ダイナミック手法による複断面直線開水路乱流のLES

LARGE-EDDY SIMULATION OF TURBULENT FLOW IN A STRAIGHT COMPOUND OPEN CHANNEL USING THE DYNAMIC PROCEDURE

横嶋 哲 1 ・河原 能久 2

Satoshi YOKOJIMA and Yoshihisa KAWAHARA

¹ 正会員 博 (工) 日本学術振興会特別研究員 (PD)
 香川大学 工学部 安全システム建設工学科 (〒 761-0396 香川県高松市林町 2217-20)
 Dept of Mechanical and Industrial Engrg, Univ. of Massachusetts Amherst (MA 01003, USA)
 ² フェロー会員 工博 広島大学教授 大学院工学研究科 社会環境システム専攻 (〒 739-8527 東広島市鏡山 1-4-1)

An large-eddy simulation of a turbulent flow using a dynamic two-parameter model has been carried out for a straight open channel with one flood plain at a Reynolds number of 5,300, based on the hydraulic radius and bulk mean velocity. This can be viewed as an extension of Satoh's simulation [J. Hydr., Coastal and Envir. Engrg. JSCE 628/II-48 (1999) 115] in which the standard Smagorinsky model was employed as an SGS stress model. Overall, the computational results agree quite well with laboratory measurements by Tominaga and Nezu [J. Hydr. Engrg. ASCE 117 (1991) 21] in spite of difference in their Reynolds numbers and show that the present method is a promising tool for natural river predictions.

Key Words : large-eddy simulation, compound open channel, dynamic two-parameter model

1. 序論

本研究では,流れ場の情報から最適なモデル係数を 算出するダイナミック手法^{1),2)}を用いた,直線片側複 断面開水路乱流のラージ・エディ・シミュレーション (LES)の結果について議論する.LESの標準モデルで あり,モデル係数を経験的に与える標準 Smagorinsky モデル^{3),4)}を用いた同様の流れ場のLES は佐藤ら⁵⁾ によって既に行われている.本研究は彼らの研究を補 完・拡張するものと位置付けられ,より高い普遍性が 期待されるモデルを用い,Prandtlの第二種二次流のよ り正確な再現を試みるものである.

標準 Smagorinsky モデルの欠点として,(1) モデル 係数の最適値が流れ場によって異なり,特に,層流化 や壁面近傍での乱れの減衰を表現できない,(2)逆カス ケード過程を表現できない,(3)GS ひずみ速度テンソル と SGS 応力テンソルの主軸の一致を仮定, (4) 乱れの SGS 成分に対して局所平衡を仮定,(5) 圧力とSGS 乱 流エネルギーを分離するには新たなモデルが必要,等 がよく知られている.本研究で用いる,ダイナミック 2 パラメータモデル^{6),7)}は,上記の(1),(2),(3)の制 約を取り除くとみなせる.また,ダイナミック2パラ メータモデルでは, 渦粘性モデルは SGS 応力テンソル 中の修正 SGS Reynolds 応力項のみに適用されると解 釈されるので⁶⁾,(4),(5)の影響も渦粘性単独のモデ ルと比較すれば大きく低減される.最近提案されてい る,一方程式モデルにダイナミック手法を適用する方 法⁸⁾⁻¹⁰⁾も,上述の欠点を全て克服する可能性をもつ 有力な手法と考えられるが,第三者による客観的な評価は定まっておらず,ここでは取り挙げない.

2. 複断面開水路乱流 LES の詳細

(1) 支配方程式とSGS 応力モデル

LESの支配方程式はNavier-Stokes方程式に空間フィルタを施すことで得られる.フィルタ操作によって全ての従属変数は支配方程式で直接解像される成分(GS 成分)とそうでない部分(SGS 成分)に分離される.

運動方程式中に現れる SGS 応力テンソル τ_{ij} にはダ イナミック 2 パラメータモデル $(DTM)^{6),7}$ を用いた:

$$\tau_{ij}^* = -2C\bar{\Delta}^2 |\bar{S}| \bar{S}_{ij} + KL_{ij}^{m}$$

上付き添え字 * はテンソルの非等方成分を表し ($\tau_{ij}^* = \tau_{ij} - \frac{1}{3}\delta_{ij}\tau_{kk}$), $\bar{\Delta}$ はグリッドフィルタ幅 (を表す何らかの指標), \bar{S}_{ij} はGS 速度場に対するひずみ速度テンソル, $|\bar{S}| = (2\bar{S}_{ij}\bar{S}_{ij})^{1/2}$, $L_{ij}^m (= \bar{u}_i\bar{u}_j - \bar{u}_i\bar{u}_j)$ は修正 Leonard 項¹¹⁾である.ふたつのモデル係数 $C \ge K$ については、ダイナミック手法^{1),2)}により得られたものを乱れが一様な方向に平均して求めた.渦動粘性係数 ν_T ($= C\bar{\Delta}^2|\bar{S}|$) と分子動粘性係数 ν の和が負の状態が長時間続いた場合に,速度場が指数関数的に成長して数値計算が破綻することが知られている¹²⁾.本研究では、上述の平均化操作に加えて、さらに $\nu_T = \max(\nu_T, -\nu)$ として不安定化を避けている(クリッピング¹³⁾).テストフィルタとグリッドフィルタの比 α ($= \hat{\Delta}/\bar{\Delta}$)を2と

図-1 計算対象とした複断面開水路流の概要

し, $\bar{\Delta} = (\Delta x_1 \Delta x_2 \Delta x_3)^{1/3}$ とした.また,テストフィ ルタに対する修正 Leonard 項には Vreman et al.¹⁴⁾の ものを用いた.ダイナミック手法で必要なフィルタ平 均は3次元全ての方向に対し

$$\hat{f}(x_i) = \frac{1}{6}(f(x_{i-1}) + 4f(x_i) + f(x_{i+1}))$$
$$\bar{f}(x_i) = \frac{1}{24}(f(x_{i-1}) + 22f(x_i) + f(x_{i+1}))$$

のように格子間隔の非一様性を考慮せずに施された.上述の平均操作は,たとえ非一様性を考慮しても,格子間隔が一様でない方向に微分とフィルタの順序交換の際に誤差を生む¹⁵⁾.ここではこれらの影響を無視する.

(2) 数値計算法

前節で示された系を直交直線スタッガード格子上で 有限差分法を用いて解いた.運動量保存則の時間積分 には,粘性拡散項に二次精度 Crank-Nicolson 法を,そ の他の項に三次精度 Runge-Kutta 法¹⁶⁾ (RK3)を用い て,半陰的に離散化した.空間微分は全て二次精度中 心差分法¹⁷⁾によって近似された.導出された離散方程 式はフラクショナル・ステップ法に基づいて解かれ,得 られる Poisson 方程式の解は高速 Fourier 変換(周期境 界方向)と SOR 法(壁方向)を用いて求められた.

(3) 計算条件

数値計算を図-1 に示す領域で B/H = 5, B/b = 2, H/h = 2, L/H = 6 の条件下で行った.境界条件には流下方向に周期条件,壁上では粘着条件,水面ではすべり条件を課した.流れは一様な圧力勾配により駆動される.平均摩擦速度 U_{τ} と低水路水深 H で無次元化された系を対象とし,Reynolds 数 Re_{τ} を 600 とした.得られた流れの断面平均流速と径深を基準とする Reynolds 数 Re_m は約 5,300 で,佐藤ら ⁵⁾ のものとほぼ一致する.

計算領域を流下 (x_1) ,鉛直 (x_2) 及び横断 (x_3) 方向に それぞれ 128,96,288の格子点を用いて離散化した.流 体内に含まれる有効格子点数は 2,654,208 である.格子 点は x_1 方向には均等に, x_2 及び x_3 方向には境界近傍に 集中的に配置され,格子間隔は $\Delta x_1^+ = 28.125$,1.12 $\leq \Delta x_2^+, \Delta x_3^+ \leq 12.5$ (上付き添え字 + は $U_\tau \ge \nu$ で無次 元化された量を示す)となった.少なくとも6格子点 が,どの境界からも粘性距離で 10以下の領域に含まれ ている.佐藤ら⁵⁾は $L/H = 4 \ge 0$,79 × 75 × 220の 計算格子を用いたが,L = 4Hでは不十分なこと,及び (特に水面近傍の)空間解像度の向上が望ましいことを 指摘している.本研究ではこれらを考慮して計算領域,

空間解像度を決めた.

統計的に定常な状態に達した後,時間刻み幅 $\Delta t U_{\tau}/H$ を 3×10^{-4} と一定に保ち,データサンプリングを $\Delta T U_{\tau}/H = 19.5$ に渡って行った.さらに乱れが一様 な主流方向にも平均操作を施して,統計量を算出した. Courant 数 ($\Delta t \bar{u}_i / \Delta x_i$)の各時間ステップでの最大値の 推移をチェックしたところ,サンプリング中の平均値は 0.93,最大値は 1.38 であった.全ての三次精度 Runge-Kutta 法の安定限界は $\sqrt{3}$ であるが,ここでは SGS 応 力項も RK3 で陽的に取り扱ったため,これを考慮して Δt を選定した.

計算結果と考察

本節では,得られた平均流速及びReynolds応力分布を, $Re_m = 13,625$ で行われた Tominaga and Nezu¹⁸⁾に よる実験結果と比較し,計算結果の妥当性を検討する. ただし実験の計測位置は境界近傍で密に配置されてお らず,そこでの等値線形状の信頼性には疑問が残るた め,それらの比較は行わない.以下では $\langle f \rangle$ はアンサ ンプル平均量, $\overline{f''} = \overline{f} - \langle \overline{f} \rangle, f' = f - \langle f \rangle$ を表す.

(1) 平均流速分布

図-2に,主流方向平均流速の等値線図を示す.壁面に 隣接するセルでの主流方向平均流速に線形則を当てはめ て算出した摩擦速度の平均値は1.0047で,誤差は0.5% 以下である.計算で得られた断面平均流速 U_m/U_{τ} は 16.97,最大流速 $U_{\rm max}/U_{\tau}$ は 22.41 で $(x_2/H, x_3/H) =$ (0.78, 1.32) で発生する.実験では最大流速は(0.74, 1.5) 付近で発生しており,両者は概ね一致する.本計算は実 験結果に観られる特徴(高水敷先端からの等値線の上 方への突き出し, $x_3/H = 3$ 付近の等値線の水面からの せり出し等)を,実験結果と比べればそれらは控えめ であるものの,捉えている.これらは,佐藤ら5)及び Thomas and Williams¹⁹⁾ ($Re_m = 10, 400$) の計算結果 では再現されていない.また,低水路内の壁面と水面 の交接点近傍の等値線形状は,アスペクト比2の開水 路ダクト流の DNS 結果²⁰⁾ に類似している. Revnolds 数が高くなれば(特に値が低い)等値線はより壁に引 きつけられるので,実験結果との定量的な差の主な要 因は Reynolds 数の相違とみなされる.

図-3 に,横断面内の平均二次流ベクトル図を示す. ただし計算結果では,各方向に4点毎のベクトルを表示している.二次流ベクトルの平均値は $0.010U_m$ である.最大値は,実験では $0.043U_m$ ($0.92U_\tau$),計算では $0.053U_m$ ($0.89U_\tau$)で,共に高水敷先端からの斜昇流に現れ,両者は平均摩擦速度で規格化された場合にほぼ一致する.二次流ベクトルについても,高水敷先端からの斜昇流(角度,絶対値),それが形成する二つの渦の形状,さらに低水路の隅角部で観られる渦形状等,本計算はTominaga and Nezu¹⁸⁾の実験結果に現れる傾向のほとんどを再現している.

(2) Reynolds 応力分布

図-4 に乱れ強度の等値線図を示す.Tominaga and Nezu¹⁸⁾ は乱れ強度分布に観られる特徴として,(1)高 水敷先端付近の3成分の分布形状の相違,すなわち,鉛 直 (x_2) 成分は鉛直方向に,横断 (x_3) 成分は横断方向に 突き出た形状の等値線が現れ,主流 (x_1) 成分の等値線 は主流方向平均流速のそれと似通ったものになること,

図-2 最大値で無次元化された主流方向平均流速の等値線図:実線,0.6から1までの0.5間隔の等値線;点線,実線間を5 等分.

図-3 x_2 - x_3 平面内の平均流速(二次流)ベクトル.最大値は実験では 0.043 U_m (0.92 U_τ),計算では 0.053 U_m (0.89 U_τ)で, それぞれ ($x_2/H, x_3/H$) = (0.59, 2.41), (0.55, 2.45) で発生.

(2) 主流成分と横断成分の極小値が主流方向平均流速の 最大値が発生する領域に観られることを挙げている.そ のような傾向は計算結果にも現れており,本 LES は乱 流変動成分の特性も良好に再現している.

図-5 に Reynolds せん断応力 2 成分の等値線図を示 す.ここでも,両成分とも斜昇流の上下にそれぞれ正・ 負の極値が発生すること,ゼロ等値線の分布,低水路 隅角部付近の等値線形状等,実験結果に観られる主な 特徴は本 LES によって再現されている.

(3) モデル係数

DTM の二つのモデル係数のアンサンブル平均値 $\langle C \rangle$ 及び $\langle K \rangle$ の等値線図を図-6 に示す. $\langle C \rangle$ の最小値,最 大値はそれぞれ-0.0030,0.0041である. $\langle C \rangle$ が負となるのは全体の10%程度で,約70%で0 $\leq \langle C \rangle \leq$ 0.002となる.標準Smagorinskyモデルでは $C = 0.1^2$ が壁乱流に対する最適値とされ,壁近傍ではこれに経験的な減衰関数が乗じられる.DTMではSGS応力は渦粘性モデルとBardina/スケール相似モデルの線形結合で表現されるので,Cの絶対値が渦粘性単独モデルのそれに比べて低いのは妥当な結果と思われる.クリッピングは平均で約22点/タイムステップ,最大で518点で行われた.これらはそれぞれ,有効格子点数の約0.0008%及び0.0195%に相当し,既往の報告内容²¹⁾とよく一致する.また,クリッピング対象となったのは負のC全体の最大で0.2%以下であり,計算結果に対する影響は微

図-4 乱れ強度の等値線図.実験結果と計算結果の図中の等値線には同じ値のものを使用.

図-5 Reynolds せん断応力の等値線図.実験結果と計算結果の図中の等値線には同じ値のものを使用.

小と推測される.

 $\langle K \rangle$ の最小値,最大値はそれぞれ,0.95,2.28 である.SGS 応力テンソル τ_{ij} は $\tau_{ij} = L_{ij}^m + C_{ij}^m + R_{ij}^m$ に分解できるが¹¹⁾,DTM は L_{ij}^m を直接計算し,修正クロス項 C_{ij}^m を L_{ij}^m に比例すると仮定し,更に修正 SGS Reynolds 応力項 R_{ij}^m に渦粘性モデルを適用したと解釈できる⁶⁾.これに依れば,修正クロス項の寄与は壁近傍に限られるものの,そこでは C_{ij}^m は L_{ij}^m に匹敵し, τ_{ij} の一部として無視できない大きさを有する.

5. 結論

本研究では,ダイナミック2パラメータモデルを用 いた直線片側複断面開水路乱流のLES結果について, 既存の実験計測及びLESの結果との比較を通じて議論 した.Reynolds数が異なるにもかかわらず,本LESは Tominaga and Nezu¹⁸⁾による実験結果(平均流速及び Reynolds応力分布)に観られる主な特徴を良く再現す ることを確かめた.また,両者の間に明確な相違点は 認められなかった.

本研究で得られた結果は,著者らの開発したLESコードの有用性を示すものの,対応する実験計測とReynolds 数が異なるため,予測精度に関する議論は定性的なものに留まった.著者らは現在, $Re_{\tau} = 1,200$ での計算 準備を進めており,本LESコードの予測精度に関する 定量的な議論はそこでなされる.流れ構造のReynolds 数依存性についても併せて検討する予定である.

Robert L. Street 教授及び Fotini K. Chow 博士から LES について多くの有益なご助言を賜った. 冨永 晃宏 教授からは貴重な実験データをご提供頂いた.また,本 研究は文部科学省科学研究費補助金(特別研究員奨励 費)の援助を受けて行われた.記して謝意を表する.

参考文献

 Germano, M., Piomelli, U., Moin, P. and Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model, *Phys. Fluids A* 3(7), 1760-1765, 1991.

図-6 ダイナミック2パラメータモデルのモデル係数のアンサンブル平均値 (C) 及び(K)の等値線図.それぞれの最小値-最 大値間を10等分し,色付け.色(グレー)が薄いほど値は高い.

- Lilly, D.K.: A proposed modification of the Germono subgrid-scale closure method, *Phys. Fluids A* 4(3), 633-635, 1992.
- 3) Smagorinsky, J.: General circulation experiments with the primitive equations. I: The basic experiment, Mon. Weather Rev. 91(3), 99-164, 1963.
- 4) Lilly, D.K.: On the application of the eddy viscosity concept in the inertial subrange of turbulence, NCAR Ms. No.123, Boulder, Co, 1966.
- 5) 佐藤 弘行,河原 能久,玉井 信行: Smagorinsky モデ ルによる複断面直線開水路乱流の解析,土木学会論文集 No.628/II-48, 115-130, 1999.
- 6) Salvetti, M.V. and Banerjee, S.: A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations, *Phys. Fluids* 7(11), 2831-2847, 1995.
- 7) Salvetti, M.V., Zang, Y., Street, R.L. and Banerjee, S.: Large-eddy simulation of free-surface decaying turbulence with dynamic subgrid-scale models, *Phys. Fluids* 9(8), 2405-2419, 1997.
- 8) Ghosal, S., Lund, T.S., Moin, P. and Akselvoll, K.: A dynamic localization model for large-eddy simulation of turbulent flows, *J. Fluid Mech.* 286, 229-255, 1995.
- 9) Sohankar, A., Davidson, L. and Norberg, C.: Large eddy simulation of flow past a square cylinder: comparison of different subgrid scale models, *J. Fluids Eng. Trans. ASME* **122**, 39-47, 2000.
- 10) 梶島 岳夫, 野町 貴行: ダイナミック手法により生成項を 求める1方程式型サブグリッドスケールモデル, 日本機械 学会論文集 B 編 69 巻 685 号, 1996-2001, 2003.
- Germano, M.: A proposal for a redefinition of the turbulent stresses in the filtered Navier-Stokes equations, *Phys. Fluids* 29(7), 2323-2324, 1986.

- 12) Lund, T.S., Ghosal, S. and Moin, P.: Numerical experiments with highly-variable eddy viscosity models, ASME Engineering Applications of Large Eddy Simulations FED 162, 7-11, 1993.
- 13) 例えば, Ferziger, J.H. and Perić, M.: Computational Methods for Fluid Dynamics (3rd ed.), Springer-Verlag, New York, 2002, Chapter 9.
- 14) Vreman, B., Geurts, B. and Kuerten, H.: On the formulation of the dynamic mixed subgrid-scale model, *Phys. Fluids* 6(12), 4057-4059, 1994.
- 15) Vasilyev, O.V., Lund, T.S. and Moin, P.: A general class of commutative filters for LES in complex geometries, J. Comput. Phys. 146, 82-104, 1998.
- 16) Spalart, P.R., Moser, R.D. and Rogers, M.M.: Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions, *J. Comput. Phys.* 96, 297-324, 1991.
- 17) 梶島 岳夫: 不等間隔格子に適合する対流項の差分法,日本
 機械学会論文集 B 編 65 巻 633 号, 1607-1612, 1999.
- 18) Tominaga, A. and Nezu, I.: Turbulent structure in compound open-channel flows, J. Hydr. Engrg. ASCE 117(1), 21-41, 1991.
- 19) Thomas, T.G. and Williams, J.J.R.: Large eddy simulation of turbulent flow in an asymmetric compound open channel, J. Hydr. Res. 33(1), 27-41, 1995.
- 20)林 俊一郎,大本 照憲,本田 逸郎: DNS 解析による矩形断 面開水路乱流の組織構造に関する考察,土木学会 応用力 学論文集 6,827-838,2003.
- 21) Zang, Y., Street, R.L. and Koseff, J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows, *Phys. Fluids A* 5(12), 3186-3196, 1993.

(2004.9.30 受付)