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Roundoff Noise Minimization for 2-D State-Space
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Abstract—The joint optimization problem of error feedback and
realization for two-dimensional (2-D) state-space digital filters to
minimize the effects of roundoff noise at the filter output subject
to 2-norm dynamic-range scaling constraints is investigated. It is
shown that the problem can be converted into an unconstrained op-
timization problem by using linear-algebraic techniques. The un-
constrained optimization problem at hand is then solved iteratively
by applying an efficient quasi-Newton algorithm with closed-form
formulas for key gradient evaluation. Analytical details are given
as to how the proposed technique can be applied to the cases where
the error-feedback matrix is a general, block-diagonal, diagonal,
or block-scalar matrix. A case study is presented to illustrate the
utility of the proposed technique.

Index Terms—Error feedback, joint optimization, 2-scaling
constraints, roundoff noise minimization, state-space realization,
2-D digital filters.

I. INTRODUCTION

WHEN implementing recursive digital filters in fixed-
point arithmetic, the problem of reducing the effects

of roundoff noise at the filter output is of critical importance.
Error feedback (EF) is a useful tool for the reduction of fi-
nite-word-length (FWL) effects in recursive digital filters. Many
EF techniques have been reported in the past for one-dimen-
sional (1-D) recursive digital filters [1]–[10], and more recently
for two-dimensional (2-D) recursive digital filters [11]–[15].
The roundoff noise can also be reduced by introducing a delta
operator to recursive digital filters [16]–[18] or by applying a
new structure based on the concept of polynomial operators
for digital filter implementation [19]. Another useful approach
is to construct the state-space filter structure for the roundoff
noise gain to be minimized by applying a linear transformation
to state-space coordinates subject to -norm dynamic-range
scaling constraints [20]–[23]. The problem of synthesizing
such a state-space filter structure with minimum roundoff noise
has been explored for 2-D state-space digital filters [24]–[27].
As a natural extension of the aforementioned methods, efforts
have been made to develop new methods that combine EF
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and realization for achieving better performance [28]–[30].
Separately optimized analytical algorithms have been proposed
for either 1-D [28] or 2-D [29] state-space digital filters. In [28]
and [29], jointly optimized iterative algorithms have also been
considered for filters with a general or scalar EF matrix. In [30],
a jointly optimized iterative algorithm has been developed for
1-D state-space digital filters with a general, diagonal, or scalar
EF matrix by applying a quasi-Newton method.

This paper investigates the problem of jointly optimizing EF
and realization for 2-D state-space digital filters to minimize
the roundoff noise subject to -norm dynamic-range scaling
constraints. To this end, an iterative technique which relies
on an efficient quasi-Newton algorithm [31] is developed.
It is shown that the constrained optimization problem can
be converted into an unconstrained optimization problem by
using linear-algebraic techniques. The proposed technique
can be applied to the cases where the EF matrix is a general,
block-diagonal, diagonal, or block-scalar matrix. A case study
is presented to illustrate the algorithm proposed and to demon-
strate its performance.

Throughout this paper, stands for the identity matrix of
dimension , and are used to denote the direct sum and
the set union of matrices, respectively, the transpose (conjugate
transpose) of a matrix is indicated by ( ), and the trace
and th diagonal element of a square matrix are denoted by

and , respectively.

II. 2-D STATE-SPACE DIGITAL FILTERS

WITH ERROR FEEDBACK

Suppose that a local state-space (LSS) model
for 2-D recursive digital filters is described by [32]

(1)

where

with an 1 horizontal state vector , an 1 vertical
state vector , a scalar input , a scalar output

, and real constant matrices , , , , , ,
, , and of appropriate dimensions. The LSS model in

(1) is assumed to be bounded-input bounded-output (BIBO)

1053-587X/$20.00 © 2006 IEEE



HINAMOTO et al.: ROUNDOFF NOISE MINIMIZATION FOR 2-D STATE-SPACE DIGITAL FILTERS 4303

stable, separately locally controllable, and separately locally
observable [33].

Due to finite register sizes, we impose FWL constraints on
the local state vector , the input, the output, and the co-
efficients in the realization . Assuming that the
quantization is performed before matrix-vector multiplication,
the actual FWL filter of (1) is implemented as

(2)

where each component of matrices , and assumes an
exact fractional -bit representation. The FWL local state
vector and the output all have a -bit fractional
representation, while the input is a -bit fraction.

The quantizer in (2) rounds the -bit fraction to
bits after multiplications and additions, where the sign

bit is not counted. In a fixed-point implementation, the quanti-
zation is usually carried out by two’s-complement truncation,
which discards the lower bits of a double-precision accumulator.
Thus, the quantization error

(3)

coincides with the residue left in the lower part of . The
quantization error is modeled as a zero-mean white noise
of covariance with

In order to reduce the filter’s roundoff noise, the quantization
error is fed back to each input of delay operators through
an constant matrix . Under these circum-
stances, the filter model can be represented as

(4)

where is referred to as the EF matrix. Subtracting (4) from
(1) yields

(5)

where

From (5), it follows that the 2-D transfer function from the quan-
tization error to the filter output is given by

(6)

where .

For the 2-D filter in (4) with EF, the noise gain
is evaluated by

(7)

where denotes noise variance at the filter output and

with for . Utilizing the 2-D
Cauchy integral theorem, we can express matrix in (7) in
closed form as

(8)

where matrix is the local observability Gramian defined by

(9)

with

(10)

and the partial ordering for integer pairs used in [32, p. 2].
We remark that matrix in (9) is referred to as the unit

noise matrix for the 2-D filter in (2) and matrix in (8) is
viewed as the unit noise matrix for the 2-D filter in (4) with EF
specified by the matrix .

In the case where there is no EF in the 2-D filter, the noise
gain with can be expressed as

(11)

It is noted that the -norm dynamic-range scaling con-
straints on the local state vector involve the local
controllability Gramian defined by

(12)

where
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III. JOINT ERROR-FEEDBACK AND REALIZATION OPTIMIZATION

A. Probem Statement

The change of coordinates from local state vector to
, defined by a linear transformation

with , transforms the LSS model
in (1) to a new realization with

(13)

The local controllability Gramian and the local observability
Gramian in the new realization then satisfy the relations

(14)

If the -norm dynamic-range scaling constraints specified by

(15)

are imposed on the new realization, then it is known that [25],
[26]

(16)

where for and for are
the eigenvalues of the matrix and the
matrix , respectively, and

The LSS model satisfying (15) and (16) simulta-
neously is known as the optimal realization (which is sometimes
also referred to as the optimal filter structure). A method for syn-
thesizing such a filter structure was proposed in [25] and [26].

If a coordinate transformation with
is applied to the LSS model in (1), then the 2-D

filter in (4) with EF can be characterized by

(17)

In this case, the noise gain can be expressed as a func-
tion of matrices and in the form

(18)

where

The roundoff noise minimization problem can now be formu-
lated as follows: given , and (and hence and ), ob-
tain matrices and which jointly minimize the
noise gain in (18) subject to the scaling constraints in (15).

B. Problem Relaxation and Conversion

In order to reduce solution sensitivity, the objective function
in (18) is modified to

(19)

where is a scalar parameter that weights the impor-
tance of reducing relative to reducing . Defining

(20)

it follows that

(21)
This enables one to reduce the scaling constraints in (15) to

(22)

The constraints in (22) simply state that each column in ma-
trices and must be a unity vector. It can be verified
that these constraints are satisfied if and assume the
forms

(23)

where for and for are
1 and 1 real vectors, respectively. In such a case, matrix
in (18) can be written as

(24)
where and

Under these circumstances, the objective function in (19)
becomes

(25)

From the foregoing arguments, the problem of obtaining ma-
trices and that minimize (19) subject to
the scaling constraints in (15) is now converted into an un-
constrained optimization problem of obtaining matrices and

that jointly minimize the noise gain in (25).
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C. Optimization Method

Let be the column vector that collects the variables in
matrices , and . Then,

is a function of , denoted by . The proposed
algorithm starts with an initial point obtained from an
initial assignment . In the th iteration, a
quasi-Newton algorithm updates the most recent point to
point as [31]

(26)

where

Here, is the gradient of with respect to , and is
a positive-definite approximation of the inverse Hessian matrix
of . This iteration process continues until

(27)

where is a prescribed tolerance. If the iteration is termi-
nated at step , then is deemed as a solution point.

The implementation of (26) requires the gradient of .
Now we consider the cases where EF matrix is a general, block-
diagonal, diagonal, or block-scalar matrix. It is noted that a gen-
eral EF matrix is often too costly because it requires as many
as explicit multiplications. The cost can be reduced,
e.g., by constraining EF matrix to be a block-diagonal or diag-
onal (block-scalar), which reduces the number of distinct coef-
ficients to or .

A key quantity for the implementation of the quasi-Newton
algorithm is the gradient . In what follows, we derive
closed-form expressions of for the cases where as-
sumes the form of a general, block-diagonal, diagonal, or block-
scalar matrix.

1) Case 1: Is a General Matrix: From (25), it is evident
that the optimal choice of is given by

(28)

which leads to

(29)

In this case, the number of elements in vector consisting of
is equal to , and the gradient of is

found to be

(30)

where is the matrix obtained from with a perturbed
th component, which is given by [34, p. 655]

and is computed using

with

2) Case 2: Is a Block-Diagonal Matrix: Matrix in this
case assumes the form

(31)

where and are and matrices, respectively.
The gradient of can be derived as follows:

(32)

where

with defined in (30). In (32), is meant to
be for and for

.
3) Case 3: Is a Diagonal Matrix: Here, matrix assumes

the form

(33)

In this case, can be obtained using (32) as

(34)

where , and is also given by (32).
4) Case 4: Is a Block-Scalar Matrix: It is assumed here

that and with scalars and . The
gradient of can then be calculated using

(35)

and is computed using (32).
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IV. CASE STUDY

In this section, we present a case study to illustrate the ef-
fectiveness of the proposed algorithm. Consider a 2-D BIBO
stable, separately locally controllable, and separately locally ob-
servable state-space digital filter of order (2,2),
where

If a coordinate transformation matrix is chosen
as

then the above filter is transformed to the optimal realization
that satisfies

(15) and (16) simultaneously [25], [26], where

and the local controllability and local observability Gramians
were calculated by truncating the series in (12) and (9) to the
range as

respectively. This gives the noise gain
. In what follows, EF and state-variable coordinate

transformation are applied to the above optimal realization
in order to jointly minimize the roundoff noise,

and the results obtained are then compared to their counter-
parts obtained in [29] where the minimization of the roundoff
noise was carried out using EF and state-variable coordinate
transformation, but in a separate manner.

1) Case 1: Is a General Matrix: The quasi-Newton algo-
rithm was applied to minimize (29) with and tolerance

. It took the algorithm ten iterations to converge to the
solution

Fig. 1. Profile of J(T̂TT ÂAAT̂TT T̂TT ) with� = 0:01 during the first 12 iterations.

or equivalently

This leads to

Using (28) and (29), the optimal EF matrix and the noise gain
in (18) were found to be

and , respectively. The profile of

with in (29) during the first
12 iterations of the algorithm is depicted in Fig. 1.

Next, the above optimal EF matrix was rounded to a
power-of-two representation with 3 bits after the binary point,
which resulted in

The corresponding noise gain was found to be
. Furthermore, when the optimal EF matrix was

rounded to the integer representation ,
the noise gain was found to be .
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Fig. 2. Profile of J(DDD; T̂TT ) with � = 0:01 during the first 20 iterations.

2) Case 2: Is a Block-Diagonal Matrix: Again, the quasi-
Newton algorithm was applied to minimize in (25)
with , , and . It took the
algorithm 19 iterations to converge to the solution

This leads to

and the minimized noise gain was found to be
from (18). The profile of with in

(25) during the first 20 iterations of the algorithm is shown in
Fig. 2.

Next, the optimal EF matrix was rounded to
a power-of-two representation with 3 bits after the binary point
to yield

which leads to a noise gain . Further-
more, the optimal EF matrix was rounded to

Fig. 3. Profile of J(DDD; T̂TT ) with � = 0:0 during the first 16 iterations.

the integer representation , and the cor-
responding noise gain was found to be .

3) Case 3: Is a Diagonal Matrix: The quasi-Newton algo-
rithm with and was applied to minimize (25)
for a diagonal EF matrix . It took the algorithm 14 iterations
to converge to the solution

which leads to

and the minimized noise gain was found to be
from (18). The profile of with in

(25) during the first 16 iterations of the algorithm is shown in
Fig. 3.

Next, the above optimal diagonal EF matrix was rounded
to a power-of-two representation with 3 bits after the binary
point to yield ,
which leads to a noise gain . Further-
more, when the optimized diagonal EF matrix was rounded
to the integer representation , the noise
gain was found to be .
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TABLE I
PERFORMANCE COMPARISON

4) Case 4: Is a Block-Scalar Matrix: In this case, the
quasi-Newton algorithm with and was ap-
plied to minimize (25) for with scalars and

. The algorithm converges after 12 iterations to the solution

which leads to

and the minimized noise gain was found to be
from (18). The profile of with in

(25) during the first 14 iterations of the algorithm is drawn in
Fig. 4.

Next, the optimal EF matrix was
rounded to a power-of-two representation with 3 bits
after the binary point as well as an integer represen-
tation. It was found that these representations were
given by and

, respectively. The corresponding
noise gains were obtained as and

Fig. 4. Profile of J(DDD; T̂TT ) with � = 0:0 during the first 14 iterations.

, respectively. It is interesting to note
that for this particular example the noise gain obtained from the
integer approximation of the optimal matrix
is smaller than that obtained from the integer approximation
of the optimal diagonal EF matrix , due to their different
matrices.

The simulation results described above are summarized
using the noise gain in (18) in Table I. For compar-
ison purposes, their counterparts obtained using the method
in [29] are also included in the table. Specifically, the term
“separate” means that the EF matrix was optimized by applying
the existing method [29] to the optimal realization without EF,
which satisfies (15) and (16) simultaneously [25], [26]. From
the Table, it is observed that the proposed joint optimization
offers greatly reduced roundoff noise gain for all cases of the
matrix when compared with that obtained by using separate
optimization.

V. CONCLUSION

The joint optimization problem of EF and realization to min-
imize the effects of roundoff noise of 2-D state-space digital fil-
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ters subject to -norm dynamic-range scaling constraints has
been investigated. It has been shown that the problem at hand
can be converted into an unconstrained optimization problem by
using linear algebraic techniques. Closed-form formulas for fast
evaluation of the gradient of the objective function have been
derived and an efficient quasi-Newton algorithm has been em-
ployed to solve the unconstrained optimization problem. The
proposed technique has been applied to the cases where the EF
matrix is a general, block-diagonal, diagonal, or block-scalar
matrix, and its effectiveness compared with the existing method
[29] has been demonstrated by a case study.
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