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Reducing the master equations for noisy chemical reactions
Tatsuo Shibataa)

Department of Mathematical and Life Sciences, University of Hiroshima, 1-3-1, Kagamiyama,
Higashi-Hiroshima 739-8526, Japan

~Received 12 May 2003; accepted 3 July 2003!

A reduced description for noisy chemical reactions in small systems is presented. By applying the
projection operator formalism to the chemical master equation, we show that even when the number
of molecules of an intermediate chemical species is small, its elimination from the description is
possible provided that its characteristic time scale is short. The resulting master equation of the
reduced system includes additional terms of a diffusive kind. The characteristic time of the
eliminated chemical species contributes toward the fluctuations of the downstream chemical species,
as well as the dispersion of the eliminated component does. ©2003 American Institute of Physics.
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I. INTRODUCTION

The chemical master equations, which give the time e
lution of the probability of having a given number of mo
ecules, provide the starting point to study the stochastic
namical process of chemical species in a well stirred reac1

However, there is no procedure to solve the master equa
analytically. Therefore, a lot of effort must be necessary
understand stochastic behaviors of complicated reaction
tems. Such complicated reaction systems could be foun
cascades and networks of chemical reactions in systems
as chemical plants and biological systems.

If one could eliminate some intermediate reactions fr
the description, it could be helpful to study such complica
systems. If the size of the system is large enough, the el
nation of the intermediate reactions could be possible if
time scale is fast. Since the evolution of the concentration
chemical components could be well described by a Fokk
Planck equation, adiabatic elimination methods for Fokke
Planck equations can be used~for instance, see Refs. 2–4!.
However, if the size of the system is small such as a c
since the fluctuation in the number could be large, it mig
not be clear if the elimination could be done. An adiaba
elimination method of the fast variable in a master equat
was discussed briefly by Haken.3

The stochasticity of biochemical reactions in cells h
been given much attention recently~for review, see Ref. 5!.
Stochasticity of gene expression is a particular exam
Various kinds of processes are involved in the gene exp
sion processes. Among them, Kepler and Elston have stu
stochasticity of transcriptional regulation6 ~see Sec. IV!. For
this process, they obtained an approximate chemical ma
equation, which includes additional terms of a diffusive kin
~Their derivation was similar to that by Haken, though t
possibility of having such a term was not mentioned.3!

Intuitively, even in cases where the molecular numbe
small, if the fluctuation of it is rapid, the contribution of th
fluctuation to the stochastic behaviors of the downstream

a!Electronic mail: shibata@hiroshima-u.ac.jp
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actions could be small. Recently, the author has shown
the temporal coarse-grain is applicable to eliminating an
termediate reaction with a fast but noisy concentration v
able, i.e., chemical species whose concentration is small
fluctuating rapidly.7 The resulting effective chemical reactio
has a reaction rate which fluctuates in time~fluctuating reac-
tion rate!. The master equation for this effective chemic
reaction has been derived.7 The equation includes additiona
terms of a diffusive kind, yielding a contribution toward
fluctuations from the eliminated chemical species.

In the present publication, the effective master equat
for chemical reactions with a fast but noisy variable is d
rived by adopting the projection operator formalism.8–10 In
Sec. II, we study a set of reactions, which involve tw
chemical species. The characteristic time scales in the n
bers of these molecules are different. The faster one is s
thesized from the slower one. First, the master equation
the reactions is given. Then the projection operator techni
is applied in order to derive the effective master equati
which includes a kind of diffusion term. The coefficient fo
the term is explicitly given. In Sec. III, we show the Fokker
Planck equation and the Langevin equation correspondin
the effective master equation. In Sec. IV, the study of tra
scriptional regulation by Kepler and Elston6 is reformulated
by applying the result of Sec. II to it and then in Sec. 4, br
concluding remarks are offered.

II. DERIVATION OF EFFECTIVE MASTER EQUATION
FOR NOISY CHEMICAL REACTIONS

In this section, we study a set of chemical reactio
which consist of two chemical species with different chara
teristic time scales. The chemical species with a slower t
scale is generated from the other one with a faster time sc
The number of molecules with the faster characteristic ti
scale is not necessarily large, i.e., it can be small. The e
lution of the chemical reaction is described by the chemi
master equation. In order to eliminate the fast variable,
projection operator formalism8,9 ~see also Ref. 10! is applied
to the chemical master equation. Then, we obtain the ef
9 © 2003 American Institute of Physics
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tive master equation, which includes additional terms o
diffusive kind. This diffusion term is the contribution from
the fluctuation of the eliminated variable.

A. Chemical reaction

Consider chemical reactions consisting of two chemi
speciesX andY. X is synthesized fromY, i.e.,Y→X. ForY,
some other synthesis and degradation or depletion react
which we do not specify here, are supposed. Thus, the n
ber of Y is also time-dependent. We postulate that the ch
acteristic time scale ofY is much faster than that ofX. This
also suggests that the chemical reaction of synthesizingX,
i.e., Y→X, does not significantly affect the evolution of th
number of moleculeY.

Here, we are interested in a reduced description for
reaction of the end productX. As we shall see, the fas
chemical componentY can be eliminated from the reactio
scheme, and then we obtain a reduced description. Here
start with the chemical reaction amongX andY, given by

Y→
kn

X1Y, X→
lm

~1!

in which k andl are the rate constants, andm andn are the
numbers ofX andY molecules, respectively. We assume th
some synthesis and degradation or depletion reactions fY
are present, which are not specified here. Thus, the num
of Y is also time-dependent. For the synthesis reaction,
enough to consider the situation in which the properties
the number ofY molecules are not influenced by the reacti
of synthesizingX. Here, for simplicity we choose the chem
cal reactions that do not change the number ofY molecules.
Thus, any statistical and dynamical properties of the num
of Y molecules are not affected by this reaction.

B. Master equation and operators

First consider the master equation which descri
chemical reaction~1! with some synthetic and degradatio
reaction forY. Let f (m,n,t) give the distribution function of
m andn at timet. Then, the master equation of the reactio
is written as

d f

dt
5G f 5~G11G0! f . ~2!

HereG1 is the operator forf , which describes the chemica
reaction~1!, given by

G1f 5kn@ f ~m21,n,t !2 f ~m,n,t !#

1l@~m11! f ~m11,n,t !2m f~m,n,t !#. ~3!

The synthetic and depletion reactions forY, which are not
specified here, are described by the operatorG0 . Thus,G0

gives the evolution rule ofn.

C. Probability conservation and stationary
distribution function for Y

The probability distribution functionf (m,n,t) satisfies
(m,nf (m,n,t)51 and f (m,n,t)<1. Since (m,n f (m,n,t)
51 must be satisfied for anyt, operatorG0 must satisfy
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`

G0h~m,n,t !50. ~4!

Let w0(n) give the stationary distribution ofn. Then
w0(n) follows

G0w0~n!50. ~5!

D. Projection operators

We consider a projection of the distribution functio
f (m,n,t). For the functionf (m,n,t), the projection operator
P is defined by

Pf ~m,n,t !5w0~n! (
n50

`

f ~m,n,t !. ~6!

The functionPf is essentially described by a function ofm.
Therefore, we introduce the distribution functiong(m,t) de-
fined as

Pf 5w0~n! (
n50

`

f ~m,n,t !5w0~n!g~m,t !. ~7!

The definition ofP leads to

G0Pf 5G0w0~n! (
n50

`

f ~m,n,t !50 ~8!

and

PG0f 5w0~n! (
n50

`

G0f ~m,n,t !50. ~9!

Here, Eqs.~4! and ~5! are used.
We also define a projection operatorP8512P as

P8 f ~m,n,t !5 f ~m,n,t !2Pf ~m,n,t !. ~10!

It is expected that the evolution ofPf contains only slow
changes. Then, the evolution ofP8 f describes the fas
changes of the reactions.

E. Evolution of projected functions

We start with the well-known operator identity,9,10 given
by

]

]t
Pf 5PGPf 1PGE

0

t

e(t2s)P8GP8GP f ds

1PGetP8GP8 f 0 , ~11!

in which f 0 is the initial distribution at t50, i.e., f 0

5 f (m,n,0). Noticing the condition given by Eq.~8!, we
have an identity for the distribution functiong(m,t), given
by
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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]

]t
g~m,t !5 (

n50

`

G1Pf

1 (
n50

`

G1E
0

t

e(t2s)P8GP8G1Pf ~m,n,s!ds

1 (
n50

`

G1etP8GP8 f 0~m,n!. ~12!

The first term on the right-hand side in Eq.~12! is

(
n50

`

G1Pf 5 (
n50

`

G1w0~n!g~m,t !5^G1&g~m,t ! ~13!

in which ^G1& is defined forg(m,t) as

^G1&g~m,t !5k^n&@g~m21,t !2g~m,t !#

1l@~m11!g~m11,t !2mg~m,t !#. ~14!

Here, the angular brackets^•& indicate the ensemble averag
with respect to the stationary distributionw0(n).

Equation~14! is considered to describe the chemical
action of synthesizingX without the effect of the fluctuation
in the number ofY molecules. Thus, Eq.~14! describes the
evolution of the chemical reactions given by

Y ——→
k^n&

X, X→
lm

. ~15!

If the fluctuation in the number ofY is not significant, this
term, Eq.~14!, could be enough to describe the evolution
the number of moleculeX.

For the second term on the right-hand side in Eq.~12!,
substituting Eq.~13! into the second term, the term is rewri
ten as

(
n50

`

G1E
0

t

e(t2s)P8G~G12^G1&!w0~n!g~m,s!ds. ~16!

SinceP8G determines the rapid evolution,P8G determines
the evolution of the fast variablen. Notice, however, that
P8G still contains the rapid evolution ofm due to the rapid
change ofn. To see this, let us rewriteP8G as

P8G5P8G11G05~12P!G11G0 . ~17!

Here we use Eq.~9!. Whereas the second term on the righ
hand side describes the evolution ofn, the first term on the
right-hand side gives the contribution from the rapid chan
of m. If the characteristic time scale ofn is much faster than
m, we expect that the contribution of the first term is mu
smaller than the second term. Then we can adopt the
proximation

e(t2s)P8G→e(t2s)G0. ~18!

Substituting Eqs.~3! and ~14! into Eq. ~16!, the second
term on the right-hand side in Eq.~12! is rewritten as
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n50

`

G1E
0

t

e(t2s)G0k~n2^n&!w0~n!

3@g~m21,s!2g~m,s!#ds

5kE
0

tS (
n50

`

G1e(t2s)G0nw0~n!2^n&^G1& D
3@g~m21,s!2g~m,s!#ds

5k2E
0

tS (
n50

`

ne(t2s)G0nw0~n!2^n&2D
3@g~m,s!22g~m21,s!1g~m22,s!#ds. ~19!

Let f(t) give the correlation function ofn, defined as

f~ t !5
^n~ t !n~0!&2^n&2

^n2&2^n&2 . ~20!

Then, the correlation functionf(t) is formally written as

f~ t !5
1

^dn2& S (
m,n

neG0tnw0~n!2^n&2D . ~21!

Substituting Eq.~21! into Eq. ~19!, the second term on the
right-hand side of Eq.~12! is rewritten by

k2^dn2&E
0

t

f~ t2s!@g~m,s!22g~m21,s!1g~m22,s!#ds.

~22!

Let tc be the characteristic time scale ofn. tc is esti-
mated at

tc5E
0

`

f~s!ds. ~23!

Since the reaction forn is faster thanm, the time interval
@0,t# is larger thantc . In the interval, the correlation func
tion f(t) decays to zero, whileg does not change so much
i.e.,

U]g~m,t !

]t
tcU!1. ~24!

In such a situation, we takeg(m,s) in Eq. ~22! out of the
integral. Thus we replace it as

g~m,s!→g~m,t !. ~25!

Then, the second term on the right-hand side of Eq.~12! is
rewritten by

k2^dn2&tc@g~m,t !22g~m21,t !1g~m22,t !#. ~26!

This term is a kind of diffusion term due to the fluctuation
the number ofY molecule. We should notice that not on
the dispersion ofn, dn2 but also the time scaletc determines
the contribution toward the fluctuation ofm.

Finally, the third term on the right-hand side of E
~12! is
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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(
n50

`

G1etG0P8 f 0~m,n!5 (
n50

`

G1etG0~ f 02Pf 0!

5 (
n50

`

G1~ f ~m,n,t !2etG0Pf 0!.

~27!

Here we use the approximation given by Eq.~18!. Thus, in
the intervalt@tc , the third term disappears quickly. Henc
we can neglect this term.

F. Reduced master equation

In this way, we have derived the effective master eq
tion for the probability distribution of the number ofX mol-
ecules. Under the condition that the time scale ofn is much
faster than that ofm, the evolution of the distribution func
tion g(m,t) is effectively described by the master equati
given by

]

]t
g~m,t !5k^n&@g~m21,t !2g~m,t !#

1l@~m11!g~m11,t !2mg~m,t !#

3D@g~m,t !22g~m21,t !1g~m22,t !#,

~28!

with

D5k2^dn2&tc . ~29!

The third term is the contribution from the fluctuation
n(t) toward the stochastic behavior ofm(t). The coefficient
of this term is given byk2^dn2&tc . Hence, the time scaletc

does contribute to the stochasticity ofm as well as the dis-
persion ofn.

G. Remarks

Here, we study the effect of the third term on the beh
ior of X. If the third term could be neglected, this equati
describes the simple chemical reactions of synthesis oX
with constant ratek^n& and degradation ofX with the rate
lm. This corresponds to the case in which the concentra
of Y is so large that its fluctuation can be neglected. In
present case, even if the diffusive kind term is included,
mean value is equivalent to the case without the term. W
the number ofX at time t50 is m(0), themean number of
X at time t is given by

^m~ t !&5m~0!e2gt2
k

l
~e2lt21!. ~30!

Thus, the diffusive term does not affect the mean num
This number must be equivalent to the mean value calcul
from the original master equation, Eq.~2!.

Hence, the diffusive kind term affects the behavior of t
fluctuation in the number ofX rather than the mean numbe
Here, we study the correlation function of the number ofX.
The correlation function is calculated at

^m~t!m~0!&2^m&25^dm2&e2lt, ~31!

with
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Whereas the characteristic time of the number ofX is the
same as the case without the diffusion kind term, the v
ance in the number ofX increases as the coefficient of th
diffusive kind term augments. The fluctuations of the elim
nated chemical speciesY is the source of this increase in th
stochasticity of the number ofX.

III. APPROXIMATION OF THE MASTER EQUATION
BY FOKKER–PLANCK EQUATION

If the mean number ofX molecules is much larger tha
unity, the description can be further reduced. This condit
enables us to approximate a discrete molecular number
continuous molecular concentration. Thus, the behavior
the concentration is described by a Fokker–Planck equa
and the corresponding Langevin equation. In this section,
Fokker–Planck equation and the Langevin equation co
sponding to the master equation, Eq.~28!, are shown. For the
derivation of a Fokker–Planck equation from a master eq
tion, temporal coarse-graining can be adopted.11 Then, the
continuous molecular concentration is interpreted as a s
interval average of the discrete molecular number. Recen
Gillespie discussed that the coarse-graining of a chem
master equation with respect totime is deeply connected
with the Kramers–Moyal expansion.11 Following his discus-
sion, here the Kramers–Moyal expansion is adopted.

Let P(x,t) give the probability distribution function for
the concentration ofX, x. Here, the concentrationx should
be interpreted as a short time average of the number ofX.7,11

By applying the Kramers–Moyal expansion to Eq.~28! and
taking the terms up to the second-order derivatives, we h
the Fokker–Planck equation

]P~x,t !

]t
52

]

]x S k^n&2lx2
1

2

]

]x
@k^n&1lx

12D# D P~x,t !. ~33!

For this approximation,x must be much larger than unity
The corresponding stochastic kinetic equation of chem
Langevin equation is given by

dx

dt
5k^n&2lx1Ak^n&1lx12Dj~ t ! ~34!

in which j(t) is the Gaussian random variable with^j(t)&
50 and^j(t)j(t8)&5d(t2t8).

The effect of the diffusive kind term of the master equ
tion, Eq. ~28!, is clearly seen in Eq.~34!. Without taking
account the diffusive kind term of Eq.~28! or D50, Eq.~34!
is reduced to the well-known chemical Langevin equatio
The diffusive kind term contributes to increasing the stren
of the additive noise in the Langevin equation.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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IV. TRANSCRIPTIONAL REGULATION
IN GENE EXPRESSION

In this section, we study the stochastic behavior of tr
scriptional regulation in gene expression, reformulating
study by Kepler and Elston.6 In the process of transcriptiona
regulation, a particular type of regulatory protein can bi
the operator region of a gene to control its activity. The o
erator region on DNA is located around the promoter reg
on DNA where RNA polymerase binds to initiate RNA p
lymerizations~transcription!. Binding of the regulatory pro-
teins to the operator region enhances or inhibits the bind
of RNA polymerase to the promoter.

The association and dissociation of the regulatory p
tein are stochastic processes. The number of the state o
gene is two, association state and dissociation state. Thus
fluctuation of the gene activity measured by the stand
deviation is comparable to the mean activity. This stro
fluctuation could contribute toward the stochasticity of t
gene expression. However, if the association and dissocia
process are fast processes, the state fluctuates rapidly. In
a case, the contribution from this noise to the downstre
could be effectively averaged out.

Suppose two chemical species,G andM, which corre-
spond to the gene and the transcript, respectively.G takes one
of the two statesG0 andG1 , among which stochastic trans
tions happen. The transition rate fromG0 to G1 and its re-
verse are given byKk0 andKk1 , respectively. Note thatk0

1k151. From each of these states,M is generated with the
ratesa0 anda1 , respectively.~Here we follow the notation
adopted in Ref. 6.! Then the reaction scheme is written as

G0→
Kk0

G1 , G0←
Kk1

G1 ,

G0→
a0

M1G0 , G1→
a1

M1G1 , ~35!

M→
d

.

Let pm
0 andpm

1 give the probability distribution of havingm
molecules when the states of the gene areG0 andG1 , respec-
tively. Then the master equation for the transcriptional re
lation process~35! is given by

dpm
s

dt
5as~pm21

s 2pm
s !1d@~m11!pm11

s 2mpm
s #

1K~kŝpm
ŝ 2kspm

s ! ~36!

in which s5$0,1% and ŝ512s. In Ref. 6, it was supposed
that the differencejm5k0pm

0 2k1pm
1 reaches a rapid quas

equilibrium for any value ofpm . Therefore, the authors se
the time derivative ofjm equal to zero, i.e.,djm /dt50.
Then, they obtained the approximate master equation for
probability pm5pm

0 1pm
1 , given by Eq.~38! below.

Here, we derive the effective master equation accord
to the result in Sec. II. LetGs(t) with s(t)5$0,1% give the
state ofG at time t. Then, the reaction rate of synthesizin
M at time t is given by a0(12s(t))1a1s(t). Thus, the
reaction scheme is rewritten as
Downloaded 02 Oct 2003 to 133.41.131.128. Redistribution subject to A
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G ——→
a01~a12a0!s

M1G, M→
d

, ~37!

with the stochastic transition betweenG0 andG1 . The mean
value, the variance, and the characteristic time scale ofs(t)
are calculated at̂s&5k0 , ^ds2&5k0k1 , and tc51/K, re-
spectively. Hence, according to the result in Sec. II, we h
the master equation that the probabilitypm(t) of having m
molecule at timet follows is given by

dpm~ t !

dt
5a0~pm212pm!1d@~m11!pm112mpm#

1~a12a0!k0~pm212pm!1~a12a0!2k0k1

3
1

K
~pm22pm212pm22!. ~38!

The fourth term is the contribution from the fluctuation in th
state ofG toward the stochasticity in the number ofM. This
effective master equation is the same as Eq.~21! given in
Ref. 6.

V. CONCLUDING REMARKS

In the present paper, we apply the projection opera
formalism9,10 to a chemical master equation, which describ
chemical reactions among two chemical species with
and slow characteristic time scales, respectively. The che
cal species with the slow characteristic time scale is syn
sized from the other chemical species with the fast cha
teristic time scale. Then, the fast chemical species can
eliminated. Notice that the concentration of them can
small. The resulting reduced master equation given by
~28! includes a diffusive kind term. The time scale of th
eliminated variable does contribute toward the fluctuations
the downstream chemical species as well as the dispersio
the eliminated variable. The corresponding Fokker–Pla
equation and the chemical Langevin equation have also b
shown.

The diffusion term is interpreted to mean that the re
tion rate of synthesizing the product is fluctuating in time7

Hence, the chemical reaction~1! is effectively rewritten as

——→
k@a1bj~ t !#

X, X→
l

~39!

with a5^n& andb252^dn2&tc . Here,j(t) is the Gaussian
random variable witĥj(t)&50 and^j(t)j(t8)&5d(t2t8).

In the present paper, as an application of the result,
have studied transcriptional regulation process. However,
application is not restricted to that case. A variety of syste
could be found for the application. In particular, a variety
the application could be found in biochemical reactions
cells.
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