in Fig. 4(c), if a cost is charged in
the breeding season, for instance, due to some breeding activity, the energy
reserve goes decreasing as the body size is near the saturated value. As the
growth rate of the body size gets sufficiently small, the increase of the energy
reserve with the body size growth cannot cover its decrease due to the cost in
the breeding season. This might be translated as an appearance of the aging.

Generally, the younger individual corresponds to one with smaller body size
and the elder does to one with larger body size. So we can translate the relation
between the optimal timing for a shell change and the body size as follows: the
younger individual would show the shell change behavior relatively earlier after
the breeding season, and the elder would not show the shell change behavior
and suppress the body size.
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Cost for the shell change behavior

In our model, the ratio m/ϕ in the parameter β is one of important factors
which determine the optimality of a shell change behavior, whereas the ratio
m/ϕ does not affect the optimal timing for a shell change at all. If m/ϕ gets
larger, the optimality conditions (17) and (20) are harder to be satisfied.

The smaller m/ϕ, that is, the smaller cost for the shell change behavior and/or
the larger probability of the successful shell change increases the optimality
of the shell change behavior.

Our results indicate that the cost for a shell change behavior and the proba-
bility of its success have no relation to the optimal timing for the shell change,
while, with the small cost for a shell change, the optimality itself is high. En-
vironment in which the hermit crab could easily find a new shell corresponds
to the case of a large probability of the successful shell change. Sufficiently
large probability could make the shell change behavior optimal. In such an
environment, we could observe the shell change behavior frequently.

Net accumulated energy uptake u

In our modeling, the net accumulated energy uptake u is assumed to be a
unimodal funciton of the body size x. For not only a parabolic function but
also another unimodal function, our results would be expected to hold. Fur-
thermore, this assumption of the unimodality may not be necessary for the
existence of the optimal timing for a shell change behavior. Indeed, for the
existence of the optimal timing for a shell change, the function u should have
an appropriate nonlinearity, because its existence requires some nonlinearity
of the function Echange. Therefore, we expect that our results would hold for a
wide range of modeling about the same/similar problem.

A simpler modeling

As described in Appendix A, we can consider a simpler model that can derive
some essential results corresponding to those for our model analyzed in our
main text: Under those same assumptions described in the previous section, we
assume for the mathematical modeling that the body size growth is sufficiently
fast once the individual succeeds in getting a new shell. At the moment when
the shell change is succeeded in, the body size grows up to the maximal size
as the occupied shell allows. Only when the individual succeeds in changing
the shell to the larger one, the individual can increase the body size by ∆x,
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where the increment ∆x is a positive constant independent of the previous
body size x. So, once the shell change is successful in at time τ , the body size
is assumed to increase simultanously by ∆x. In this modeling, differently from
that shown in our main text, we ignore the time required for the body size
growth from x to x + ∆x. This assumption mathematically means that the
body size grows up from x to x + ∆x in a discontinuous manner like a step
function of time.

Even though this modeling may seem oversimplified, as briefly shown in Ap-
pendix A, we can obtain the results quantitatively same as those from the
model of our main text. Some simple model could grasp the essential fac-
tors relevant for the problem and provide some satisfactory results to discuss
theoretically the phenomenon.

7 Conclusion

Analyzing a mathematical model, we showed that the hermit crab would have
a range of the initial body size and the length of breeding season to make
the shell change behavior optimal. Our results imply that the individual with
sufficiently large body size would not show the shell change behavior and
suppress the body size growth. With regard to the optimal timing for a shell
change, the individual with the larger body size would show the shell change
behavior relatively later in the inter-breeding season. The individual with the
smaller body size would show the behavior relatively earlier.

Length of the breeding season could affect the optimality of a shell change
behavior. Only with an intermediate length of the breeding season, the shell
change behavior would be optimal. As the breeding season is longer, the in-
dividual would show the shell change behavior relatively earlier in the inter-
breeding season.

Our results indicate that the cost for a shell change behavior and the proba-
bility of its success have no relation to the optimal timing for the shell change,
while, with the small cost for a shell change, the optimality itself is high. Suf-
ficiently large probability of the successful shell change could make the shell
change behavior optimal.
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Fig. A.1. Step-wise growth of body size. The solid line shows the case when the
individual tries the shell change and succeeds in it at t = τ . At the moment of the
successful shell change, the body size immediately changes from x to x + ∆x.

Appendix

A A simpler model with a step-wise growth of the body size

In this appendix, we consider a simpler model that can derive some essential
results corresponding to those for our model in the main text. Now we assume
that the body size growth is sufficiently fast once the individual succeeds in
getting a new shell: At the moment when the shell change is succeeded in, the
body size is assumed to grow up to the maximal size as the occupied shell
allows. Only when the individual succeeds in changing the shell to the larger
one, the individual can increase the body size by ∆x, where the increment ∆x
is a positive constant independent of the previous body size x. So, once the
shell change is successful in at time τ , the body size is assumed to increase
simultanously by ∆x (Fig. A.1). In this modeling, differently from that in
the main text, we ignore the time required for the body size growth from x
to x + ∆x. This assumption mathematically means that the body size grows
up from x to x + ∆x in a discontinuous manner like a step function of time
(see Fig. A.1). When the individual fails in changing the shell, the body size
growth is assumed to be suppressed and unchanged.

The energy reserve of individual with body size x at time t is assumed to be
determined by the net energy uptake ε(x) per unit time at body size x and
the initial energy reserve E(x, 0) at the beginning of the inter-breeding season
with the initial body size x. Eventually, the energy reserve of individual with
body size x is given by E(x, 0) + ε(x)t at time t in the inter-breeding season.

In the case when the individual with the initial body size x successfully changes
the shell at time τ (0 ≤ τ ≤ T ) in an inter-breeding season, the terminal energy
reserve at t = T is given by
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E(x, 0) + ε(x)τ − m + ε(x + ∆x)(T − τ) (A.1)

with the terminal body size x + ∆x. On the other hand, in the case when
the individual with body size x tries and fails to get the larger shell at time
τ (0 ≤ τ ≤ T ), the body size is unchanged, and the terminal energy reserve
is given by E(x, 0) + ε(x)T − m with the terminal body size x.

Therefore, when the individual with the initial body size x would seek the
larger shell, the expected terminal energy reserve Echange(x, τ) is given by the
following with probability ϕ to succeed in the shell change:

Echange(x, τ) = E(x, 0) + ε(x)T − m + (T − τ)ϕ{ε(x + ∆x) − ε(x)}.(A.2)

In contrast, in the case when the individual with the initial body size x would
not seek the larger shell but keep the occupied shell through the inter-breeding
season, the terminal energy reserve Eunchange(x) at time T is given by

Eunchange(x) = E(x, 0) + ε(x)T. (A.3)

Hence, the expected difference ∆E(x, τ) = Echange(x, τ)−Eunchange(x) is given
by

∆E(x, τ) = −m + (T − τ)ϕ{ε(x + ∆x) − ε(x)}. (A.4)

Timing for the shell change

We consider here the optimal timing τ = τopt to change the shell in terms of
the maximization of Echange(x, τ) given by (A.2).

If ε(x+∆x)− ε(x) > 0, the τ -dependent part of Echange(x, τ) is decreasing in
τ . Thus, since Echange(x, τ) ≤ Echange(x, 0) for any τ (0 ≤ τ ≤ T ), the optimal
timing for shell change is τopt = 0 just after the previous breeding season,
that is, at the beginning of the considered inter-breeding season. In contrast,
if ε(x + ∆x) − ε(x) < 0, the τ -dependent part of Echange(x, τ) is increasing
in τ , and Echange(x, τ) ≤ Echange(x, T ) for any τ (0 ≤ τ ≤ T ), the optimal
timing is τopt = T at the beginning of the next breeding season, that is, at
the end of the considered inter-breeding season. Since the body size increment
∆x is a constant independent of τ for a given inter-breeding season, the sign
of ε(x + ∆x) − ε(x) is uniquely determined for the inter-breeding season. So
these arguments indicate that the optimal timing for shell change could be
alternatively τopt = 0 or τopt = T . There could not exist such an optimal
timing τopt as 0 < τopt < T in this model.
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Optimality of the shell change behavior

Only if ∆E(x, τopt) > 0, the shell change behavior at time τopt could be opti-
mal. From the arguments in the above, since alternatively τopt = 0 or τopt = T ,
we now consider just ∆E(x, 0) and ∆E(x, T ). From (A.4), in the case when
τopt = T , ∆E(x, T ) is equal to −m and negative for any x, so that conse-
quently the shell change behavior in such a case is not optimal than such
behavior as to keep the occupied shell. On the other hand, in the case when
τopt = 0, the condition that ∆E(x, 0) > 0 corresponds to the following:

ε(x + ∆x) − ε(x) >
m

ϕT
. (A.5)

This condition (A.5) is necessary for the optimality of shell change behavior
in this model.

If the length of inter-breeding season T is sufficiently long, the right side of
(A.5) becomes sufficiently small so that the condition for ∆E(x, 0) > 0 is
satisfied. Therefore, as a consquence, the longer inter-breeding season makes
the shell change behavior more observable as the optimal strategy, as well as
shown for the model in our main text.

As well as the model in our main text, the condition (A.5) clearly indicates
that the smaller m/ϕ, that is, the smaller cost for the shell change behavior
and/or the larger probability of the success in a shell change, increases the
optimality of shell change behavior.

Limitation of body size

Now, we consider the relation between the choice of shell change behavior
and the body size x. If the condition (A.5) is satisfied for any x larger than
a critical size xmin (see Fig. A.2(a)), that is, when ∆E(x, 0) > 0 for any
x > xmin, any individual with size x > xmin is expected to advantage with the
shell change behavior in terms of the expected reproductive success. Unless the
condition (A.5) is satisfied for any x (see Figs. A.2(b) and (d)), that is, when
∆E(x, 0) ≤ 0 for any x, the individual with any body size is not expected to
advantage with the shell change behavior in terms of the expected reproductive
success. So no individual would be expected to show the shell change behavior.
Therefore, in such a case with a net energy uptake function ε(x) decreasing
in terms of x, the body size is limited only by the size of shell occupied first
in the life.

If the condition (A.5) is satisfied for x < xmax (see Fig. A.2(c)), only individual
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Fig. A.2. Four types of the body size dependence of the net energy uptake ε(x) per
unit time at body size x. The interval indicated by the thick segment schematically
shows such a range that the condition (A.5) is satisfied. For detail, see the text.

with body size x < xmax is expected to advantage with the shell change behav-
ior. Thus, only the hermit crab with body size smaller than xmax is expected
to show the shell change behavior. The individual with body size more than
xmax is expected not to try to change the shell but to suppress the body size
growth up to the maximal body size afforded by the occupied shell size. The
net energy uptake rate per unit time would be increasing in body size, while
the larger body requires the larger energy for its homeostasis or metabolism.
Hence it would be most likely to have the shape of Fig. A.2(c).
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