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Langmuir monomolecular layers, formed by amphiphilic molecules at liquid-air interfaces and
containing a fraction of chiral molecules, are theoretically investigated. These monolayers can be
brought out of thermal equilibrium by applying a gradient of small molecules across the interface,
resulting in the leakage flow. We show that, when splay coupling between the orientation field and
the local concentration of chiral molecules in the monolayer is taken into account, this nonequilib-
rium soft matter system can show complex wave behavior, including the development of target
wave patterns, spiral waves, and dense regions filled with inwardly propagating waves. © 2006
American Institute of Physics. �DOI: 10.1063/1.2213580�
onequilibrium soft matter can show various phenomena
f self-organization based on the interplay between reac-
ions, diffusion, and phase transitions.1 These self-
rganization processes are essential for the operation of
iological cells2,3 and can find potential applications in
he artificial nanodevices based on soft nanotechnologies.
n important difference between reaction-diffusion sys-

ems and the reactive soft matter is that, instead of form-
ng concentration patterns, soft-matter systems are build-
ng physical structures characterized by cohesion. In
ontrast to propagating concentration waves, traveling
tructures in these systems are accompanied by real ma-
erial transport and structural changes. While some
inds of soft matter, including macromolecules and
iomembranes, are complex, there are also systems with
simpler organization where similar effects can be ob-

erved. An example of an inorganic soft matter is pro-
ided by monomolecular adsorbate layers on metal sur-
aces, where structural phase transitions inside the

onolayers or in the underlying metal substrate can be
oupled with chemical reactions.4,5 In this article, we dis-
uss self-organization phenomena in a different type of
onomolecular films, i.e., in the Langmuir monolayers

ormed by organic lipid or amphiphilic molecules at
ater-air interfaces. The Langmuir monolayers bear

trong similarity to biomembranes, representing lipid bi-
ayers. However, they always remain strictly planar and
he effects of curvature and shape changes are not in-
olved in such systems.

. INTRODUCTION

At thermal equilibrium, Langmuir monolayers are char-
cterized by a variety of phase transitions which are accom-
anied by the emergence of orientational and translational
rder.6 Langmuir monolayers, formed by a mixture of two

omponents, may undergo phase separation and spontaneous

054-1500/2006/16�3�/037108/8/$23.00 16, 03710
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formation of surface domains rich in one of the two compo-
nents. To bring such monolayers far from equilibrium, vari-
ous methods can be employed. By illuminating them with
the light of a particular wavelength, transitions between dif-
ferent conformational states of organic molecules can be in-
duced, leading to the development of traveling wave
structures.7,8 Theoretical analysis of photoinduced traveling
structures in such nonequilibrium two-component monolay-
ers has been performed.9–11

More recently, another, very elegant, method of inducing
nonequilibrium self-organization in Langmuir monolayers
containing chiral molecules has been proposed. In the experi-
ments of Tabe and Yokoyama,12 the monolayers were placed
at an interface between glycerol and air. The glycerol also
contained, however, some water molecules that could leak
into the air by passing through the interfacial monolayer.
Each chiral molecule can be viewed as a miniature propeller
that may start to rotate powered by the leakage flow of small
water molecules crossing the interface. Using reflected light
polarization microscopy, these authors could show that pre-
cession of the azimuthal orientation can be induced by such
leakage flows. The observed precession frequency was di-
rectly proportional to the gradient of water molecules across
the monolayer, i.e., to the difference of their concentrations
in the air and glycerol; the precession direction �counter-
clockwise or clockwise� was reversed when the vapor con-
centration in the air was high and water molecules were go-
ing into the glycerol from the air. Remarkably, such
orientational oscillations were always accompanied by the
formation of some wave patterns. Typically, they included
wave sources and could be described as target patterns, bear-
ing some similarity to the target patterns in the Belousov-
Zhabotinsky reaction.13

Biological membranes often include many active inclu-

sions, such as molecular pumps, and their interactions with

© 2006 American Institute of Physics8-1
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he membrane may lead to rich nonequilibrium
henomena.14,15 Protein motors, representing active molecu-
ar oscillators, can form thin planar layers where complex
onequilibrium patterns may be observed.16,17 Conceptually,
uch active molecular arrays are similar to Langmuir mono-
ayers containing chiral molecules driven by the leakage
ows. Here, the active elements are not the molecular mo-

ors, whose cycles are powered by binding of ligands. In-
tead, active elements in such systems represent molecular
otors whose rotations are produced by the flux of small �wa-
er� molecules. It should be stressed that the observed azi-
uthal rotations correspond to coherent rotations of a great

umber of such rotors and already indicate synchronization
f cyclic motions in a large population of such molecular
bjects.

The understanding of molecular synchronization mecha-
isms responsible for coherent precession of chiral mol-
cules in Langmuir monolayers is still largely missing �see,
owever, a discussion of energetic aspects of this phenom-
non in Ref. 12�. Currently, theoretical investigations are fo-
used on the analysis of self-organization effects underlying
he formation of wave patterns in such systems. In the origi-
al publication,12 target patterns were interpreted as arising
ue to the special boundary conditions: if the azimuthal ori-
ntation is pinned along the boundaries of a medium, oscil-
ations taking place in its center should send waves propa-
ating to the boundaries and eventually stopping there. This
nterpretation was also followed by Tsori and de Gennes,18

here creation of orientational defects was additionally
aken into account.

In our short publication,19 a different explanation of ex-
erimentally observed wave patterns was suggested, where
he boundaries did not play an important role and traveling
aves were developing due to a splay coupling between the
rientation field and the local concentration of chiral mol-
cules. Similar splay coupling was previously used to de-
cribe spontaneous formation of equilibrium periodic stripe
atterns in Langmuir monolayers.20–23 Besides the target pat-
erns, our theory predicts other kinds of structures, such as,
.g., rotating spiral waves. In the present article, a detailed
escription of the theory is provided and additional results
nd model extensions are reported. The model of a chiral
angmuir monolayer with splay coupling between the orien-

ation and concentration is formulated in the next section.
he equilibrium properties of this model and its linear ther-
odynamic responses to weak leakage fluxes are considered

n Sec. III. Numerical simulations of nonequilibrium wave
atterns in this system are described in Secs. IV and V. The
aper ends with the conclusions and a discussion of obtained
esults.

I. FORMULATION OF THE MODEL

We study a model of an orientationally ordered two-
omponent Langmuir monolayer representing a mixture of
hiral and achiral molecules �in the experiments,12 chiral
olecules made up only 10% of the monolayer�. The local

tate of the monolayer is described by the variable c, giving
he local fraction of chiral molecules, and by the orientation

ector n that represents projection of the molecular tilt onto

ownloaded 29 Sep 2006 to 141.14.135.1. Redistribution subject to AIP
the monolayer plane. In our simple model, we assume that
density of the monolayer is fixed. The Landau free energy of
the system is

F =� � 1
2K��n�2 + kBTc ln c + kBT�1 − c�ln�1 − c�

+ 1
2G��c�2 + �c � · ndxdy . �1�

The first term corresponds to the elastic energy of orienta-
tional ordering �K is the Frank elastic constant�. The next
two terms determine the lattice-gas entropy contribution to
the free energy �T is the temperature and kB is the Boltzmann
constant�, and the following term �with the coefficient G�
takes into account weak energetic interactions between chiral
molecules which favor their uniform spatial distribution. The
last term in the expression for free energy describes splay
interactions in the system. It provides coupling between the
scalar concentration field c and the vector orientational field
n;20 the parameter � specifies the strength of splay
interactions.24

Assuming pure relaxational dynamics, the evolution
equation for concentration c of chiral molecules is

ċ =
D

kBT
� �c�1 − c� � �� , �2�

where D is the diffusion constant, D /kBT is the mobility of
chiral molecules, and

��r,t� =
�F

�c�r,t�
�3�

is the local chemical potential.
The kinetic equations for the orientation field n are

ṅx = − �
�F

�nx�r,t�
+ �ny, ṅy = − �

�F

�ny�r,t�
− �nx. �4�

In addition to the relaxation terms �� is the relaxation rate
constant for orientational ordering�, we have phenomeno-
logically included into these equations, following Ref. 12, a
term that describes planar precession of the orientation vec-
tor. This precession is caused by the leakage flow and its
frequency � is linearly proportional to the flow intensity �as
seen in the experiments in Ref. 12�. Because of the flow
terms, the system cannot relax to the state of thermal equi-
librium, and oscillations and active wave propagation be-
come possible.

Using expression �1� for the free energy F, rescaling
time and spatial coordinates as t→ t�kBT��−1 and
r→r�K /kBT�1/2, and introducing the angle variable � de-
fined by n= �cos � , sin ��, kinetic equations �2� and �4� can
be written in the form

ċ = ���2c − g � �c�1 − c��3c� + � � �c�1 − c�� � �� · n�� , �5�

�̇ = �2� − 	 + ��cos �
�c

�y
− sin �

�c

�x
	 . �6�

The coefficients in these equations are �=D�K��−1,
g=GK−1, �=� / �kBTK�1/2, and 	=��kBT��−1. Note that the

total amount of chiral molecules is conserved and the aver-
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ge spatial concentration c0 of these molecules is a parameter
f the system. According to Eq. �5�, splay coupling to the
rientation field leads to physical forces acting on chiral mol-
cules and to the viscous flow of these molecules in the
onolayer plane. On the other hand, spatial gradients of con-

entration c lead, according to Eq. �6�, to local rotation of the
rientation vector n.

In the model �5� and �6�, which has been previously
onsidered,19 the precession frequency 	 is constant. If the
ocal concentration c of chiral molecules shows, however,
ignificant variations over the monolayer, this assumption
hould be modified. Indeed, the precession is possible only
hen locally the chiral molecules are present. Therefore, one

an expect that the precession frequency should decrease
ith the concentration. For relatively small concentrations, a

inear dependence 	=
c can be phenomenologically chosen.
onveniently, this dependence can also be expressed as

	 = 	0
c

c0
, �7�

here 	0 is the frequency of the uniform precession in the
tate with c=c0.

II. EQUILIBRIUM PATTERNS

When the leakage flow is absent �	=0�, kinetic equa-
ions �5� and �6� describe relaxation to thermal equilibrium
hat corresponds to a minimum of the free energy �1�. If
play interactions are absent ��=0�, the equilibrium state of
he system is uniform: c=c0 and �=�0. Increasing the inten-
ity of splay interactions, this uniform state becomes un-
table and gives rise to a spatially modulated stripe structure.

To analyze the instability of the uniform state, we intro-
uce small perturbations c=c0+�c and �=�0+��. If they
epend only on the spatial coordinate x, the evolution of
hese perturbations is described by the linearized kinetic
quations

1

�
�̇c =

�2�c

�x2 − gc0�1 − c0�
�4�c

�x4 − �c0�1 − c0�sin �0
�3��

�x3 , �8�

˙� =
�2��

�x2 − � sin �0
��c

�x
. �9�

The solution of these linear equations can be sought in
he form �c����exp��t+ ikx�. The growth rate � of the
erturbation mode with the wave number k satisfies the char-
cteristic equation

2 + k2��1 + � + �gc0�1 − c0�k2�

+ �k4�1 + gc0�1 − c0�k2 − �2c0�1 − c0�sin2 �0� = 0. �10�

The uniform state is unstable if there is an interval of
ave numbers k inside which the growth rate � is positive. A

imple analysis shows that this instability is found only for
ufficiently strong splay coupling, when the coupling con-

tant 
�
 exceeds the critical value �cr given by

ownloaded 29 Sep 2006 to 141.14.135.1. Redistribution subject to AIP
�cr =
1


sin �0
�c0�1 − c0�
. �11�

For 
�
�cr, however, the uniform state becomes unstable
with respect to growth of spatial modes with the wave num-
bers 0�k�kmax, where

kmax
2 =

1

gc0�1 − c0�� �2

�cr
2 − 1	 . �12�

The instability first takes place for periodic spatial modula-
tion in the direction x orthogonal to the equilibrium orienta-
tion �i.e., for �0= ±� /2�. This instability has previously been
investigated and is known to lead to the formation of an
equilibrium periodic stripe pattern.20 In this equilibrium pat-
tern, both the local concentration and the orientation are pe-
riodically varying along a certain direction. The remarkable
property of such equilibrium phase transition is that the char-
acteristic wavelength 2� /kmax of the emerging periodic sta-
tionary structure diverges as ��2−�cr

2 �−1/2 at the transition
point. The amplitude of the periodic structure decreases as
the critical point is approached and vanishes at 
�
=�cr.

Figure 1 shows profiles of the azimuthal angle and local
concentration in the equilibrium one-dimensional periodic
stripe pattern, obtained by numerical integration of the non-
linear evolution equations �5� and �6� with 	=0. Note that
the angle � shows only periodic modulation around a sta-
tionary level, with the modulation amplitude never exceed-
ing 2�, so that orientation rotations do not occur in this
spatial structure.

Additionally, the system always has periodic domain so-
lutions characterized by rotations of the orientation field. In
numerical simulations for a one-dimensional system of
length L, they can be obtained by applying periodic bound-
ary conditions and requiring that the ��L�−��0�=2�n with
n=1,2 ,3 , ... . An example of such an equilibrium domain
pattern is shown in Fig. 2. Inside each domain, full 2� rota-
tion of the azimuthal angle takes place. The angle changes
steeply within relatively narrow domain boundaries. In such
narrow domain boundaries, local concentration of chiral
molecules becomes increased. Such periodic domain patterns
are possible for any splay coupling intensities �. When �
→0, spatial modulation of the concentration c gradually dis-
appears and the spatial dependence of the angle variable �

FIG. 1. Profiles of concentration c �solid� and azimuthal angle � /2�
�dashed� in an equilibrium stripe pattern starting from random initial condi-
tions for the azimuthal angle field � and c=c0 for c0=0.1, �=0.1, g=1, and
�=4. The system length is L=51.2.
becomes linear, �=�0+2�nx /L.
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Numerical simulations of equilibrium patterns in two-
imensional media were performed. In our simulations, the
xplicit Euler scheme with constant coordinate and time
teps was used. Periodic boundary conditions were typically
pplied, to avoid boundary effects. As the initial condition, a
tate with the uniform concentration of chiral molecules and
n orientation pattern, representing a random superposition
f several spatial Fourier modes, was chosen.

Two examples of equilibrium 2D patterns in systems
ith different parameters are shown in Fig. 3. In both cases,

he splay coupling is so strong that ��cr and the uniform
tate is unstable with respect to the formation of spatial
tructures. These structures are much more complicated than
he periodic one-dimensional structures displayed in Figs. 1
nd 2. They are formed by some irregular, curved lines deco-
ated with orthogonally oriented protrusions. Across these
ines, the angle undergoes a significant change within a nar-

IG. 2. Profiles of concentration c �solid� and azimuthal angle � /2�
dashed� in an equilibrium domain pattern starting from an initial condition
=c0 and ��x�=�x /6.4 for c0=0.1, �=0.1, g=1, and �=4. The system

ength is L=51.2.

IG. 3. Distributions of concentration �left panels� and azimuthal angle
right panels� in an equilibrium pattern obtained starting from random initial
onditions for systems with the parameters c0=0.1, �=4,�=10, 	=0, and
=600. �a� g=10. �b� g=100. The concentration is displayed in gray scale
ith the darker color corresponding to lower concentration values. The
ngle � is displayed modulus 2�.

ownloaded 29 Sep 2006 to 141.14.135.1. Redistribution subject to AIP
row spatial interval and, moreover, the concentration of chi-
ral molecules is much increased there. Therefore, such
curved lines are similar to the domain boundaries in the one-
dimensional domain structure �cf. Fig. 2�. On the other hand,
the angle variation across the orthogonal protrusions is not
large. It can be checked that the characteristic length scale of
this structure is close to the spatial period of the stripe pat-
tern, spontaneously developing from the uniform state under
the same conditions in the one-dimensional media. There-
fore, such two-dimensional structures can be considered as
consisting of a combination of equilibrium periodic stripe
patterns and irregular orientation domains.

In Fig. 3�b�, the coefficient g that characterizes energetic
interactions between the molecules is increased with respect
to the situation shown in Fig. 3. We see that this leads to an
increase of the characteristic length scale of the patterns.
This is in agreement with the analytical result �12�, accord-
ing to which the characteristic wavelength 2� /kmax of the
periodic stripe patterns should increase when the coefficient
g gets larger.

IV. TRAVELING 1D STRUCTURES

Application of leakage gradients brings the system away
from thermal equilibrium and leads to the development of
wave activity. The effects of leakage are simpler in the one-
dimensional geometries, which shall be discussed in this sec-
tion.

When 	�0, traveling structures are observed in the 1D
simulations. For small leakage fluxes, their instantaneous
profiles of the angle and concentration variables are only
slightly different from those in the respective equilibrium
patterns �with 	=0�. By running numerical simulations, the
velocities of the traveling stripe structure have been deter-
mined as a function of the parameter 	. The observed depen-
dence of the stripe structure velocity on this parameter is
displayed in Fig. 4.

We see that, with a good accuracy, this dependence is
linear and there is no threshold that should be overcome in
order to transform stationary domains into a traveling struc-
ture. This indicates that the transition to traveling stripes rep-
resents a linear thermodynamic response of the equilibrium

FIG. 4. Velocity dependence of a traveling stripe pattern on 	 for c0=0.2,
�=0.1, g=1, and �=3 with Eqs. �5� and �6�.
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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tripe structure to the application of a weak perturbation rep-
esented by the flux terms proportional to 	 in the kinetic
volution equations �5� and �6�.

So far, the results of numerical simulations for the model
ith constant precession frequency 	 have been presented.
imilar results are, however, also obtained for the modified
odel where the frequency is proportional to the concentra-

ion of chiral molecules �	=
c�. The main difference is that
he stripe structures move significantly faster in this modified
odel, as evidenced by Fig. 5.

Figure 6 shows the computed dependence of the velocity
f the traveling stripe structure on the splay coupling coeffi-
ient � for the modified model. The velocity decreases with
he splay coupling strength and, in a reasonable approxima-
ion, the dependence of the velocity on 1/� is linear inside
he considered interval.

Numerical simulations of traveling domain structures
ave also been performed for the modified model. When flux
s introduced �	0�0�, such domain structures move at a
elocity proportional to 	0 and no threshold for their motion
ould be detected �see Fig. 7�. This indicates that the transi-
ion to translational motion for such patterns again represents

IG. 5. Velocity dependence of a traveling stripe pattern on 	0 for c0

0.2, �=0.1, g=1, and �=3 with Eqs. �5�–�7�.

IG. 6. Velocity dependence of a traveling stripe pattern on 1/� for Eqs.

5�–�7� with c0=0.2, �=0.1, g=1, and 	0=0.001.

ownloaded 29 Sep 2006 to 141.14.135.1. Redistribution subject to AIP
a linear response of the equilibrium patterns to the introduc-
tion of perturbations corresponding to the flow terms.

For stripe patterns, which spontaneously emerge as a re-
sult of the instability of the uniform state, the wavelength is
fixed by the parameters of the system. In contrast, traveling
domain structures may have different spatial periods, de-
pending on the initial conditions. In that sense, they resemble
periodic wave trains in excitable or oscillatory reaction-
diffusion systems.

Computing the velocity V of the domain structures for
different wave numbers k=2�n /L with n=1,2 ,3 , ..., an in-
teresting behavior is found. The dependence of V on k is
nonmonotonous: it first increases when k grows and then
begins to decrease �see Fig. 8�.

V. NONEQUILIBRIUM 2D STRUCTURES

When leakage flux is introduced, wave activity develops
in the equilibrium 2D structure shown in Fig. 3�a�. The lines,
which can be interpreted as domain boundaries, begin to
move in the orthogonal direction. Additionally, short line
segments decorating such boundaries are also running along
them. As a result, complicated patterns displayed in Fig. 9
become established. In Fig. 9�a�, corresponding to a smaller
flux �	=0.005�, the curved domain boundaries are seen to

FIG. 7. Velocity of a traveling domain pattern starting from an initial con-
dition c=c0 and ��x�=�nx /12.8 for n=1�*� ,4�•� ,8�+� as a function of 	0

for Eqs. �5�–�7� with c0=0.1, �=0.1, g=1, and �=4.

FIG. 8. Velocity of a traveling domain pattern plotted as a function of
gradient k in initial azimuthal angle as ��x�=kx with 	0=0.01, for Eqs.

�5�–�7� for c0=0.1, �=0.1, g=1, and �=4.
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orm rotating spirals. For the higher fluxes �Fig. 9�b�, 	
0.01�, the characteristic wavelength of the traveling domain
attern becomes shorter. At the same time, however, rela-
ively large regions develop where oscillations are close to
niform. These regions are generating concentric waves that
ropagate away from them.

The structures shown in Figs. 3 and 9 correspond to a
ituation far from the critical point for the spontaneous for-
ation of stripes in the medium �we have there �=4 and

cr=3.33. . .�. The properties of the structures undergo a sig-
ificant change as the splay coupling strength � is decreased.
n example of a nonequilibrium wave pattern for �=3.4,
=0.015, and the same other parameters is shown in Fig. 10.

IG. 9. Distributions of concentration �left panels� and azimuthal angle
right panels� in self-organized wave patterns obtained starting from random
nitial conditions for systems with the parameters c0=0.1, �=4.0, �=10, g
10, and L=600. The precession frequency 	 is constant: �a� 	=0.005 and

b� 	=0.01. The concentration is displayed in gray scale with the darker
olor corresponding to lower concentration values.

IG. 10. Distributions of concentration �left panel� and azimuthal angle
right panel� in self-organized wave patterns obtained starting from random
nitial conditions for systems with the parameters �=3.4, �=0.01, g=1, and
=1600. The frequency 	=0.015 is constant and c0=0.1. The concentration

s displayed in gray scale with the darker color corresponding to lower

oncentration values.

ownloaded 29 Sep 2006 to 141.14.135.1. Redistribution subject to AIP
Now, the stripe decorations of domain boundaries are not
present. The pattern consists of the regions occupied by
densely coiled waves that are slowly traveling into the direc-
tion toward their rotation centers �so that the spirals are in-
wardly rotating�. In the central regions of such dense wave
patterns, several orientational defects are visible. In the re-
maining parts of the medium, free from the dense wave pat-
terns, oscillations are more uniform. These parts are repeat-
edly producing concentric waves that spread outwards into
the dense wave regions which, therefore, look like “sinks”
for the generated waves.

In our previous publication, the dense inwardly rotating
structures were qualitatively interpreted as formed by the
stripes.19 This interpretation, as we see it now, was not cor-
rect. The examination of angle dependence in traveling
waves in such patterns reveals that the azimuthal angle �
undergoes a complete rotation when each next wave is
propagating. For a traveling stripe pattern, however, only pe-
riodic modulation of the angle around a certain equilibrium
orientation is possible. Therefore, the observed traveling
waves should rather be interpreted as formed by traveling
domain structures. As seen in Fig. 8, the velocity of a trav-
eling domain structure depends nonmonotonously on the
wavelength. This may lead to modulational instabilities of
waves. A detailed analysis of the nonlinear mechanisms re-
sponsible for the formation of the observed complex wave
patterns will be performed in a separate publication.

The formation of spatiotemporal patterns in the consid-
ered system is accompanied by redistribution of chiral
molecules.19 Their concentration becomes increased in nar-
row spatial regions corresponding to domain boundaries. Ad-
ditionally, there is also a large-scale gradual variation of the
concentration in the medium. The concentration gets de-
pleted in the areas occupied by the “target patterns” which
are sending waves into the dense wave regions. This effect
becomes strong for high leakage fluxes. In the simulation
presented in Fig. 11�a�, where the model with constant pre-
cession frequency is used, the central region becomes almost
void with respect to the chiral molecules. Obviously, this
result is not realistic. Indeed, only the response of the chiral
molecules to the leakage flow brings the system away from
thermal equilibrium and induces orientation precession. If
the chiral molecules are practically absent in a large region,
no precession should take place there. In such situations, the
modified version of the model should rather be used, where
the precession frequency is proportional to the local concen-
tration of chiral molecules, 	=	0�c /c0�. Numerical simula-
tions using this modified model show that, for the same flux
intensity �i.e., for 	0 having the same values as 	 in the
simulation with the original model� and identical other pa-
rameters, concentration depletion in the central region re-
mains moderate �see Fig. 11�b��.

So far, spatiotemporal pattern formation at low concen-
trations �c0=0.1� of chiral molecules has been discussed. In
the experiments, concentration of such molecules could not
be made high, because the Langmuir monolayer was under-
going then a transition to a “frozen” solid state �Y. Tabe,
private communication�. This effect, involving breakdown of

translational symmetry in the system, is absent in the consid-
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red simple model. Therefore, properties of nonequilibrium
atterns at high concentrations of chiral molecules can be
heoretically discussed.

The original model with constant precession frequency
is invariant with respect to a change c→1−c and �→−�.

he sign of the splay coupling coefficient � is not important
or pattern formation and, therefore, this symmetry implies
hat the variable c can be interpreted either as the concentra-
ion of chiral or nonchiral molecules in the system. Hence,
or a high concentration of chiral molecules, c0=0.9, and the
ame other parameters, one expects the same spatiotemporal
atterns as for c0=0.1, with the only difference being that c

IG. 11. Distributions of concentration �left panels� and azimuthal angle
right panels� in self-organized wave patterns obtained starting from random
nitial conditions for systems with the parameters �=3.4, �=0.01, g=1, L
200, and c0=0.1. �a� The frequency 	=0.015 is constant. �b� The fre-
uency is proportional to concentration: 	=	0�c /c0� with 	0=0.015. The
oncentration is displayed in gray scale with the darker color corresponding
o lower concentration values.

IG. 12. Distributions of concentration �left panels� and azimuthal angle
right panels� in self-organized wave patterns obtained starting from random
nitial conditions for systems with the parameters �=3.4, �=0.01, g=1, L
200, and c0=0.9. The frequency is proportional to concentration: 	
	0�c /c0� with 	0=0.015. The concentration is displayed in gray scale with
he darker color corresponding to lower concentration values.
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should then represent the concentration on the remaining,
nonchiral molecules.19

This invariance is absent in the modified model with 	
=	0�c /c0�. Qualitatively, however, numerical simulations of
this model at high initial concentration c0=0.9 of chiral mol-
ecules yield similar results �see Fig. 12�. Now, local concen-
tration of chiral molecules becomes sharply decreased in the
spatial regions corresponding to traveling domain bound-
aries, where local azimuthal orientation undergoes a rapid
change. On a large scale, concentration of chiral molecules is
enhanced then in the “target pattern” areas that are sending
concentric waves.

VI. CONCLUSIONS

Our investigations of the model, including splay cou-
pling between the orientation field and local concentration of
chiral molecules, show that leakage flows may lead to the
formation of complex wave patterns in such nonequilibrium
soft matter systems. Boundary conditions do not play a sig-
nificant role in these phenomena. To emphasize this, our nu-
merical simulations were performed using periodic boundary
conditions, where no physical boundaries of a medium are
introduced. The model successfully reproduces several char-
acteristic features of the experimental patterns.12 Particularly,
the spontaneous formation of “target” wave sources, sending
waves that propagate into the periphery regions, densely
filled with the waves, should be pointed out. Further experi-
ments are needed to test other predictions of the theory, in-
volving spatial redistribution of chiral molecules inside the
Langmuir monolayer.

The considered model is based on several simplifica-
tions. The most important of them is that the Langmuir
monolayer is treated as being incompressible, so that its local
density remains constant. Only the local composition of the
monolayer, i.e., the local fraction of chiral molecules, is al-
lowed to vary in the model. In reality, the monolayer density
may also vary and, in principle, splay coupling between the
molecular orientation and the density field should also be
taken in account. Another simplification is that hydrody-
namic effects have been neglected in the theoretical descrip-
tion. Such hydrodynamic effects should become especially
important when experiments are performed for free-standing
films, instead of the Langmuir monolayers.

Biomembranes are closely related to Langmuir monolay-
ers and we expect that similar results should hold, under
appropriate conditions, also for the membranes including a
fraction of chiral molecules. The leakage flow in such sys-
tems is created by a gradient of concentration of small mol-
ecules or ions that leak through the membrane. This flow
may bring the membrane to nonequilibrium conditions, giv-
ing rise to traveling waves and complex self-organized wave
patterns. Importantly, chiral molecules �and, possibly, some
passive inclusions� can then be transported and spatially re-
distributed in a membrane as a result of wave propagation.
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