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LOCALLY PROJECTED MOLECULAR ORBITAL THEORY FOR
MOLECULAR INTERACTION WITH A HIGH-SPIN OPEN SHELL

MOLECULE
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Locally projected molecular orbital method for molecular interaction is extended to a
cluster consisting of a high-spin open shell molecule and many closed shell molecules.
While deriving the equations, Hartee-Fock-Roothaan equation without the orthonormal
condition is obtained. The stationary conditions for molecular orbitals are expressed in
a form of a generalized Brillouin condition. To obtain the molecular orbital coe¢ cient
matrix, which satis�es the stationary condition, a single Fock operator form is presented.
For the locally projected molecular orbitals for the open shell cluster, the working matrix
representaion is given.

Introduction

The theoretical studies of molecular interaction have extensively been reported in
recent years. A series of special issues in Chemical Reviews are published1;2, and
there are also review articles in Handbook3;4 and in Encyclopedia5. Atomic and
molecular clusters are in most cases formed by weak molecular interaction such as
van der Waals forces and hydrogen bond. Now, the theoretical and computational
studies of molecular clusters become indispensable. Most of the experimental pa-
pers on the molecular clusters refer to the theoretical counter parts or include some
computational results carried out along with their experiments. In these practical
computational studies of the weak molecular interaction with modest basis sets, the
basis set superposition error (BSSE) has to be avoided. The most straightforward
way is to increase the size of the basis set, but it is known that the convergence
is slow in particular with the correlated methods. Another way is to use the coun-
terpoise (CP) correction method6;7, which requires (2N + 1) calculations for the
clusters of N relaxed molecules.
To avoid the BSSE, Gianinetti et al proposed the self-consistent �eld for mole-

cular interaction (SCF MI) for the closed shell dimer 8 and then extended it to
multi-component systems and to open shell systems.9 Using the projection opera-
tors, we also derived the equations to obtain the molecular orbitals locally de�ned
in a molecule in the cluster of many molecules, and proposed to rename it lo-
cally projected molecular orbital for molecular interaction (LP MO MI)10, because
SCFMO MI is too general in meaning and does not suggest the characteristics of
the method. In the paper, we pointed out that the interaction energy with LP MO
MI (SCFMO MI) is systematically underestimated; the cause of this de�ciency is
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identi�ed as the lack of the charge-transfer, or the delocalization of electrons. In the
second of our papers11, the binding energy corrected by adding the charge-transfer
type excitations with the second order perturbation expansion becomes close to the
couterpoise corrected SCF binding energy. In the third of the series12, the pertur-
bation expansion is extended to include the intra-molecular pair excitations and the
simultaneous singlet-singlet as well as triplet-triplet excitations. It is numerically
shown that the triplet-triplet excitation, which may be called dispersion-exchange
term, makes the calculated binding energy close to the counterpoise corrected MP2
energy.
In the present paper, our projection operator formalism is applied to the high-

spin open shell cluster. The formalism is di¤erent from that used in Gianinetti
et al9, and the equivalency is not proved. Because the locally projected molecular
orbitals (LP MO) are non-orthogonal among the occupied orbitals, �rst the station-
ary condition is derived for the occupied orbitals of a single Slater determinant of
spin-unrestricted wave function without the orthonormal condition. The equation
suggests an alternative way to directly obtain the localized molecular orbitals, to
bypass the canonical set of Hartree-Fock orbitals. Then, a set of equations is derived
for a case when the molecular orbitals are split to two groups. The equation turns
out to be equivalent to the stationary condition for the LP MO of a molecule in
the closed shell cluster, derived in our previous paper.11 The equations are applied
to the high-spin restricted case, in which the occupied orbitals are grouped to the
doubly occupied (DOMO) and singly occupied (SOMO) molecular orbitals. Finaly,
the method is extended to the LP MO for a cluster having a high-spin open shell
molecule and many closed shell molecules. The matrix form of the Fock operator
for the LP MO is presented.

1. Non-orthogonal stationary condition

1.1. Unrestricted open shell cases

Before developing the locally projected molecular orbital (LP MO) theory for high-
spin molecular clusters, we �rst derive the stationary condition for unrestricted
molecular orbitals without the orthonormal restriction. The one-electron density
matrix for � electrons is de�ned as

D� = T �(eT �ST �)�1 eT � , (1)

where T � is a (Nbasis;M�
occ) rectangular MO coe¢ cient matrix, and S is a overlap

matrix in terms of the basis set. Similarly the density matrix D� is de�ned. In
this de�nition, it is assumed that the electronic wave fuction is described by a
single Slater determinant with a proper normalization. Also we assume the real MO
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coe¢ cients. The total electron energy in terms of the one-electron density matrix is

E =

NbasisX
ab

hba

�
D�
ab +D

�
ab

�
(2)

+
1

2

NbasisX
abcd

[�]ab:cd

�
D�
baD

�
dc �D�

daD
�
bc +D

�
baD

�
dc �D

�
daD

�
bc + 2D

�
baD

�
dc

�
,

where the molecular integrals are

hba = h�bjhone�elec j�ai (3)

[�]ab:cd � h�a(1)�c(2)j
1

r12
j�b(1)�d(2)i . (4)

By taking the derivatives on the density matrix elements D�
ab, the Fock operator

matrix elements are de�ned as

@E

@D�
ab

= hba +

MbasisX
cd

h
[�]ab:cd

�
D�
dc +D

�
dc

�
� [�]ad:cbD

�
dc

i
(5)

� F�ba � h�bj bF� j�ai
With this de�nition, the total electron energy is

E =
1

2
Tr
h
h
�
D� +D�

�i
+
1

2
Tr
h
F �D� + F �D�

i
(6)

The derivative of the energy (5) on the density matrix can be written as

�E = Tr
h
F �(D�;D�)�D� + F �(D�;D�)�D�

i
(7)

where the variation of the density matrix in terms of MO coe¢ cients is

�D� =

�
1� T �

�eT �ST ���1 eT �S� �T � �eT �ST ���1 eT � + transpose of the �rst term
(8)

= (1�D�S) �T �R� eT � + transpose of the �rst term (9)

Here R�, the inverse matrix of MO overlap S�, is de�ned as

R� �
heT �ST �i�1 = [S�]�1 (10)

By inserting (8) in (7), the energy change in terms of MO coe¢ cients are

�E = 2Tr
n
F �(D�;D�) (1�D�S) �T �R� eT �o

+ 2Tr
n
F �(D�;D�)

�
1�D�S

�
�T �R� eT �o

= 2Tr
n
R� eT �F � (1�D�S) �T �

o
+ 2Tr

n
R� eT �F �

�
1�D�S

�
�T �

o
� 2Tr eZ��T � + 2Tr eZ��T � (11)
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where in the second equality, the character of the trace of matrix is used. Thus, the
stationary condition becomes

Z� = 0 (12)

=

�
1� ST �

�eT �ST ���1 eT ��F �T �
�eT �ST ���1

The matrix Z� is the rectangular matrix of (Nbasis;Mocc). The number of variables
(MO coe¢ cients) areNbasis�Mocc, and the number of equations is thusNbasis�Mocc;
because any restriction is not imposed, they are equal to each other. Equation (12)
is rewritten as

F �T � = ST �
�eT �ST ���1 eT �F �T � (13)

� ST �
�eT �ST ���1��

for � orbitals. The second line de�nes a diagonal matrix �� = eT �F �T �. Obvi-
ously if the orthonormal condition, eT �ST � = 1; is assumed, eq.(13) becomes the
Roothaan-Hartree-Fock equation13 , and it is a general matrix eigenvalue problem.
If the orthonormal condition is not enforced, eq.(13) cannot be solved with matrix
algebra even if F � is assumed to be known.
Now we introduce the projection operators bP�, which projects any function on

to the space spanned by the � occupied orbitals,

bP� � �X
i;j

j�ii h�i j�ji�1 h�j j

= �T �
�eT �ST ���1 eT �e� = �D�e� (14)

With bP�, eq.(13) can be written in an operator form,�
1� bP�� bF��T � = 0 (15)

By introducing the complemental projection operator bPum_� for the unoccupied
molecular orbitals as14

1 � bPum_� + bP� (16)

the equation (15) can be written asbPum_� bF��T � = 0 (17)

By inserting the equality (16)bPum_� bF� � bP� + bP ext���T � = 0 (18)

Since bPum_��T � = 0 by de�nition, the stationary condition for the occupied
molecular orbitals becomes bPum_� bF� bP� = 0 (19)
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which is a general form of the well-known Brillouin condition, and can be used in
solving the equation iteratively.
As is often used in solving the Hartree-Fock equation for the restricted open

shell case14, a single Fock operator is de�ned asbG� = bP� � bF� + b
om� bP� + �1� bP��� bF� + b
um��1� bP��
+ �dm�um

h�
1� bP�� bF� bP� + bP� bF� �1� bP��i (20)

where the second line is the stationary condition, and the parameter �dm�um is a
dampinng factor selected to a fast convergency. The �rst line de�nes the molecular
orbitals and their orbital energies. The eigen function of bG� satis�es the stationary
condition. For the orbitals of � electrons the similar Fock operator is de�ned. The
shift operators (or orbital energy shifters), b
om and b
um, are the arbitrary Hermite
operators, and can be used to control the convergency or to determine the proper
orbital sets for the further calculations as was done in the electron-hole potential
method by Morokuma and Iwata15. To solve eq. (20), a good initial non-orthogonal
orbital set is expected to be required. Then, using the MO representation of the
Fock operator bG�, the equation is solved to keep the orbitals non-orthogonal.
1.2. Two groups of molecular orbitals

Before deriving the equation for the restricted high spin open shell case, we examine
a more general case, which we also use in deriving the equations for a clusters
consisting of many closed shell molecules and an open shell molecule. We assume
that the MO coe¢ cient matrix is split as

T =
�
TU ; T V

�
Accordingly the (Nbasis;Mocc) rectangular matrix Z de�ned in (12) becomes two
set of equations�

1� ST
�eTST��1 eT� (FTURU;U + FT VRV;U ) = 0 (22)�

1� ST
�eTST��1 eT� (FT VRV;V + FTURU;V ) = 0 (23)

where the matrix

R�
�eTST��1 �M�1 (24)

=

�
RU;U ; RU;V

RV;U ; RV;V

�
=

�
MU;U ;MU;V

MV;U ;MV;V

��1
From the (U; V ) and (V;U) elements of the equalityMR = 1

MU;URU;V +MU;VRV;V = 0

MV;URU;U +MV;VRV;U = 0
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Eqs.(22) and (23) are�
1� ST

�eTST��1 eT��FTU � FT V (MV;V )
�1MV;U

�
RU;U = 0 (25)�

1� ST
�eTST��1 eT��FT V � FTU (MU;U )

�1MU;V

�
RV;V = 0 (26)

Two MO coe¢ cient matrices TU and T V are coupled in (25) and (26). By de�ning
the projection operators bP = �T (M)

�1 eT e� (27)bPU = �TU (MU;U )
�1 eTU e� (28)bPV = �T V (MV;V )
�1 eT V e� (29)

Equation (25) for the stationary condition of MO coe¢ cient matrix TU can be
written as

(1� bP ) bF �1� bPV ��TU = (1� bP ) bF �1� bPV � bPU�TU = 0 (30)

Now, equation (30) is apparently only for TU : The coupling with the other MO
coe¢ cient T V is hidden in the projection operator bPV . The splitting of the MO
coe¢ cient matrix is general. So it can be applied to a cluster consisting of many
closed shell molecules, which was studied in our previous paper.11 When TU is the
occupied MO matrix for a molecule A in the cluster, T V is the occupied MO matrix
of the molecules other than molecule A. In that case eq.(30) becomes equivalent to
eq.(25) of our previous paper11 as

bF �1� bPY ��TA = bP bF �1� bPY ��TA (31)

1.3. High-spin restricted open shell cases

In the restricted open shell case, the equivalence condition for the spacial part of
spin-orbitals is imposed. By assuming the number of � spin electrons is larger than
the number of � electrons, the occupied MO coe¢ cient matrix T � is a part of T �;

T � � T d (32)

T � =
�
T d, T s

�
� T ds (33)

The energy change is now

�E = 2Tr
neZ� � �T d, �T s �o+ 2TrneZ��T do (34)

= 2Tr
nheZ�i

d
+ eZ�o �T d + 2Tr heZ�i

s
�T s: (35)

where

Z� =

�
1� ST ds

�eT dsST ds��1 eT ds�F �T ds
�eT dsST ds��1 (36)
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and the size of the matrix is (Nbasis;Mdomo+Msomo), Mdomo and Msomo being the

number of doubly and singly occupied orbitals. In eq. (34),
heZ�i

d
stands for the

�rst Mdomo rows of the rectangular matrix eZ�;and heZ�i
s
for the last Msomo rows.

The rectangular matrix Z� is similarly de�ned, and its size is (Nbasis;Mdomo). Note

that up to here
�eT dsST ds��1 in D� di¤ers from

�eT dST d��1 in D� . Thus, the

stationary condition for the doubly occupied orbitals is

[Z�]d +Z
� = 0 (37)

and for the singly occupied orbitals is

[Z�]s = 0 (38)

Because T � =
�
T d, T s

�
; we can use the similar procedure for Z� by replacing

V with d and U with s; and the equations becomes

(1� bP ds) bF� �1� bP s� bP d�T dRd;d + (1� bP d) bF ��T d (Md;d)
�1
= 0 (39)

(1� bP ds) bF� �1� bP d� bP s�T sRs;s = 0 : (40)

where the projection operators, bP ds; bP s and bP d, are de�ned, similar to eq. (14).
Note that the �rst term of (39) corresponds to (25), and (40) to (26). Thus, for the
SOMO, the stationary condition is

(1� bP ds) bF� �1� bP d� bP s = 0 (41)

Up to here, the restricition to the equivalence of the space parts of � and � spin
orbitals is imposed. For the orthogonal molecular orbitlas, this restriction ensures
that the Slater determinant is the eigen fuction of the square of the total spin bS2.
For the non-orthogonal orbitals, the expectation value of bS2 is given as

h�j bS2 j�i (42)

=
1

4
Ns(Ns + 2) +Nd � Tr

�
D�SD�S

�
where Ns and Nd are the number of the singly and doubly occupied orbitals, repec-
tively. Because the correct expectation value h�j bS2 j�i for the high-spin Slater
determinant of Ns SOMOs is 1

4Ns(Ns + 2), the equality

Tr
�
D�SD�S

�
= Nd (43)

has to be hold. The de�nition of D� and D� is

D� =
�
T d T s

�� Md;d; Md;s

Ms;d; Ms;s

��1 eT deT s
!

(44)

D� = T dM�1
d;d
eT d (45)

if Ms;d = fMd;s is zero, the equality (43) holds; that is, the SOMOs have to be
orthogonal to all of the DOMO. Note that Tr

�
D�SD�S

�
= Tr

�
D�S

�
= Nd.
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The orthogonality condition between the DOMOs and SOMOs is a part of the
condition for the restricted high-spin open shell wave function, in addition to the
equivalence condition of the space part of the spin-orbitals. This requirement sym-
pli�es the stationary conditions. The projection operator bP dsbecomes a sumbP ds = bP d + bP s (46)

and in (39) Rd;d = (Md;d)
�1, and thus the stationary condition for the DOMO

becomes h
(1� bP d � bP s) bF� �1� bP s�+ (1� bP d) bF �i bP d = 0 (47)

Interestingly, eq.(47) does hold without the orthogonality condition (43), although
the proof requires a page of lines. Using the orthogonality bP s bP d = 0, eq.(47) be-
comes simply h

(1� bP d � bP s) bF� + (1� bP d) bF �i bP d = 0 (48)

The conditions (47) and (41) are the generalized Brillouin condition.
Now, a single Fock operator can be de�ned asbG = 1

2
bP d � bF� + bF � + b
d� bP d + (1� bP d) bP s � bF� + b
s� bP s(1� bP d)

+ (1� bP d � bP s)�1
2

� bF� + bF ��+ b
um� (1� bP d � bP s)
+ �d�u

h
(1� bP d � bP s) bF� bP d + (1� bP d) bF � bP d + comp:conji

+ �s�u

h
(1� bP d � bP s) bF� bP s + comp:conji (49)

Here the second term ensures the orthogonality condition.

2. Molecular cluster of a high-spin molecule and many closed-shell
molecules

Now we develop the equation for the locally projected molecular orbitals, which can
be applied to studying the molecular interaction of a cluster, consisting of a high
spin molecule and many closed-shell molecules. In the locally projected molecular
orbitals (LP MO) for molecular interaction the molecular orbitals of each molecule
in the cluster are locally expanded in terms of the basis sets on each molecule. More
explicitly the MO coe¢ cient matrix is blocked as

T � = (T d;T s) =

2664
TD 0 � � � 0 0

0 TC 0 0 0

0 0 TB 0 0

0 0 0 TA TAs

3775 � T ds (50)

T � = T d =

2664
TD 0 � � � 0

0 TC 0 0

0 0 TB 0

0 0 0 TA

3775 (51)
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In this speci�c example, molecule A is an open-shell molecule and molecules B;C
and D are closed-shell molecules. With this constraint, the energy change is a sum

�E = 2Tr
neZ�Ad + eZ�Ao �T dA + 2Tr eZsAs�T sA + 2B;C;DX

X

Tr
�eZ�X + eZ�X� �TX (52)

where the matrices Z� and Z� are de�ned in (36); the size being
(
P

Y N
basis
Y ;

P
Y M

occ
Y ). The rectangular matrices Z�X (Z�X) is a part of the block

(N basis
X ;Mocc

X ) for molecule X in the matrix Z� (Z�) as

Z�X �
��
1� ST �

�eT �ST ���1 eT ��F �T �
�eT �ST ���1�

X

(53)

Note that even for the closed shell molecules (X 6= A), Z�X 6= Z�X because of the
SOMO TAs. The matrix Z

�
Ad (Z

�
As) for the open-shell molecule is similarly de�ned

for the doubly (singly) occupied orbitals of molecule A.
Now the stationary condition for the SOMO can be obtained by splitting T � to

(T d;T s) and it is

(1� bP d � bP sAs) bF� �1� bP d� bPAs = 0 (54)

Besides, the orthogonality to all of the DOMO

bPAs
=
�
1� bP d� bPAs

(55)

has to be enforced.
The stationary condition for the DOMO of a closed shell molecule X(6= A) is

derived by splitting the MO matrix as

T � =

�
TX ; 0 0

0 TZX ; TAs

�
� T ds (56)

T � =

�
TX ; 0

0; TZX

�
� T d (57)

where the set of molecules other than molecule X has a su¢ x ZX : The stationary
condition for the DOMO for each molecule, including molecule A, isn

(1� bP d � bP s) bF� �1� bP dZX � bP s�+ (1� bP d) bF � �1� bP dZX�o bPX = 0 (58)

where the projection operator bP dZX are properly introduced. To derive the equation
is not so straight forward as is expected, because T � is also split to two groups (in
the open shell equation for a single molecule as derived in the previous section, T �

is not split). But once the orthogaonality condition bPX bP s = 0 which is a part of
(55), the procedure used in subsection 1.2 can be used both for Z�X and Z�X : Then
the stationary condition isn

(1� bP d � bP s) bF� + (1� bP d) bF �o�1� bP dZX� bPX = 0 (59)
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Note that the similar condition can be derived without eq.(55) after a lengthy lines
of equations.
Now the single Fock operator can be de�ned for a closed shell molecule X

(= D;C;B) as

bGX = 1

2
bPX � bF� + bF � +
dX� bPX + 12 �1� bPX�� bF� + bF � +
uX��1� bPX�

(60)

+ �dm�um

hn�
1� bP d � bP sA� bF� + �1� bP d� bF �o�1� bP dZX� bPX + transposei

For the open shell molecule A; the condition for the SOMO has to be incor-
porated with the condition for the DOMO, and thus the Fock operator is de�ned
as

bGA = 1

2
bP dA � bF� + bF � +
�A� bP dA + �1� bP d� bP sA � bF� +
�A� bP sA �1� bP d�

+
1

2

�
1� bP dA � bP sA�� bF� + bF � +
�umA

��
1� bP dA � bP sA�

+ �dm�smum

hn
(1� bP d � bP sA) bF� + (1� bP d) bF �o�1� bP dZA� bP dA + transposei

(61)

+ �sm�um

h
(1� bP d � bP sA) bF� bP sA + transposei

These Fock operators are solved within the basis set �X of molecule X; where �X
is the row vector of the basis set on molecule X.
Up to now, we assume the existance of the SOMO, satisfying eq.(55), which is

rewritten as

�ATAs
=
�
1� bP d��ATAs

(62)

The equation implies that the SOMOs are expanded only by the basis set �A, but
that they are orthogonal to all of the occupied orbitals, many of which are expanded
by the basis sets on the other molecules. In the previous paper,11 we demonstrated
that there are many such external orbitals unless the basis sets are minimal.
If eq. (62) cannot be satis�ed, the SOMO has to be delocalized over the basis

sets on the other molecules to keep the SOMO orthogonal to all of the DOMO. To
obtain the SOMO, a separate Fock operator is introduced as

bGSOMO =
�
1� bP d� bP s � bF� +
�A� bP s �1� bP d� (63)

+ �sm�um

h
(1� bP d � bP s) bF� bP s + transposei

and it is solved in terms of the full basis set f�D;�C ;�B ;�Ag. By replacing bP sA
with bP s, eq. (60) (now for X = A) is solved together with eq.(63) iteratively. The
good localized initial guess for T s is expected to be important.
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3. Procedure to solve the single Fock equation for open-shell LP
MO

In the single Fock formalism, the MO representation of the Fock matrix for molecule
is often used14. When all of occupied and unoccupied molecular orbital coe¢ cient
matrix TA of molecule A is known, the matrix elements of bGA is blocked as
0B@ eT dmAeT smAeT umA

1CA e�A bGA�A � T dmA T smA T umA
�

=

dm sm um

dm �dm �dm�smumGdm�sm �dm�smumGdm�um
sm �dm�smum eGdm�sm �sm �sm�umGsm�um
um �dm�smum eGdm�um �sm�um eGsm�um �um

(64)

where sub-matrices � are diagonal (if the shift operators are all constant). For the
closed shell molecule, the MO representation has a similar form except that there
are no SOMO blocks. It can be easily proved that mixing terms arising from the
stationary conditions do not contribute any to the diagonal blocks of the MO repre-
sentation. When the convergence reaches, the o¤-diagonal blocks become zero; the
stationary conditions are satis�ed. But this procedure requires the MO coe¢ cients
even for the unoccupied orbitals. Recent years, even in the moderate level of approx-
imations, a large basis set is required. So a procedure not requiring all of the MO
coe¢ cients is preferable. We de�ne the AO (one-particle basis set) representation
of the operator

GY = e�Y bGY �Y (65)

then the general matrix eigenvalue problem

GY T Y = SY Y T Y �Y (66)

is solved, and only the coe¢ cient matrices for the occupied orbitals are calculated.
Here, the MOs in a molecule in the cluster become orthonormal. But the MOs
between the di¤erent molecules are not.
The diagonal blocks are easy to evaluate for instance

e�A bP dA bF� bP dA�A = eP d

AF
�
AAP

d
A (67)

where

P d
A � T dmA eT dmA SAA (68)

For the mixing term a little care is required. First we calculate the matrix
element of the transposed form of the second term of the stationary condition (59)
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for the DOMO for a closed shell molecule X ;

e�X bPX h�1� bP dZX� bF � �1� bP d�i�X
= e�X bPX h�1� bP dZX� bF � � �1� bP dZX� bF � bP di�X
= SXXDX

�
F �
XX � SXZXD

d
ZXF

�
ZX ;X

�
� SXXDX

�
F �
XZX

� SXZXD
d
ZXF

�
ZXZX

; F �
XX � SXZXD

d
ZXF

�
ZXX

��Dd
ZXZX ; D

d
ZXX

Dd
XZX ; D

d
XX

��
SZXX
SXX

�
= ePX

�
F �
XX � SXZXD

d
ZXF

�
ZX ;X

��
1� P d

XX

�
� ePX

�
F �
XZX

� SXZXD
d
ZXF

�
ZXZX

�
P d
ZXX

(69)

where the projection operator matrix

P d �
�
P d
ZXZX P d

ZXX

P d
XZX P d

XX

�
�
�
Dd
ZXZX Dd

ZXX

Dd
XZX Dd

XX

��
SZXZX ; SZXX
SXZX ; SXX

�
(70)

and for the case of the delocalization of the SOMO, the projection operator P s is
de�ned as

P s �
�
P s
ZAZA P

s
ZAA

P s
AZA P s

AA

�
�
�
Ds
ZAZA D

s
ZAA

Ds
AZA Ds

AA

��
SZAZA ; SZAA
SAZA ; SAA

�
(71)

which is simpli�ed as

P s
A =

�
0 0

0 P s
AA

�
(72)

if the SOMO can be locally obtained.
The density matrix for the co-group ZX

Dd
ZX � T

d
ZX

�eT dZXSZXZXT dZX��1 eT dZX (73)

is de�ned. In the computations, the inverse matrix is required for each molecule at
every iteration. For the weak interaction molecules in the cluster, the o¤-diagonal
elements of MO overlap matrix are expected small, and so the approximation used
in the coding; in Appendix A, the approximation is described.
The Fock matrix for molecule X becomes

GX = e�X bGX�X
=
1

2
ePXF

��
XXPX +

1

2

�
1� ePX

�
F ��
XX (1� PX)

+ �dm�um

24ePX

8<:
�
F ��
XX � SXZXD

d
ZXF

��
ZXX

��
1� P d

XX

�
�
�
F ��
XZX

� SXZXD
d
ZXF

��
ZXZX

�
P d
ZXX

9=;+ transpose
35

+ �dm�um

24�ePX

8<:
�
F �
XX � SXZXD

d
ZXF

�
ZXX

�
P s
XX

+
�
F �
XZX � SXZXD

d
ZXF

�
ZXZX

�
P s
ZXX

9=;+ transpose
35

(74)
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where F �� = F � + F � .
The matrix element of the transposed form of the stationary condition (54) for

the SOMO for molecule A is

�A bP sAs h bF� �1� bP d � bP sAs�i�A
= e�A bP sA h bF� � bF� bP d � bF� bP sAsi�A
= SAAD

s
AF

�
AA

� SAADs
A

�
F �
AZA ; F �

AA

��Dd
ZAZA ; D

d
ZAA

Dd
AZA ; D

d
AA

��
SZAA
SAA

�
� SAADs

A

�
F �
AZA ; F �

AA

��Ds
ZAZA ; D

s
ZAA

Ds
AZA ; D

s
AA

��
SZAA
SAA

�
= eP s

A

h
F �

�
1� P d � P s

�i
A;A

(75)

where the su¢ x A;A implies the A;A block of (Nbasis; Nbasis) matrix. The mixing
term of the DOMO and UOMO also requires a care;

e�A bP dA �1� bP dZA� bF �(1� bP d)�A
= eP d

A

h
F �
AA � SAZAD

d
ZAF

�
ZAA

i
� eP d

A

h�
F �
AZA

; F �
AA

�
� SAZADd

ZA

�
F �
ZAZA

; F �
ZAA

�i�P d
ZAA

P d
AA

�
(76)

The Fock matrix for the open shell molecule is

GA = e�A bGA�A
=
1

2
eP d

AF
��
AAP

d
A +

�
1� eP d

� eP s

AF
�
AAP

s
A

�
1� P d

�
+
1

2

�
1� eP d

A � eP s

A

�
F ��
AA

�
1� P d

A � P s
A

�

+ �dm�smum

2666666664

eP d

A

�
F ��
AA � SAZAD

d
ZAF

��
ZAA

�
�eP d

A

h�
F ��
AZA

; F ��
AA

�
� SAZADd

ZA

�
F ��
ZAZA

; F ��
ZAA

�i�P d
ZAA

P d
AA

�
�eP d

A

h�
F �
AZA ; F �

AA

�
� SAZADd

ZA

�
F �
ZAZA ; F

�
ZAA

�i�P s
ZAA

P s
AA

�
+transpose

3777777775
(77)

+ �sm�um

� eP s

A

h
F �

�
1� P d � P s

�i
A;A

+ transpose

�
(78)

The code was developed in MOLYX package16 and some test calculations will
be published separately. In the present code, an option is added to solve the non-
orthogonal super-molecule Hartree-Fock equation (49), using the LP MO as an
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initial guess MO. The code works also for the cluster only of closed shell molecules,
and the agreement with the previous code10 was examined.
As we have shown in our previous works101112, the LP MO is a de�cient method

without including the partial electron delocalization. It is expected that this de�-
ciency is more profound for the open shell cluster than for the closed shell cluster;
the perturbation expansion or the other correlated methods have to be developed.
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Appendix A

The projection operator bPZA for the co-group ZA is required in solving the equation
for molecule A. The required matrix is

DZASZAA � TZA
�eTZASZAZATZA��1 eTZASZAA (79)

in which the inverse MO overlap matrix has to be evaluated. Because the MO matrix
TZA is blocked, it becomes the sum

DZASZAA =
X
D 6=A

X
F 6=A

TDRDF
eT FSFA (80)

where RDF is the block of the MO inverse matrix
�eTZASZAZATZA��1. Assuming

the MO overlap between the di¤erent molecules in the cluster is small, the sum is
approximated as

DZASZAA �
X
D 6=A

8<:T dD eT dDSDX + X
G 6=X;D

T dDMDGMGD
eT dDSDX

9=; (81)

�
D 6=FX
D 6=A

X
F 6=A

T dDMDF
eT dFSFX

where the MOs in each constituent molecule is assumed to be normalized as
T dDSDD

eT dD = 1: In the previous paper10, we examined the accuracy of the ap-
proximation. Even when only the �rst term is retained, the calculated total energy
was accurate enough.
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