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Diffusion of Suspended Load in Unsteady Open-Channel Flows
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After a brief survey of the major theories on suspended-load diffu-
sion under different flow conditions, we present here an analytical
study on the diffusion of suspended load in unsteady open-channel
flows. The histograms of suspended load and of flow discharge in
rivers are examined, and the concept of sediment-wave celerity is
introduced. It is noted that discussed here is but a small and humble
stcp toward understanding the much complex phenomenon of sus-
pended-load diffusion in unsteady flows.
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1 Introduction

Scdiments transported in natural rivers are usually composed of wash load, suspended load and bed
load. Wash load, no matter how much the upstrcam supplies, is flushed by the flow to the downstream.
Suspended load and bed load, however, frequently cause problems. Moreover, in most natural rivers the bulk
of the transported materials are carricd to the downstream as suspended load. Suspended load, in turn, may
create scrious problems to waterways, to industrial as well as to agricultural water supply, and to the
environment that has attracted more and more attention from different sectors of the socicty. Needless to say, it
is important to treat problems related to suspended-load diffusion in natural rivers. In the present paper, we
shall study the diffusion of suspended load in unsteady open-channel flows.

In open-channel flows, a complex diffusion mechanism entrains, mixes, and transports the suspended
load through the fluid medium. The intricate structure of turbulence makes it virtually impossible, up to the
present state of knowledge at lcast, to fully describe the properties of the fluid medium and the materials it
carries. Graf (1984, p.164) asserted that until the mid-thirtics, though observations of the suspension pheno-
menon had been made and some rescarchers cven suggested predictive models, none of them could present
any uscful quantitative informations. One of thc main obstacles was that, although realized as of considerable
importance to the understanding of diffusion processes, turbulence and its associated consequences could be
cxpressed neither physically nor mathematically.

The late thirtics witnessed a breakthrough with the now famed Rouse (1938) formula, which predicts
the vertical distribution of suspended load in stecady uniform flows with equilibrium transport. Kalinske
(1940) investigated the factors determining the distance required to reach equilibrium conditions if no sediment
is supplicd at the entrance section. Dobbins (1943) obtained analytical solutions for a set of problems where
the longitudinal dispersion could be neglected, and the results were successfully applicd by Camp (1945) to
design scdimentation basins. Along the samc line, Mci (1969) attacked the problem analytically; and Apmann
and Rumer (1970) did it expcrimentally. Mathematically speaking, all these rescarchers have used the same
basic cquation whilc introducing certain approximations, albeit with different boundary conditions. Again
Hjclmf{clt and Lenau (1970) treated the same problem with a diffusion cocfficient deduced from the well-
known log-law for velocity distribution. To be noted also is that in Japan Goda (1953) even attcmpted to solve
a 3-D stcady diffusion problem. However, to our knowledge, there has been no investigation on the diffusion
of suspended load in unsteady open-channel flows, although it is known to all that during flood periods large
amount of suspended-load transportation occurs.
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2 Basic Equation

Considering that within an infinite control volume in the sediment-water mixture, the temporal variation
of suspended-load concentration should be cqual to the nct increase of those entering into, minus those going
out, of the control volume, one can write:
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where: ¢ is the concentration at a point (x, y, ) in space, at time instant, ; x, y and z, the longitudinal, vertical
and transverse coordinates, respectively; w, the settling velocity of sediment particles; &, & and &, sediment

diffusion cocfficients in the x, y and z directions, respectively.
In a wide open channel the flow can be considered as two dimensional, so all the 8/0z terms in Eq.1
can be dropped out. Further, it is generally believed that in most natural rivers, dispcrsion in the longitudinal

direction is much less important than in the vertical direction, -~ a (& 5 ay ( y . So Eq.1 can be
reduced to:
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which is the diffusion equation for suspended load in unsteady, two dimensional open-channel flows. It is too
complicated in its present form to be solved analytically. Solutions may be found for some particular cases,
and with certain approximations, as has been done by various investigators in the past.

In the following scctions, an analytical solution will be derived for the diffusion of suspended load in
unstcady open-channcl flows. We shall first make some approximations, then define the boundary conditions,
and finally obtain the analytical solution.

3 Working Approximations

Before searching for an analytical solution, some approximations are necessary to render the much
involved govemning cquation less difficult to solve.

3.1  Vertical velocity component

The vertical velocity component, v, is negligible. Consequently: d(vc)/dy = 0. Tu and Graf (1992),
running a series of hydrographs in a gravel-bedded flume, have justified this approximation by the fact that the
vertical velocity component is very small compared with the longitudinal one.

3.2 Longitudinal velocily component

In natural rivers, the longitudinal variation of the velocity component, 4, even during {lood events, can
be considered as negligible when compared with the vertical velocity gradient. In order to reduce the
complexity of the much involved governing cquation in the present analysis, as has been frequently donc by
other investigators, we shall assume that all the point velocitics arc cqual to the depth-averaged velocity, 1,

3.3 Scdiment diffusion cocfficicnt
About the vertical sediment diffusion cocfficient, there have been quite different conclusions drawn by

various rescarchers. The coefficient is gencrally belicved to be proportional to the momentum cocfficient, ¢,
such that:

e =f¢
The question is whether # is cqual to, larger or smaller than, one (Graf 1984, pp.176-177). If the suspended

load is composed of fine sands, and the concentration is relatively low, good ]JI'CCISIOH can be expected even if
f3 is sct to one.
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If the coefficient B is set to be one, the problem then is to find the momentum coefficient. While no
doubt that the momentum cocfficicnt itsclf varics in space, and it is desirable to find the appropriate function,
we assume here a constant momentum coefficient for the present study.

3.4  Sediment wave celerity . )
It is known that during flood scasons in natural rivers, there is the so-called kinematic wave propa-

gating to the downstream (sce for example, Henderson 1963). The suspended-load concentration measured at
a certain station during a flood cvent, as well as the flow discharge, can be expressed in the form of a
histogram (Fig.1). From the histograms shown in Fig.1, it might be reasoned that the suspended load also
participatcs (as does the flow discharge), with a certain speed - here designated as the sediment wave celerity -
in the kinematic wave motion.

The thus defined sediment wave celerity in general should be different from the kinematic-wave

celerity, C. However, if the concentration is low and the sediment particles are small, as is assumed in the
.. dc 1 dc
present analysis, then this difference is negligible. So we have (Tu and Graf 1992): 5 = - = 5. Further,
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Fig.1 Hydrograph and Suspended-load Curves from the Yangtze River
(Ning Chien et al. 1987, p.75)

3.5  Settling velocity of sediment particles

Since it is assumed in our analysis that the density of the water-sediment mixture is about equal to the
clear-water density, the turbulent flow fluctuations and sediment concentration should bear little effect on the
settling velocity of the sediment particles. In other words, the settling velocity can be assumed as constant.

4 Initial and Boundary Conditions

4.1  Initial condition
We assume that at a certain station under investigation, the initial vertical profile of the suspended load
is known beforehand as:

at t=0,c=1(y)forO<y <D (3)

The given function f(y), of course, may represent an equilibrium or non-equilibrium distribution
profile, depending on the actual situation. Generally speaking, before the flood arrives, flow is mostly steady,
and the diffusion of suspended load might have well reached an equilibrium condition in the reach or the
station under study. When the flood comes, this cquilibrium state will be destroyed. The evolution of the
suspended-load profile in unsteady flow is the principal aim of our analysis.

4.2 Bottom condition




In almost all of the past investigations on y
suspended-toad diffusion, the final results invari-
ably involve a certain reference concentration,

which is the sediment concentration at a certain
height near the bed. The sclection of the reference
height, and particularly, the measurement or de- D
termination of the concentration at that height, arc
very demanding tasks. There is no satisfying so-
lution at the present statc of knowledge. We
assume that closc to (not at) the bottom the pick-

up rate cquals the rate of deposit under equilib- ) |
rium condition, ca. That is: |<_____>

ac
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concentration profile;
c=f(y)at t=0

y—>0="®Ca “4)

Fig.2 Definition Sketch

4.3 Surfacc condition
It is cvident that there should be no movement of the suspended load across the water surface.

Expressed mathematically, this boundary condition is given as:

ac
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A sketch showing the boundary conditions is shown in Fig.2.
5 Solution

The mathematical deduction procedures here are in principle similar to those adopted by other
investigators in the past, the major difference being that the flow considered is unsteady and the concept of
sediment-wave cclerity is introduced.

Considering what have been discussed in the preceding section, the governing equation for the
diffusion of suspcnded load in unsteady open-channel flows can now be rewritten as:

de_ e, gd v v
a~ Vo tByr  whee W=w/(-%); E=e/(0-%) )
with the boundary conditions given by Eqs.5, 6 and 7.

From kinematic-wave thcory (Henderson 1963), the wave celerity (C) is proportional to the depth-
averaged velocity (). The ratio of C/V/, being different for different channel shapes, can be assumed as cons-
tant in the present case. Conscquently, the cocfficients, W and E in Eq.6, are constants.

The final solution of Eq.6 is composed of a particular solution and a general solution. The particular
solution is obtained by assuming dc/at = 0, i.c., when the diffusion process is in equilibrium and the suspend-
cd-load concentration docs not vary with time. In this case, onc has from Eq.6:

2
Wa~C+Ea_§=0 (7)

dy dy

for which the solution is:

C =C;|C-(W/E')y (8)

Next we scarch for a general solution of Eq.6, which is done in a classic way. Assuming that the solution for
Eq.6 is a product of two functions - one a function of y alone and the other a function of ¢ alone:

c=Y(y) I(t) ' (9)
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and replacing Eq.9 into Eq.6, one has:

1
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Solving Eq.10 for T and Y, separately, we have:
T =ag e~k

Y =e-05(WE)y [a1] cosay +azzsinoy ]
from which we have:

c=e K1 g-05WE)Y [a) cosay +azsinay ] (11)

which satisfies Eq.6. In Eq.11, a1 and a are coefficients, and the relationship between k and @ is given in:
0.2 = k2/E-W2/(4E2) (12)
Combining Eqs.10 and 13, we have a general solution for Eq.6;

c=cae(WE)y -kt g-0S(WE)y [a; cosay + azsin oy ] (13)

From Eq.13 and the boundary condition given in Eq.4, for y — 0, one has:

- W 14
a2 =g a (14)

And with the boundary condition given in Eq.5, for y = D, one obtains:

W
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Replacing Eq.14 into the above expression, we derive the following equation from which a can be calculated:

2ctgaD = (aD)/(%%l) - (%%1) / (@D) (15)

Using Eq.14, a solution for Eq.6 that satisfics the boundary conditions (but not the initial condition) is
deduced from Eq.13:

c=cye (WY +e- K1t - 0(WE)y 4 (cosay +§gasin ay) (16)

where o is given in Eq.15. With &, in turn, onc can calculate k readily from Eq.12.
Further, we sce that Eq.15, with any given values of W, D and E, renders an infinite number of real
positive roots for @, all of which can be used in Eq.16. So the most general solution for Eq.6 is:

c=caeWEY 4 o-0.5(W/E)y 2 ¢ (@RE+025WYE)! o (cosany + 2_“LEC1 sin Gpy ) 17
n=1 n

The remaining unknown coefficient, an, is determined using the initial condition (Eq.3), such that:
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from which the expression for ay can be derived (see Dobbins 1943):
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Equation 19 is the solution for suspended-load diffusion in unsteady, two-dimensional open-channel
flows. Once the water depth, the settling velocity, the diffusion coefficient, the initial and boundary conditions
are known beforchand, Eq.17, together with Eqs.15 and 18, gives the vertical profile of suspended-load con-
centration at any time instant in unsteady flow. For example, if f(y) = co, then Eq.17 would predict the
diffusion processes after a sediment-water mixture with a known concentration is released into the flow.
Further, if co = 0, that would be a casc of scouring, when in the beginning only water (clear of sediment) is
supplied at the station under study. Another example would be for the rate of deposit under equilibrium
condition to be zero (ca = 0), simulating thus the case wherc appears settling out from equilibrium concen-
tration to zero concentration at all water depths. For all these three particular initial or boundary conditions, the
solution can be rcadily obtained (and simplified) from Eqs.17, 19 and 20,

6 Conclusion

In this analysis, first the similaritics between the histogram of suspended-load concentration and those
of other hydraulic parameters are cxamined, then the concept of sediment-wave celerity is introduced.
Subscqucntly, the diffusion of suspcnded load in unsteady open-channel flows is investigated analytically,
For a given station in a channel flow, Eq.17, together with Eqs.15 and 18, may be used to predict the
suspended-load concentration at water height, y, and time instant, r. However, since scveral assumptions,
particularly that of a constant vclocity and a constant diffusion coefficient, were adopted in the analysis,
further improvements are necessary before the results obtained could be used in practice. For this very reason,
we cnvisage using a variable diffusion coefficient in our future studies.
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