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Basis set superposition error free self-consistent field method
for molecular interaction in multi-component systems: Projection
operator formalism
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The self-consistent field method for molecular interaciS&F M) by Gianinetti, Raimondi, and
Tornaghi is extended to multi-component systems. A set of equations are written with projection
operators, and the accurate approximate equations are derived. The method is applied to water
clusters and to a fluoride anion complex with a water dimer. The calculated interaction energies are
compared with those estimated with the counterpoise method, and they converge to smaller values
for extensive basis sets. The underestimation of the binding energy results from the omission of the
most part of charge transfer contribution in the wave function. 2@1 American Institute of
Physics. [DOI: 10.1063/1.1388039

I. INTRODUCTION becomes more transparent than the original equations, and
) ) ] . besides, by generalizing the projection operators, the equa-
Recently, extensive experimental and theoretical studiegong are extended to multi-component systems straightfor-
on the weak molecular interactions have been reported. Thga gy |t is proved that the equations can be simplified to a
molecular recognition in a biomolecular system is acted by m \yhich requires less computational costs. The set of
these weak |nte.ract|oﬁs:The molecular clusters bonded by oqations indicates that the locally projected SCF method
van der Waals. mteractlpn and hydrogen _bonds have beg@_P SCF M) is a more appropriate name than the SCF MI.
known as the intermediates of microscopic to MesoSCopic 14 gemonstrate the applicability of the present methods,
systems. In these fields, it is important to estimate the acCUye calculate the interaction energies of the clusters of water
rate interaction energies. In the molecular orbital theory, thefnolecules(dimer to pentamerand of fluoride anion (F)
energy is evaluated by the supermolecular approach, 'Bomplexes with a water dimer. Water clusters are the subject
which the interaction energy is calculated as a differencey iniense research because of their importance in under-
between the energy of the cluster and a sum of the energieganging hydrogen bonds and in interpreting various unique
of constituent molecules. It has, however, been known thafgaqres of the structure, dynamics and energetics of con-
the basis set superposition en@SSE due to the basis set jonsed phase of water, and because the hydrogen bonds of

incompleteness makes it difficult to accurately estimate the ~ter molecules are ubiquitous in biological, chemical, and
interaction energy. The counterpoig&P) scheme introduced physical system&

by Boys and Bernardi“ has extensively been applied in the
studies of mole.cular interaction; to eliminate the BS'SE“' FORMULATION WITH PROJECTION OPERATORS
However, it requires + 1 computations for a cluster consist-

ing of n molecules. Furthermore, in large or strong interac-  The set of equations for SCF MI derived by Gianinetti
tion systems Xantheas emphasized the importance of BSS al° is simple, but the meaning of the equations is not
in the structural optimizatioThere are a few other methods Cléar. The equations can be written more transparently by
proposed to eliminate the BSSE; one of them is the chemicalsing the projection operators. The projection oper&gQy.
Hamiltonian approachCHA) by Mayer®’ and another is the on to the occupied orbitals of uni {|aj>, j=1, MA} is
self-consistent field for molecular interactié®CF MI) for a  defined as

two-component system by Gianinett al® Later they ex- M
tended the SCF MI to a multi-component systérocal Proc= > |ad[(San) 1] (2 (1)
correlation methods developed Pulay and co-worRéfs hoe i.J=1| PL(Sa) ;.62

were extensively examined by SthuRauhut and Wern&

to estimate the incremental BSSE at the correlated level.
In this work, using the projection operators, we re-

formulate the SCF MI for a two-component system by Gia-

ninetti et al® The meaning of the equations to be solved

where the matrixS, 5 is the overlap matrix in terms of the
occupied molecular orbital§|a;)}. Since {|a;)} are ex-
panded within the basis sets centered on the atoms of unit

NA
A
a )= t.. , 2
dAuthor to whom correspondence should be addressed. Present address: | '> pzl |Xp> Pl @
National Institution of Academic Degrees, Chiyoda, Tokyo 101-8438, Ja- ) )
pan. Electronic mail: iwata@ims.ac.jp the overlap matridxSy is
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SAAETAOCSAATAoca (3)
where S* is the overlap matrix in terms of the basis

A _ A . .
set{|xp),p=1N"}. Hereafter, the subscripts imply that \nare So, is the overlap matrix in terms of the occupied
the matr!x is in t.erms of moleqular orbita(810), and the orbitals{|bj>},{|cj>}, o '{|fj>} except on uniA{|aj>}. For
superscripts are in terms of basis sets. The rectangular matr}ﬁulti—component systems, EG) is simply replaced with
Taoc is defined by the molecular orbital vectgras ¢ ,t,, '

- -,tMA). Similarly, the projection operatdPg,. on to the (1— |5er0)|3(1— §9A00)|aj>:(1_ ﬁerc)|aj>8j ,
occupied orbitals of uniB is defined 11)

Poaoc= > > b[(Sea) Mkl (10)

B,C#A jCB KCC

Ma+M . . . .
AL and the corresponding matrix representation can easily be

Peoc=. j;M: o Ib)[(Sge) ™ *1;.i¢bil, (4)  derived. The size of MO overlap matr, is a sum of the
SA numbers of occupied orbitals

with
NA+NB : 2 Mg, (12)
|bj)= EA IXp)tp; s 5) BEA
=NA+1
E and the matrixSg, is symbolically written as
SBBETBOCSBBTBO(:- (6)

=(Tgoc Tcoer - -+ T
Our basis sets arfixp)}@{|xp)}. and the number of basis Soa=(Teoc: Teoc Foc)

sets isSN*+NB, Because of the definition Eq&) and (5), £
the MO coefficient matriced 5, and Ty, are rectangular XIEA EE#:A S*%(Tgoc: Tcoes - -+ TFod)s (13
matrices ofNAx M, andNBXx Mg, respectively.

Now, equipped with the projection operators thus de-agnd it is blocked as Sgg=TpocSETRoes Sac

fined, t_he_ equation for thg molecul'c_lr o_rbita_lls of uAitinder =T50cS®Tcoer - -+ Ser=TrocS FTroe. The diagonal
a restriction of Eq(2), derived by Gianinettet al, becomes blocks such assg are close to a unit matrix, and, on the
1—P. VE(1-P a)=(1-P ade: 7 other hand, the matrix elements of the off-diagonal blocks
( Boc)F( 500 3) 500 3)2; A( ) are expected to be much smaller than 1. Therefore, the cor-
which can be written in terms of the basis s¢l¥,).p  responding blocks of the inverse matri&{,) ~* can be ex-
=1N”} and the molecular orbital vector as panded in terms of the block matricéSgc}. To make it
FAA  EAB clear, we introduce a matriRg ,
1%, — BT TaocS®PTooo) 1T ’
( Boc( Boc Boc) Boc) FBA, FBB RGAE(SSA)%L’ (14)
14 )T and its block matrice§Rgc}. Each block is expanded in
~ 1~ A H 1 -1
Tood FaocS BT oo FaoSPA terms of the inverse of the diagonal blodkS$gg) ~*} and of

the off-diagonal block§Ssc}. The diagonal block is
= (SA_ SABTBOC(TBOCSBBTBOC)71TBOCSBA)TALA1 8
where1” is a unit matrix ofN*, L, is a diagonal matrix of RBB:(SBB)_l_D;A . (See)"Sep(Sop) "Spe(Ses) !

orbital energye; , andS"B is the overlap matrix between the
basis setg|xp)} and{|xp)}. Now it becomes clear that Eg.

-1 -1
(8) is equivalent to Eqs(ZES) and (27) of Ciianinetti etal® +D;A'B E;&A%Dﬁ (Ses) "Seo(Soo)
with the definition ofTgo(TeocS e TRod) ~ *Tgoc=DEE. . .
The meaning of Eq(7) is obvious; the occupied orbitals X Spe(See) “Ses(Ses) T (15

{la;)} of unit A are determined outside the space spanned b
the occupied orbital§|b;)} of unit B. The set of equations
for units A andB has to be solved iteratively. By multiplying Rec=+(Ssp)  *Sec(Sco) L
(b| from the left in Eq.(7), we obtain the relation Be ® o(See

¥nd the off-diagonal block is

(b1 (1= Pgod F(1—Pgoo ;) =(by|(1— ﬁsoc)|aj>sj=o.(9) _D;A,B (Sse) 'Sen(Sop) *Spc(Sce) H--

With the formulation of Eq.(7), generalization to the
spin unrestricted Hartree—Foc¢kiF) method as well as the Note that the second term in E@5) is the third order of the
open shell restricted HF method becomes trivial. Similarly,inverse matrix of the MO overlap matrixSgg) ~* and the
the equation can easily be extended to a multi-componefrst term of Eq.(16) is the second order. Inserting the ex-
system. We introduce the projection operanngc which  pansion Eqgs(15) and(16) into Eq.(10), and taking only the
projects the space spanned by the occupied molecular orbifirst order of Sgg) ~!, we can approximate the set of Egs.
als except on unif as (112) to be solved as

(16)
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« . 2071
F( 1- 2 PBOC) |aj> 2,096 }_f‘;g_g?)
B#A _(2030) i ‘K
B (2.023) ’fz_oos)
N 2096 2071
:(1}% Pooc an o

The advantage of using the approximate equations is that the

. X ) A X 2,081
dimension of the inverse matrix to be evaluatedvig, the 1548 <1999 509
901 & (1.999) 2078
1.948 y—" (2.002)

( 1- 2 I’:\’Boc
B#A

|aj>8j .

number of occupied orbitals of each unit, but if we use the {190

exact Eq.(11), we have to invert the fulEz_.,Mp size of %, 100 (2008} B s
matrix every iteration in solving the equation for each unit. (1";’;’82)’%-.-—- 2084 ¢ o 2078
So in the present study, we have mostly used the approxi- qjﬁ?ﬁ 2083

mate Egs(17). In practice, this approximation is accurate, © @

because the ratios such aSgf)  1Sgp are small, and be-
cause only higher than the third order in the diagonal block§!G. 1. The geometries' of water'clusters used in the calculations in Tables |,
and the secono_l order in the off-diagonal_ blocks are dis}gvirl]%flI;p;?;ﬁrﬁzigﬁ_“m'zed with the SCF/aug-ce-pVTECF/ec-pvD2
carded. Alternatively, we can use Ed.7) until the conver-
gency is nearly reached, and then for the last few iterations,
the exact Eq(7) is solved to ensure the equality similar to we intentionally calculated a less stable isomer which has a
Eq. (9). central water molecule with four hydrogen bonds and con-
Recently Gianinettiet al. extended the SCF MI to a tains two strained rings. It is expected to have a larger BSSE
multi-component systefhTheir equations are more compli- than the cyclic pentamer.
cated than our Eq11). We have not proved the equivalency First we examine the accuracy of the approximate Egs.
of our equations for the multi-component system with thosg17) for trimer to pentamer of water clusters and for
of Gianinettiet al. We have numerically confirmed that our F~(H,0),. Table | shows the difference of the interaction
calculated binding energy of a water trimer is equal to theirsenergies evaluated by Eq4.1) and(17). When the basis set
As Gianinettiet al. have proved, the energy is variation- does not contain any diffuse functions, the errors are less
ally optimized, and the first derivative of the energy can bethan 0.002 kcal/mol. Even for the basis sets augmented with
evaluated, using the ordinal equations by properly replacingliffuse functions, the maximum error is 0.012 kcal/mol. This
the density matrix with that of the nonorthogonal molecularaccuracy is much better than we expected. As shown in Fig.
orbitals. To evaluate the second derivative, the derivatives of, the hydrogen bonds determined with the cc-VDZ basis set
the MO coefficients have to be calculated by solving theare shorter than those with the aug-cc-VTZ basis set. There-
coupled perturbed Hartree—Fo¢€PHP equation. A little  fore, the approximation Eq17) for the same basis set is
more algebra is required to obtain the equations for the norslightly worse for geometrie&) than for geometriegb). As
orthogonal molecular orbitals under the projection operatorsexpected, the pentamer has the largest error for both geom-
etries. The interaction between Fand water molecules is
lIl. COMPUTATIONAL DETAILS very strong, and therefore, the error is large particularly for
geometry(a). Table 1 clearly demonstrates that the approxi-
The computer program is coded as a part of M@YX  mate Eq.(17) can be used even for these strong interaction
packagé™'® which usescAMESs-UsS integral routines® In  cases in place of the exact Eqd1). Thus, hereafter, all
the present test calculations, we use a series of Dunningigsults shown are the energies based on(Ed.
correlation-consistent polarized valence basis Yethe se- The calculated binding energies for water clusters are
ries forms a hierarchy of increasing basis set qualdy-  given in Tables Il and lIl. In Figs. 2 and 3 the size and basis
pVXZ, X=D, T, Q, and 5 for double, triple, quadruple, and set dependencies of the total binding energies are shown. The
quintuple zeta Recently, using this series of basis sets,energies of Table Il and Figs. 2 and 3 are calculated at the

Rappeand Bernstein systematically examined the basis sejeometries optimized with the SCF/cc-pVDZ level of ap-
dependence on the nonbonding interaction and BSSE&.

addition, we examine the contribution of diffuse functions it calimob b . 41 and

; s 19 ; ; TABLE |. Energy difference(kcal/mol between the exact Eqll) an
V\rlllth aug .CC p\./XZ' bThXe BiSaE is evaluated by following approximate Eq(17) LP SCF MI equations(a) Geometry optimized with
the equation given by Xantheas. the cc-pVDZ,(b) with the aug-cc-pVTZ.

IV. RESULTS AND DISCUSSION Clusters  Geometry cc-pVDZ cc-pVTZ aug-cc-pVDZ aug-cc-pVTZ

To examine the present locally projectédP) SCF (H20): Ez; 00000 —0.0013 _8:886133 0.0094
method for molecular interactiofMl), the size dependence (H,0), (@ 0.0000  0.0000 —0.0044
of the binding energies of water clusters is calculated. The (b) —0.0031
structures of the most stable water clusters are known to béHz0)s @  0.0000 —0.0119
cyclic up to a pentamér?®?! The structures are re- - (H,0), Eg; 0.0000 :8:88:2 10,0004
optimized with the SCF/cc-pVDZ and /aug-cc-pVTZ levels (b) _0.0006  —0.0019

of approximation, and are shown in Fig. 1. For the pentamet.
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TABLE Il. The binding energiesin kcal/mol) of water clusters, optimized
with the SCF/cc-pVDZ level of approximation.

o
N’

o

Nagata et al.

Basis set Dimer Trimer Tetramer Pentamer "g \
| |
cc-pvDZ  SCF 571 -17.32 -29.33 —34.77 = \
CP BSSE corr. —4.05 —11.35 —20.74 27 \ LP SCF
LP SCF MI -342 -896 -16.23 —17.80 <
A(LP-CP? 0.63 2.39 451 o \A\A
A(LP—SCRP 2.29 836  13.10 16.97 2 504
g ® Cp
cc-pvTZ SCF —435 —12.88 —22.69 e
CP BSSE corr. —3.61 —-10.74 —-19.49 ot}
LP SCF MI -328 -891 -1554 -_g -3 cc-pVDZ
A(LP-CP? 033 183 3.95 g \
A(LP—SCRP 1.07 3.97 7.15 a8 SCF u
cc-pvQz SCF —3.89 -40 T T T T T
CP BSSE corr. —3.61 2 8 4 s
LP SCF _305 the number of waters
A(LP-CP? 0.56 b)
A(LP—SCPRP 0.84
0 T ] T T
aug-cc-pvDZ SCF —-3.80 -—-11.09 -20.03 —22.50 nl
CP BSSE corr. —3.63 —10.49 —19.11 ke
LP SCF -291 -7.80 -13.89 1536 E -5-
A(LP-CP? 0.72 2.69 5.22 = |
A(LP—SCRP 0.89 3.29 6.14 7.14 &
~. -10+ LP SCF
aug-cc-pVTZ SCF —-3.66 —10.61 -—19.40 By
CP BSSE corr. —3.60 —10.48 —19.17 0 A
LPSCFMI  —2.96 —807 -14.28 8 154 T
A(LP-CPP 0.64 2.41 4.89 64 CP
A(LP—SCR® 0.70 2.54 5.12 ) °
= -20 1
aug-cc-pVQZ SCF —3.66 = aug-cc-pVDZ \
CP BSSE corr. —3.62 el SCF =
LP SCF MI —-3.00 -25 T T T T
A(LP-CPP 0.62 2 3 4 5
A(LP—SCPR® 0.66 the number of waters

aThe difference between the LP SCF MI and CP corrected energies. FIG. 2. The size dependence of the total binding energy of water clusters

PThe difference between the LP SCF Ml and SCF energy. In other words, it H20), for the SCF, CP BSSE corrected SCF, and LP SCF MI methods. The

is the BSSE estimated with the LP SCF MI. geometries are determined with the SCF/cc-pVDZ level of approximation.
(a) The basis set: cc-pVDZb) The basis set: aug-cc-pVDZ.

proximation. As is now well knowr Table Il and the fig-
ures demonstrate that the large BSSE in the SCF/cc-pvVXEXception. AlsoA(LP—SCH in aug-cc-pVXZ is slightly
calculations is substantially reduced by adding the diffusesmaller than in the corresponding cc-pVXZ. Figures 2 and 3
functions as in aug-cc-pVXZ; the counterpoig@P) correc- show that the binding energy evaluated with LP SCF MI
tion becomes less than 1 kcal mdlin the augmented basis converges to a higher value than the CP corrected energy.
sets. The differenca (LP—SCP between the SCF and lo- The underestimation for the binding energy in LP SCF Ml is
cally projected SCKLP SCF MI, or SCF M} is large, which ~ inherent to the method, because of the small variational
was noticed by Gianinetgt al. in their test calculations for space for the occupied molecular orbitals of each molecular
the dimer® The larger basis sets in the series of cc-pVXZ andunit. The electron delocalization over the molecular units is
of aug-cc-pVXZ sets yield smalleA (LP—SCB with one  almost prohibited by the restricted basis set expansion such

as Egs.(2) and (5). So it is expected that the charge trans-

fer (CT) interaction is substantially underestimated in LP
TABLE Ill. The binding energiesin kcal/mobhof vyater clusters, eval_uated “SCF MI. In strong hydrogen bonds such as in the water
W|_th the SCF/ aug-cc-pVTZ level of approximation at the geometries Opt"clusters, the contribution from the CT interaction is Iarge.
mized at the SCF/aug-cc-pVT&BCF/cc-pVDZ level. 22 . .

Very recently Hamzaet al=“ systematically examined the

Dimer Trimer Tetramer difference among their chemical Hamiltonian approach
SCF C374-360 —11.13-10.6] —19.80—19.40 (CHA), CP cprrection and SCF MI. They noteq that t.he SCF
BSSE CP corr. —3.671-3.60 —10.9(—10.48 —19.48—19.17 MI underestimated the binding energy, while their CHA
LP SCF Ml -3.19-296 —-9.271-8.00 —15.65-14.28 agreed with the CP correction for large basis sets. They at-
A(LP-CP? 0.480.64 1.642.41 3.834.89 tributed this difference to the lack of the charge transfer ef-
A(LP-SCR”  0.580.70 1.862.54 4.155.19 fects in the SCF MI. We will analyze the electron delocal-

ization in the LP SCF MI in details at the last part of this
section and in the Appendix. As Fig. 2 and Table Il show, the

&The difference between the LP SCF and CP corrected energies.
The energy difference of the LP SCF Ml and SCF.
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equal to each other.

Figure 3 examines the basis set dependence of the bind-
ing energy for water dimer, trimer, and tetramer. Because the
addition of the diffuse functions reduces the BSSE, each plot
behaves in a zigzag manner. The CP plots are smooth in all
cases. The amplitude of the zigzag of the LP SCF MI plots
are much smaller than that of the SCF plots. The LP SCF Ml
with aug-cc-pVDZ always yields a nearly converged value.

LP SCF__a Figure 3 clearly demonstrates that LP SCF MI underesti-
e mates the binding energy and gives us a good estimation of
the lower bound of the binding energy.

B e CP...... The second example we examined is a fluoride anion
. - e 2 B )
P (F7) complex with two water molecules. Recently the com-
\ SCF plexes of the anion with water clusters were studied both
f T experimentally and theoretically by Lisy and co-worké&ts,
and theoretically by Bailet al?* The optimized geometries
with the SCF/cc-pVDZ and SCF/aug-cc-pVTZ levels are
o shown in Fig. 4, and they differ substantially from each
-30+ other. Without augmented diffuse functions, the hydrogen
100 200 300 400 bond between water molecules is formed. On the other hand,
Number of Basis sets (water tetramer) when the diffuse functions are augmented, the anion-water
interaction becomes stronger, and the hydrogen bond is bro-
FIG. 3. The basis set dependence of the binding energy of water clustelﬁen_ Experimentally the vibrational spectra indicate the exis-

(H,0), for the SCF, CP BSSE corrected SCF, and LP SCF MI methods, . . o3
The basis sets pointed by an arrow are those of aug-cc-pVXZ. The geon’?—ence of the stronger F - -HO interaction> As Table IV

etries are determined with the SCF/cc-pVDZ level of approximatian.  Shows, structuréb) optimized with the SCF/aug-cc-pVTZ
Dimer, (b) trimer, (c) tetramer.

L
o
1

-9

) ~. /\ LP SCF__—a

) A A_,,_/"""" FIG. 4. The geometries of KH,0),: (a) optimized with the SCF/cc-pVDZ

E level; (b) optimized with the SCF/aug-cc-pVTZ level.

TS 7 L@ @ -t CP ......... 2
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B mized with the augmented basis set than for those without it.

&n - SCF ) . :

S f T The CP correction for both basis sets is small and nearly
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=
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1
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>>
>

-25

Binding Energy / kcal mol

TABLE IV. The binding energiegkcal/mo) of halogen anion (F) com-
differenceA (LP—SCP per the hydrogen bonds for each ba- plexes with a water dimer.
sis set increases with the size of cyclic clusters, which is

expected because of the stronger hydrogen bonds in the Method/Basts set COPYDZ  aug-eepvbz  augeepVTz
larger cyclic clusters and thus of the larger CT contribution SCF/cc-pvDZ —63.94 —41.29 —41.08
Table Ill compares the binding energies evaluated Witth(JLiE';g'gfc'pVDZ _g;'gi’ _319'%?[ _32é7§2
the aug-cc-pVTZ basis set. Two geometries for each clustegcr/ayg-ce-pyte ' 4283 4282
optimized with SCF/aug-cc-pVTZcc-pVDZ), are exam- Lp SCF Mi/aug-cc-pVTZ —33.87 —34.90
ined; they differ in the hydrogen bond lengths. As mentioneda (LP—SCR® 8.96 7.98

above, if th? hydrogen bonds are optimized with the aug5The geometry is optimized with the SCF/cc-pVDZ level.
mented basis set, the bonds become longer. Therefore, thehe energy difference of the LP SCF Mi and SCF.
difference A(LP—SCB is smaller for the structures opti- °The geometry is optimized with the SCF/aug-cc-pVTZ level.
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TABLE V. Comparison of the MullikerfMA) and Lavdin (LA) gross population analysis.

Gross population

Clusters
F~(H,0), Basis sets/geometry Methods AG H,0 F
cc-pvVDZ SCF(MA) —0.109 —-0.113 0.222
[cc-pvDZ (LA) —0.136 —0.136 0.272
LP SCF MI(LA) —0.068 —0.065 0.132
cc-pvTZ SCF(MA) —0.094 —0.096 0.189
[cc-pvDZ (LA) —0.192 —0.190 0.381
LP SCF MI(LA) —0.144 —0.140 0.285
aug-VDZ SCF(MA) —0.014 —-0.011 0.025
/cc-pVDZ (LA) -0.174 —0.175 0.350
LP SCF MI(LA) —0.152 —0.150 0.303
(H20), H,0* H,O
vDZ SCF (MA) 0.035 —0035
laug-VDZ (LA) 0.036 —0.036
LP SCF MI(LA) 0.017 —-0.017
VTZ SCF (MA) 0.023 —0.023
/aug-VTZ (LA) 0.047 —0.047
LP SCF MI(LA) 0.037 —0.037
aug-VDZ SCF(MA) —0.024 0.024
laug-VTZ (LA) 0.054 —0.054
LP SCF MI(LA) 0.051 —0.051

#The proton acceptor water molecule.

level has a larger binding energy than struct(@ehaving a  gross population with LP SCF Ml yields substantial amounts
hydrogen bond. As the geometries suggest, the differencef the charge transfer, which are close to those of the SCF
A(LP—SCRH for structure(a) is larger than for structuré).  wave function, in particular, for the augmented basis sets. We
A large A(LP—SCH even for structurgb) may indicate the  should recall, as Mayer pointed out correctipjat we cannot
importance of the electron delocalization in the binding.  make the counterpoise correction to the population analysis.
As repeatedly mentioned, the binding energy in LP SCRye would like to emphasize that the population analysis is
Ml is always smaller than the CP corrected SCF bindingone of the measures of the electron destitution in the mol-

22
energy. Hamzat al™ argued that the SCF Ml excludes any o¢\jie and molecular cluster, and that it is not the observable.
delocalization between the molecular units. Because the mo-

lecular orbitals in the SCF MI are not orthogonal, care

should be taken in analyzing the electron distribution. A few

ways of the population analysis in ttedb initio molecular

orbital theories have been used. The most popular one is thgt ~oncLUsIONS
of Mulliken,?® and Lavdin’s analysi€® is also widely used. It

is known that the gross population is dependent on the analy-  \ve have reformulated the SCF for molecular interaction

sis used. In the Appendix, we prove that the Mulliken gross(Ml) by Gianinetti etal® and extended it for a multi-

I;\)Ac:pulatlon Tets”.lFs Iln no ekcajckt)rog de;);all|zz§1;o? 'n.t:]hti SCFcomponent system. The set of equations implies that the

| as were intuitively argued by Hamzd al. = but, wi € ocally projected SCF method is a more appropriate name
Lowdin gross population, because of the nonorthogonality o .

. : han SCF MI. The test calculations for water clusters show

the occupied orbitals, the electron transfer between the ma:

lecular units is possible. Table V demonstrates the examplet at the binding energy is substantially underestimated and

for water dimer and F(H,0),. With the SCF wave func- that it converges to the Ilowgr energy at the basis set fihit.
tion, the charge transfer in the walin gross population is The p_ertgrbanon correction is essential to evaluate the accu-
always larger than in the Mulliken gross population, and thd@te Pinding energy. Recently Specckioal. have succeeded
difference of the two methods is larger for larger basis setd! including the correlation contribution in terms of valence
in particular with the augmented functions. It should bebond theory using the nonorthogonal molecular orbitals.
noted that the direction of the charge transfer in the Mullikentheir expansion they intentionally excluded the charge trans-
gross population for water dimer becomes unphysical for théer interaction. Currently we are developing a perturbation
aug-cc-pVDZ basis set. It has been known that the Mullikerexpansion theory, starting from the LP SCF MI. Because of
population analysis with diffuse basis functions often givesthe localized nature of the orbitals, the terms in the perturba-
us a chemically unacceptable picture of the electron destituion expansion can be restricted and classified, although the
tion. As analytically shown in the Appendix, the wdin  orbitals are not orthogonalized.
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APPENDIX: GROSS POPULATION

One particle density is written as
p(r)=;4 | Xp) Ppa{ Xl = XPX. (A1)

wherey is a column vector of the basis functiopg,), and

RAA RAB) ( SAA SAB)
1 zslsz( . (A7)
Noce Rean Res/\Ssa Sss
Now,
NRUEE=2 Tr(1ya ) =2Nge, (A8)

so that no electron transfer is possible between A and B in

the matrixP is the density matrix in terms of the basis func- 1o Mulliken population analysis even when the MOs are not
tions. For the nonorthogonal occupied molecular orbitals, th%rthogonal.

matrix P is given as

NOCC

PZZZ t|(871)|l’f1 y

ij=1

(A2)

S 1=(Tsn 4,

for the closed shell system, whefleis a rectangular MO
matrix of the occupied orbitals andS is the overlap matrix
over the basis set. By integrating the density,

NOCC
f p(r)dr=f}P)( o||r=2_21 (S71)i1;St=2Nec,
i,j=
(A3)

we recover the number of electron. If the basis gés di-
vided to{xa, xs}, and thus the MQ;={t; ,tig}, the density
matrix in terms of MO is split to

T]Sl} :TjASAAtiA+TiBSBAtiA+TJASABtiB+TjBSBBtiB

=(San)ji +(Sga)ji +(Sap)ji + (Sgp)ji » (A4)
and thus
NOCC
2Nocc=2”2:1 [(S™Hi{(San)ji + (Ssa)ji}]
NOCC
*2”2:1 [(S™)i{(Sap)ji + (Sss)ji}]:
EN'IXIull—elec_F NI\B/IuII—eIec, (AS)

where N)uleleq yMulkeled) i the Mulliken gross population
of molecular unit A(B).

Up to here, the equations are general. Now, in LP SCF

MI for a two-component systend; is a block matrix,
T 0 )

™=lo 7o

In the Lowdin population analysis, the density matrix is
projected on the Dwdin orthogonalized orbitals,

1/2
X

=S (A9)

and thus,
Nelec™ f p(l’)dl’

:f}lelzpsllzxL dr

= Tr(MAAPAAMAA L M AAPAB| BA L \|ABRBAN AA
+ MABPBBNBA) 4 Tr(\|BBPBB) BB
+ MBBPBANAB || BADAB) BB || BADAB)| AB)

=N 'LL\'de—eIec LN Ebwd—elec, (A10)

where the root square matrix of the overlap matrix in terms
of the basis set is defined as

SAA SAB) 1/2

M= BA BB

MAA MAB>

M BA M BB (All)

After a few manipulation, we obtain the alin gross
population,
Nkﬁwd-elecz Tr{SAAPAA_ M ABM BAPAA+ ( M BAM AB) PBB}
+ Tr{SABPBA_ MABM BBPBA+ ( M BAM AA) PAB}
(A12)

Up to here, the equations are general. Now, in LP SCF Ml
for a two-component system, the sub-blocks of the density
matrix in terms of the basis set are
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A A

N occ N occ

PAA=23 > (S Yijtialia,

i=1 =1
NA +NB NA (A13)

occ occ " occ

PBA=2 > E(S_l)ijtiATjB-
j:Nﬁcc_"lI:l

Therefore,

Nécc NéCC
Tr(SAAI:’AA)=2iZl jzl (S’l)ijE tp,jA(SAA)prtr,iA

A A
0occ '~ "occ

=22 2 (S Hii(Sanj

i=1i=1
=2 Tr(RaaSaA)

=2 Tr(1—RpgSga)

= ZNQCC_ 2 Tr( RABSBA)-

(A14)
Thus,
Nkéwd-elec: 2NA + TI’{ _ MABM BAPAA+ M BAM ABPBB

occ

_MABM BBPBA+MBAMAAPAB}. (A5)

Nagata et al.

It is these terms that contribute to the electron delocalization
over the molecular units in the walin gross population.
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