JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 13 1 OCTOBER 2003

Reducing the master equations for noisy chemical reactions
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A reduced description for noisy chemical reactions in small systems is presented. By applying the
projection operator formalism to the chemical master equation, we show that even when the number
of molecules of an intermediate chemical species is small, its elimination from the description is
possible provided that its characteristic time scale is short. The resulting master equation of the
reduced system includes additional terms of a diffusive kind. The characteristic time of the
eliminated chemical species contributes toward the fluctuations of the downstream chemical species,
as well as the dispersion of the eliminated component doe20@3 American Institute of Physics.
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I. INTRODUCTION actions could be small. Recently, the author has shown that
the temporal coarse-grain is applicable to eliminating an in-
The chemical master equations, which give the time evotermediate reaction with a fast but noisy concentration vari-
lution of the probability of having a given number of mol- able, i.e., chemical species whose concentration is small but
ecules, provide the starting point to study the stochastic dyfluctuating rapidly. The resulting effective chemical reaction
namical process of chemical species in a well stirred redctorhas a reaction rate which fluctuates in tifflectuating reac-
However, there is no procedure to solve the master equatiotion rate). The master equation for this effective chemical
analytically. Therefore, a lot of effort must be necessary tareaction has been derivéd:he equation includes additional
understand stochastic behaviors of complicated reaction syserms of a diffusive kind, yielding a contribution towards
tems. Such complicated reaction systems could be found dkictuations from the eliminated chemical species.
cascades and networks of chemical reactions in systems such In the present publication, the effective master equation
as chemical plants and biological systems. for chemical reactions with a fast but noisy variable is de-
If one could eliminate some intermediate reactions fromrived by adopting the projection operator formali&m? In
the description, it could be helpful to study such complicatedSec. Il, we study a set of reactions, which involve two
systems. If the size of the system is large enough, the elimiehemical species. The characteristic time scales in the num-
nation of the intermediate reactions could be possible if itdhers of these molecules are different. The faster one is syn-
time scale is fast. Since the evolution of the concentrations ofhesized from the slower one. First, the master equation for
chemical components could be well described by a Fokker-the reactions is given. Then the projection operator technique
Planck equation, adiabatic elimination methods for Fokker-is applied in order to derive the effective master equation,
Planck equations can be us€dr instance, see Refs. 2):4  which includes a kind of diffusion term. The coefficient for
However, if the size of the system is small such as a cellthe term is explicitly given. In Sec. lll, we show the Fokker—
since the fluctuation in the number could be large, it mightPlanck equation and the Langevin equation corresponding to
not be clear if the elimination could be done. An adiabaticthe effective master equation. In Sec. IV, the study of tran-
elimination method of the fast variable in a master equatiorscriptional regulation by Kepler and Elsfbis reformulated
was discussed briefly by Hakén. by applying the result of Sec. Il to it and then in Sec. 4, brief
The stochasticity of biochemical reactions in cells hasconcluding remarks are offered.
been given much attention recentlpr review, see Ref. b
Stochasticity of gene expression is a particular example.
Various kinds of processes are involved in the gene expredl. DERIVATION OF EFFECTIVE MASTER EQUATION
sion processes. Among them, Kepler and Elston have studidd®R NOISY CHEMICAL REACTIONS
stpchasticity of transcriptional regulatﬁ?fsee Sec. Iy For In this section, we study a set of chemical reactions,
this process, they obtained an approximate chemical mast@ich consist of two chemical species with different charac-
equation, which includes additional terms of a diffusive kind. (gristic time scales. The chemical species with a slower time
(Their derivation was similar to that by Haken, though thegqaje is generated from the other one with a faster time scale.
possibility of having such a term was not mentiofed.  The number of molecules with the faster characteristic time
Intuitively, even in cases where the molecular number iS5 is not necessarily large, i.e., it can be small. The evo-
small, if the fluctuation of it is rapid, the contribution of the | tion of the chemical reaction is described by the chemical
fluctuation to the stochastic behaviors of the downstream res,4ster equation. In order to eliminate the fast variable, the
projection operator formalishY (see also Ref. 10s applied
¥Electronic mail: shibata@hiroshima-u.ac.jp to the chemical master equation. Then, we obtain the effec-
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tive master equation, which includes additional terms of a *
diffusive kind. This diffusion term is the contribution from E I'oh(m,n,t)=0. (4)
the fluctuation of the eliminated variable. n=0

A. Chemical reaction Let ¢g(n) give the stationary distribution of. Then

Consider chemical reactions consisting of two chemicaﬁDO(n) follows
speciesX andY. X is synthesized fronY, i.e.,Y—X. ForY, r _
some other synthesis and degradation or depletion reactions, o¢o(n)=0. ®)
which we do not specify here, are supposed. Thus, the num-
ber of Y is also time-dependent. We postulate that the charb. Projection operators
acteristic time scale of is much faster than that of. This
also suggests that the chemical reaction of synthesiXing
i.e., Y—X, does not significantly affect the evolution of the
number of moleculéy.

Here, we are interested in a reduced description for the o
reacti_on of the end producX. As we shall see, the fz_ist Pf(m,n,t)=<p0(n)2 f(m,n,t). (6)
chemical componenY can be eliminated from the reaction n=0
scheme, and then we obtain a reduced description. Here, we

start with the chemical reaction amodgandY, given by The functionPf is essentially described by a function rof
Therefore, we introduce the distribution functigfm,t) de-

fined as

We consider a projection of the distribution function
f(m,n,t). For the functionf(m,n,t), the projection operator
P is defined by

kn Am
Y—=X+Y, X— (1)

o0

in which k and\ are the rate constants, andandn are the
numbers ofX andY molecules, respectively. We assume that ~ Pf= Q"O(”)go f(m,n,t)=¢o(n)g(m,t). @)
some synthesis and degradation or depletion reactiong for

are present, which are not specified here. Thus, the numbgte definition ofP leads to

of Y is also time-dependent. For the synthesis reaction, it is

enough to consider the situation in which the properties of o

the number ofY molecules are not influenced by the reaction LoPf=Tgpp(N) E f(m,n,t)=0 8
of synthesizingX. Here, for simplicity we choose the chemi- n=0

cal reactions that do not change the numbeY afolecules.

Thus, any statistical and dynamical properties of the numbe?nd

of Y molecules are not affected by this reaction. o

PTof = @g(n) ZO 'of(m,n,t)=0. 9)
B. Master equation and operators "

First consider the master equation which describedlere, Eqs(4) and(5) are used.
chemical reactior(1) with some synthetic and degradation ~ We also define a projection operatBf=1—7P as
reaction forY. Let f(m,n,t) give the distribution function of
m andn at timet. Then, the master equation of the reactions P’ f(m,n,t)=f(m,n,t) —Pf(m,n,t). (10)

is written as _ . .
It is expected that the evolution &ff contains only slow

df changes. Then, the evolution &' f describes the fast
—=I'f=("+ . : ’ .
dt Fr=(Ty+To)f @ changes of the reactions.

HereI'; is the operator forf, which describes the chemical
reaction(1), given by

Ty f=kn[f(m=1n,t)—f(m,n,t)] E. Evolution of projected functions

We start with the well-known operator identity? given

+A[(m+1)f(m+1,n,t)—mf(m,n,t)]. (3 by
The synthetic and depletion reactions f6y which are not
specified here, are described by the oper&tgr Thus, T, J . t (t—8)P' Ty

gives the evolution rule of. EPf—PFPHPF Oe 2T P'TPids

+ tP'F ’
C. Probability conservation and stationary Pre™ " Po, (1)

distribution function for ¥ in which f, is the initial distribution att=0, i.e., fq

The probability distribution functiorf (m,n,t) satisfies =f(m,n,0). Noticing the condition given by Eq8), we
Zpnf(mn,t)=1 and f(m,n,t)<1. Since =, f(m,n,t) have an identity for the distribution functiam(m,t), given
=1 must be satisfied for any operatorl’y must satisfy by
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(9 o0
—cg(mt)= >, T';Pf
ot A=0
oo t )
+ F1J e=IP TP Pf(m,n,s)ds
n=0 0

+ > TP TP fy(m,n). (12)
n=0

The first term on the right-hand side in Ed2) is

ngo rlpf=n§0 Tieo(mg(mt)=(Ig(mit) (13

in which(T";) is defined forg(m,t) as

(Fpg(mt)=k(n)[g(m—1t)—g(m,t)]

+A[(m+1)g(m+1t)—mg(m,t)]. (14

Here, the angular brackets) indicate the ensemble average

with respect to the stationary distributia(n).

Equation(14) is considered to describe the chemical re-

action of synthesizingX without the effect of the fluctuation
in the number ofY molecules. Thus, Eq14) describes the
evolution of the chemical reactions given by

k(n) Am
Y— X, X—.

(19

If the fluctuation in the number of is not significant, this

term, Eq.(14), could be enough to describe the evolution of

the number of moleculX.

For the second term on the right-hand side in BQ),
substituting Eq(13) into the second term, the term is rewrit-
ten as

ee] t )
nZO Flfoe“’sﬂ’ "(T—(T1))eo(n)g(m,s)yds. (16

SinceP'T" determines the rapid evolutio®'I" determines
the evolution of the fast variable. Notice, however, that
P'T still contains the rapid evolution af due to the rapid
change ofn. To see this, let us rewritP’I" as

P,F:P,F1+F0:(1_P)F1+FO (17)

Here we use Eq9). Whereas the second term on the right-

hand side describes the evolutionmfthe first term on the

right-hand side gives the contribution from the rapid chang

of m. If the characteristic time scale ofis much faster than

m, we expect that the contribution of the first term is much

e

Noisy chemical reactions 6631
- t
> rlf el 9Mok(n—(n)) po(n)
n=0 0
X[g(m—1,s)—g(m,s)]ds
t oo
k[ 3 riet Imongom— )iy
0\n=0
X[g(m—1,5)—g(m,s)]ds
t o]
=12 f (E ne<‘-5>Fon<po<n>—<n>2)
0\n=0
X[g(m,s)—2g(m—1,s)+g(m—2s)]ds. (19

Let ¢(t) give the correlation function afi, defined as

_(n(t)n(0))—(n)?
¢(t)_ <n2>_<n>2 .

Then, the correlation functiog(t) is formally written as

(20

> neoneg(n)—(n)?.

m,n

(21)

1
d(t)= Ton?)

Substituting Eq.21) into Eqg. (19), the second term on the
right-hand side of Eq(12) is rewritten by

k%(on?) f $(t—9)g(m,s)— 2g(m-19)+ g(m—2:5)]ds.
0
(22

Let 7. be the characteristic time scale of 7. is esti-
mated at

Te= fmq‘)(s)ds. (23
0

Since the reaction fon is faster thamm, the time interval
[0t] is larger thanr;. In the interval, the correlation func-
tion ¢(t) decays to zero, whilg does not change so much,
ie.,

<1. (24)

Tc

ag(m,t)
ot

In such a situation, we takg(m,s) in Eq. (22) out of the
integral. Thus we replace it as

g(m,s)—g(m,t). (25

Then, the second term on the right-hand side of @8) is
rewritten by

k2(on?)yrLg(m,t)—2g(m—1t)+g(m—21)]. (26)

smaller than the second term. Then we can adopt the ap-

proximation
et=9P'T_, glt=9)l (18

Substituting Eqs(3) and(14) into Eqg. (16), the second
term on the right-hand side in E¢L2) is rewritten as

This term is a kind of diffusion term due to the fluctuation in
the number ofY molecule. We should notice that not only
the dispersion of, 6n? but also the time scale, determines
the contribution toward the fluctuation af.

Finally, the third term on the right-hand side of Eq.
(12) is
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> refop fo(mn)= >, Ieto(fy—Pf,y) (6m?)y= Y (32
n=0 n=0

©

=S Iy (f(mn.t)—eTopf,). Whereas the characteristic time of the numberXois the
n=0

same as the case without the diffusion kind term, the vari-

ance in the number oX increases as the coefficient of the
27 diffusive kind term augments. The fluctuations of the elimi-

Here we use the approximation given by Ef8). Thus, in  nated chemical speciésis the source of this increase in the

the intervalt> 7., the third term disappears quickly. Hence, stochasticity of the number of.

we can neglect this term.

F. Reduced master equation
. . . Ill. APPROXIMATION OF THE MASTER EQUATION
In this way, we have derived the effective master equagy FOKKER—PLANCK EQUATION

tion for the probability distribution of the number &f mol-
ecules. Under the condition that the time scalend§ much If the mean number oK molecules is much larger than
faster than that of, the evolution of the distribution func- unity, the description can be further reduced. This condition
tion g(m,t) is effectively described by the master equationenables us to approximate a discrete molecular number by a
given by continuous molecular concentration. Thus, the behavior of
P the concentration is described by a Fokker—Planck equation
—g(mt)=k(n)[g(m—1)—g(m,t)] and the corresponding Langevin equation. In this section, the
at Fokker—Planck equation and the Langevin equation corre-
+A[(M+1)g(m+1t)—mg(m,t)] sponding to the master equation, E2g), are shown. For the
derivation of a Fokker—Planck equation from a master equa-
XD[g(m,t)—2g(m—1t)+g(m—21t)], tion, temporal coarse-graining can be adopte@hen, the
(28) continuous molecular concentration is interpreted as a short
. interval average of the discrete molecular number. Recently,
with Gillespie discussed that the coarse-graining of a chemical
D=k%(6n?) . (29) master equation with respect tone is deeply connected
with the Kramers—Moyal expansidh Following his discus-
sion, here the Kramers—Moyal expansion is adopted.
Let P(x,t) give the probability distribution function for
the concentration oKX, x. Here, the concentratiox should
be interpreted as a short time average of the numbt’of
By applying the Kramers—Moyal expansion to E88) and
taking the terms up to the second-order derivatives, we have

the Fokker—Planck equation
Here, we study the effect of the third term on the behav-

ior of X. If the third term could be neglected, this equation IP(X,) P 19

describes the simple chemical reactions of synthesiX of = —(k(n)—)\x— = —[k(n)+Ax
with constant rate&k(n) and degradation oKX with the rate o X 2 0%
Am. This corresponds to the case in which the concentration

of Y is so large that its fluctuation can be neglected. In the +2D]> P(x,t). (33
present case, even if the diffusive kind term is included, the

mean value is equivalent to the case without the term. Whe
the number ofX at timet=0 is m(0), themean number of
X at timet is given by

The third term is the contribution from the fluctuation of
n(t) toward the stochastic behavior of(t). The coefficient
of this term is given bk?(n?)7.. Hence, the time scale,
does contribute to the stochasticity of as well as the dis-
persion ofn.

G. Remarks

Eor this approximationx must be much larger than unity.
The corresponding stochastic kinetic equation of chemical
Langevin equation is given by

(m(t)>=m(0)e*7‘—;(e*“—l). (30) dx
——=k(n)—Ax+vk(n)+ \x+2D&(t) (34)

Thus, the diffusive term does not affect the mean number. dt
This number must be equivalent to the mean value calculated
from the original master equation, E@®). in which &(t) is the Gaussian random variable with(t))

Hence, the diffusive kind term affects the behavior of the=0 and(&(t) &(t")) = 8(t—t').
fluctuation in the number oX rather than the mean number. The effect of the diffusive kind term of the master equa-
Here, we study the correlation function of the numbeof tion, Eq. (28), is clearly seen in Eq(34). Without taking
The correlation function is calculated at account the diffusive kind term of ER8) or D=0, Eq.(34)

N2 N nr is reduced to the well-known chemical Langevin equation.
(m(7)m(0)) = (m)={om")e 77, (3D The diffusive kind term contributes to increasing the strength
with of the additive noise in the Langevin equation.
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IV. TRANSCRIPTIONAL REGULATION ag+(a—ag)s 5
IN GENE EXPRESSION G —— M+G, M—, (37

In this section, we study the stochastic behavior of tranwith the stochastic transition betweé&g andG;. The mean
scriptional regulation in gene expression, reformulating thevalue, the variance, and the characteristic time scak )f
study by Kepler and Elstofiln the process of transcriptional are calculated a{s)=kq, (8s?)=Kkgk;, and 7.=1/K, re-
regulation, a particular type of regulatory protein can bindspectively. Hence, according to the result in Sec. Il, we have
the operator region of a gene to control its activity. The op-the master equation that the probabilfy,(t) of havingm
erator region on DNA is located around the promoter regiormolecule at time follows is given by
on DNA where RNA polymerase binds to initiate RNA po- do(t
lymerizations(transcription. Binding of the regulatory pro- Pm(t)
teins to the operator region enhances or inhibits the binding dt
of RNA polymerase to the promoter.

The association and dissociation of the regulatory pro-
tein are stochastic processes. The number of the state of the xi P B 38
gene is two, association state and dissociation state. Thus, the K (Pm~2Pm-1~ Pm-2)- (38)

fluctuation of the gene activity measured by the standarq_he fourth term is the contribution from the fluctuation in the

deviation is comparable to the mean activity. This strongsta,[e ofG toward the stochasticity in the number 1. This
fluctuation could contribute toward the stochasticity of the . S L
effective master equation is the same as &4) given in

gene expression. However, if the association and dissociati

=ag(Pm—1—Pm) T L (M+1)pmp1—Mpy]

+ (a1~ ag)Ko(Pm—1—Pm) + (a1 — ag)*Koks

process are fast processes, the state fluctuates rapidly. In sucﬁ '
a case, the contribution from this noise to the downstreanQ/_ CONCLUDING REMARKS

could be effectively averaged out.

Suppose two chemical specig€sand M, which corre-
spond to the gene and the transcript, respectigetskes one
of the two statesj, andG,, among which stochastic transi-
tions happen. The transition rate frofig to G; and its re-
verse are given bKky andKk,, respectively. Note thék,
+k;=1. From each of these state®s{ is generated with the
ratesag and a4, respectively(Here we follow the notation
adopted in Ref. .Then the reaction scheme is written as

Kko Kk,
gog)gli gOHgll
ap @y
Go— M+Gy, Gi—M+Gy, (35
o
M—.

Let p% and p,ln give the probability distribution of havinm
molecules when the states of the gene@yandg, , respec-

tively. Then the master equation for the transcriptional regu-

lation procesg35) is given by

dpﬁ‘ s s s s
W:as(pm—l_ pm)+ ol(m+ 1)pm+1_mpm]

+K (kepS,— kepS)

in which s={0,1} ands=1-s. In Ref. 6, it was supposed
that the differencet,=kop2,—k.p2, reaches a rapid quasi-
equilibrium for any value of,,. Therefore, the authors set
the time derivative of¢,, equal to zero, i.e.dé,,/dt=0.

(36)

In the present paper, we apply the projection operator
formalisn?°to a chemical master equation, which describes
chemical reactions among two chemical species with fast
and slow characteristic time scales, respectively. The chemi-
cal species with the slow characteristic time scale is synthe-
sized from the other chemical species with the fast charac-
teristic time scale. Then, the fast chemical species can be
eliminated. Notice that the concentration of them can be
small. The resulting reduced master equation given by Eg.
(28) includes a diffusive kind term. The time scale of the
eliminated variable does contribute toward the fluctuations of
the downstream chemical species as well as the dispersion of
the eliminated variable. The corresponding Fokker—Planck
equation and the chemical Langevin equation have also been
shown.

The diffusion term is interpreted to mean that the reac-
tion rate of synthesizing the product is fluctuating in tife.
Hence, the chemical reactidf) is effectively rewritten as

Klat BE(1)] A

— X, X—

(39

with @=(n) and B2=2(sn?)7.. Here,&(t) is the Gaussian
random variable witH £(t))=0 and(&(t)&(t'))=(t—t').

In the present paper, as an application of the result, we
have studied transcriptional regulation process. However, the
application is not restricted to that case. A variety of systems
could be found for the application. In particular, a variety of
the application could be found in biochemical reactions in
cells.

Then, they obtained the approximate master equation for thRCKNOWLEDGMENT
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Here, we derive the effective master equation accordinQjiscussions
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