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Multiobjective Optimization of a Multireservoir System
' with Stochastic Inflows

By Yicheng WANG! , Nobuyuki TAMAIZ , and Yoshihisa KAWAHARA?

This paper presents an optimization method for finding noninferior solutions of
multiobjective multireservoir problem with stochastic inflows. Constraint technique,
decomposition iteration, and simulation analysis are conjunctively used to deal,
respectively, with multiobjective optimization (or vector optimization), large-scale
multireservoir system, and stochasticity of inflows, which represent three difficult
points in water resource system analysis. The effectiveness of the method is justified
by applying it to the modeled multireservoir system in Tone river basin.
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1. INTRODUCTION

Water resource systems tend to include multiple reservoirs which are operated to serve several objectives
such as hydropower, water supply, and flood control. Moreover, the stochasticity of inflows into reservoirs is
one of basic characteristics of water resources systems. It is multireservoir, multiobjective, and stochastic
inflows that represent three difficult points in water resource systems analysis. In the recent decades,
researchers have put their emphasis on one or two of these three difficult points, but no attempts have been
made to deal simultaneously with all of them in a proper and efficient way.

Literature review indicates that, as far as stochastic inflows are taken into account, the choice of
optimization techniques are restricted to dynamic programming. An ordinary dynamic programming approach
is usually not feasible in computation when the number of state variables is more than four and/or the number
of objectives is more than two, because computational time and space increase exponentially with the numbers
of state variables and objectives. This phenomenon is thought of by Bellman and Dreyfus {1962] as the 'curse
of dimensionality'. Some methods have been presented to alleviate the curse of dimensionality (for example,
the discrete differential dynamic programming of Heidari et al. [1971], the successive approximation approach
of Giles and Wunderlick [1981], and the principle of progressive optimality of Turgeon [1981a]), but they are
effective only for cases where state variables are deterministic. Several attempts to solve large-scale stochastic
problems are made by Roefs and Bodin [1970], Takeuchi and Moreau [1974], Gal [1979], and Turgeon
[1980], but they take into account only a single objective.

The problem becomes much more complicated when one deals with multiobjective optimization,
considering multiple reservoirs and the stochasticity of inflows. Changchit and Terrell [1989] presents chance-
constrained goal programming method to solve multiobjective problem of multireservoir system under
stochastic inflows. Its application to real-world problems is limited, however, because of the assumption of a
linear release rule and the difficulties to determine the probability level for constraints. Mohan and Raipure
[1992] investigates multiobjective problem of multireservoir system within a context of deterministic inflows.
Wang and Tamai [1992a] conduct a multiobjective analysis with respect to a single reservoir, considering
stochastic inflows.

This paper presents an optimization method for finding noninferior solutions of multiobjective
multireservoir problem with stochastic inflows. Constraint technique, decomposition iteration, and simulation
analysis are conjunctively used to deal with multiobjective optimization (or vector optimization), large-scale
multireservoir system, and stochasticity of inflows, respectively. Detailed structures of models are explained
in section 2. It should be pointed out that these models are developed primarily for the modeled multireservoir
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system in Tone river basin, which consists of three reservoirs in parallel. If reservoirs in series are considered,

some simplified methods such as that presented by Turgeon [1980] may be used to aggregate them into a
reservoir complex. The application of the method to the modeled multireservoir system in Tone river basin and

results obtained are shown in section 3. Finally, conclusions are given in section 4.
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2. MATHEMATICAL MODELS B
’ e |
Consider a system consisting of multiple reservoirs in parallel with stochastic inflows and multiple '
objectives (three objectives in this paper, that is, hydropower, water supply, and flood control). ‘
A mathematical model for identifying the optimal operating policy of the system is written as
m m m '1
Max{E{z HPit(Sil,Rit)]:E WSir(Sit,Rit'),E FCn(Siz,Rit)} (1)
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where R;; =the release from reservoir i during period¢; Si;=the initial storage volume of reservoiri at the
beginning of period t; Qir=the inflow into reservoir i during period #; HP;,=the hydropower generated by the
hydropower plant corresponding to reservoir i; W S;=the firm water supply of reservoir i during period#
FCi=the reliability-based flood control capacity; E is expectation with respect to stochastic inflows;
Superscripts min and max mean, respectively, lower bound and upper bound of physical parameters (for

example, S;"* refers to the storage capacity of reservoir i ); m is the total number of reservoirs under
consideration; T is the total number of time periods within a circle (for example, T =12 if one month is taken
as one period).

It is noted that expectation is not taken on items 2 and 3 of objective function (1), since the firm water k. §
supply W S and the reliability-based flood control capacity FCi: are defined within the context of reliability. |
For convenience of presentation, reliability-based flood control capacity is simply called flood control capacity
in the remaining part of this paper.

The model described above is characterized by three difficult points, that is, vector optimization, large-
scale system, and random variables. In the following, some techniques are presented for dealing with these
difficulties.

Vector optimization is transformed into scalar one, using constraint technique. The scalar optimization :
model corresponding to expressions (1) to (5), with hydropower as objective and firm water supply and flood
control capacity as constraints, is written as
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where objective function (6) is to maximize the total expected hydropower of reservoirs; Equations (8) and (9)
are modified forms of equations (3) and (4); Max {W Si,R{"""} is equal to the larger one of two values;




Equations (11) and (12) are new, representing objective constraints; W& and FC; are, respectively, the total
firm water supply and the total flood control capacity of reservoirs.

In theory, the model comprising (6) to (12) can be solved by means of some optimization techniques
such as Stochastic Dynamic Programming (SDP). But in practice, it is impossible to solve it on computer
because of the so-called curse of dimensionality.

In accordance with the curse of dimensionality, decomposition iteration technique is devised to break
down the large-scale system consisting of m reservoirs in parallel intom subsystems containing only a single
reservoir, which can be solved by some existing optimization techniques. In particular, decomposition iteration
technique is to optimize the operating policy of one reservoir (or subsystem) while the operating policies of
other reservoirs are kept unchanged. One iteration is finished after each reservoir is optimized once. Iterations
continue until a constant operating policy for each reservoir is reached, i.e., the operating policy for each
reservoir is unchanged as iterations continue. Obviously, an initial operating policy for each reservoir must be
given in advance of iteration.

Assume that reservoir j (j=1,2,...yn) is optimized. An optimization model for reservoir; is written as
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The model comprising expressions (13) to (19) is different from the model comprising expressions (6) to
(12) in two aspects. First, the objective function is reduced from m reservoirs in expression (6) to one
reservoir in expression (13). Next, expressions (11) to (12) are modified so that W S and FCir (i=1,2,...,j -
1,j+1,...,m ) are transferred to the right-hand side of inequalities, as shown in expressions (18) and (19), since
W St and FC;, are known after the operating policy for reservoiri are found.It is expressions (18) and (19)
that demonstrate that reservoirs are associated with rather than independent of each other.

It should be noted that the firm water supply W §; and the flood control capacity FCj; are unknown
before solving reservoir j, and thus values for ¥ &, and FC;, are assumed in advance as WS}:, and FC;,. After
finishing the solution of reservoirj, firm water supply W-S}”, and flood control capacity FC,-", may be derived
from the operating policy of reservoir j. If WS;,*WS}I, or FC}",#FCJ-',, other values for W S;; and FCj, should

be assumed again until the condition of W S;,=W S;; and Fi C}-,=FCJ:, are satisfied.

By discretizing continuous reservoir storage volume and inflow, the stochastic single-reservoir
optimization model comprising expressions (13) to (19) can be solved by the following SDP.

Fov)=max [HPuwirt 3, Py FiiNw V) (20)
2

Where u is the u-th discrete value of initial storage volume in period ¢; v is the v-th discrete value of the inflow
In period#; u "and v ' represent, respectively, the u “th storage volume and the v “th inflow in period t+1; n is

the total number of remaining periods in period £; F¢'(.) is the total expected hydropower withz periods to go,



including the current period & HPuw is the hydropower during current period t; £ v+ is the inflow transition
probability in period¢.

The optimal operating policy of a reservoir is found by iteratively solving the recursive equation (20).
Then, the probability of the release from a reservoir PRy is determined by solving the following
'simultaneous set of equations.

PRu',v',Hl:E Z PR“WP:V' ’ v u',v',t; u':‘u'(usv’t) 1)
m
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It should be noted that, after the optimal operating pOlle is found, u' is the function of u, v, and t as
shown in (21). Hence, the probabxllty PRy in(21)and (22)is equwalent to the probability PR,,W,

Since the firm water supply W S;; and the flood control capacity FCj: need to be derived from the release
probability PRy, the simultaneous set of equations (21) and (22) must be solved several times for each
reservoir due to the trial-and-error characteristic of W S and FCj;, and thus many times for one iteration. As
pointed out by Wang et al. [1992b], it takes substantial computational time to solve such a large simultaneous
set of equations (21) and (22).

In order to avoid solving equations (21) and (22), synthctlc inflows are employed to simulate the future
operation of reservoirs, using the known operating policies. Since the firm water supply and the flood control
capacity are determined by the simulation rather than the solution of equations (21) and (22), it can be expected
that computational time is considerably reduced.

3. APPLICATION

Yagisawa
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The method devised in last section is
applied to the modeled multireservoir
system in Tone river basin, which consists
of three reservoirs in parallel, that is,
reservoirs Yagisawa, Kusaki, and
Shimokubo.The geographical distribution of
three reservoirs is schematically shown in
Figure 1. The physical parameters of three
reservoirs are listed in Table 1.

Kurihashi
Figure 1. Geographic Distribution of Three Reservoirs

Table 1. Physical Parameters of Three Reservoirs

Reservoir Dead Storage | Maximum Minimum Hydropower | Minimum
Storage Volume Release Release Generation Hydropower
Capacity S}"i"(loéma) R™**(m3/s) R{niﬂ(ms /s) Capacity Generation
SI"*(10°m?) HP'(KW) | HPP"(KW)
Yagisawa 204.3 28.5 300.0 0.0 240000.0 0.0
Kusaki 60.5 10.0 240 (D)* 100 (1) 20300.0 (1)[0.0 (1)
24.29 (2) 0.0 (2) 36200.0 (2)[0.0 (2)
Shimokubo | 130.0 10.0 12.0 0.0 15000.0 0.0
* Note: Two hydropower plants are considered in Kusaki. (1) and (2) indicate Higashi hydropower plant and
Kodaira hydropower plant, respectively.

The historical monthly inflow data (including the extrapolated inflows) are used to determine the
distribution which is the best fit for all months.The statistical parameters of inflows into these three reservoirs
are listed in Table 2. With the Kolmogrov-Smirnov goodness-of-fit test, the lognonnal is accepted as the
proper distribution for all months [see,Wang et al., 1992b].




Table 2. Statistical Parameters of Annual Inflows into Three Reservoirs (m3/s)

[Yagisawa Kusaki Shimokubo
Mean 14.89 11.23 6.23
Standard Deviation 14.43 9.43 7.10

Cross Correlation Coefficients

Yagisawa and Kusaki: 0.1015; Yagisawa and Shimokubo: 0.0794; Kusaki and Shimokubo: 0.2375

Thomas-Fiering model (see, Loucks et al., 1981) is employed to generate 300 years' inflow for each
reservoir without consideration of cross correlation, since cross correlation coefficients are small as shown in
Table 2. For the purpose of illustration, the statistical parameters of historical and synthetic inflows into
Yagisawa are listed in Table 3. It is clear from Table 3 that the statistical parameters of synthetic inflows are
very close to those of historical inflows. This exhibits the appropriateness of Thomas-Fiering model for the
problem. Synthetic inflows generated are input into simulation analysis model.

Table 3. Statistical Parameters of Historical and Synthetic Inflows into Yagisawa

Mean (m3/s) Standard Deviation(m3/s) Lag One Correlation

Historical Synthetic Historical Synthetic Historical Synthetic
Jan. 4.18 4.18 2.61 2.62 0.7847 0.7854
Feb. 3.71 3.71 2.05 2.06 0.1521 0.1514
Mar. 5.85 5.85 4.06 4.05 0.4759 0.4728
Apr. 32.17 32.17 9.08 9.08 —0.2935 —0.2945
May 45.44 45.44 12.32 12.32 0.5968 0.5962
Jun. 25.04 25.04 11.88 11.82 0.1237 0.1212
Jul. 19.00 19.00 9.01 8.99 0.3937 0.3938
Aug. 10.30 10.30 6.52 6.51 0.4681 0.4684
Sep. 7.85 7.85 4.17 4.15 0.4339 0.4344
Oct. 8.97 8.97 6.24 6.20 0.2836 0.2841
Nov. 9.63 9.63 4.74 4.71 0.3565 0.3565
Dec. 6.50 6.50 4.16 4.14 0.3722 0.3770

One month is taken as one period. The seasonal change of water supply is considered in such a way that
the monthly firm water supply W & in month t is derived from multiplication of total annual firm water supply,
WS, by a constant coefficient(see, Wang and Tamai,1992a).

The reliabilities of the annual firm water supply, WS, and the total flood control capacity, FC, are given
the values 90% and 95%, respectively.

The annual expected hydropower is achieved by iteratively solving the model comprising expressions
(13) to (19). The solution results are listed in Table 4. For convenience of presentation, parameters WS and FC
in Table 4 are only given 7 and 3 values, respectively.The values in column 4 are optimal annual expected
hydropower corresponding to each combination of WS and FC. The results are also shown in Figure 2.

Table 4. Optimal Solution Results for Three Reservoirs

No. Flood Annual Firm | Annual No. FC(105m3) [ AFWS(m3/s) | AEHP(mwh)

Control Water Expected

Capacity, | Supply, Hydropower,

FC(1 n6m3) AFWS(m'S /g) AEHP(mWh)
1 77.1 8.3 35945741 12 98.65 20.4] 345618.12
2 77.1 10.8 [ 358496.09 13 98.65 21.4| 342198.87
3 77.1 14.8] 356481.84 14 98.65 22.2 336453.44
4 77.1 18.4 [ 353455.47 15 115.65 8.3] 349226.69
S 77.1 20.4| 350456.09 16 115.65 10.8 | 348129.56
6 77.1 21.4| 347754.94 17 115.65 14.8| 345783.25
7 77.1 22.2| 342051.06 18 115.65 18.4| 341144.71
8 98.65 8.3] 354686.03 19 115.65 204 [ 337905.95
9 98.65 10.8| 353724.72 20 115.65 21.4| 334480.19
10 98.65 14.8] 351378.41 21 115.65 22.2| 328734.75
11 98.65 18.4 | 348856.87




It is seen form Figure 2 that ,when AEHP (mwh) A
the flood control capacity is fixed, the A
annual expected hydropower decreases 3600001
with the increase of annual firm water 3550004
supply. On the otherhand, with the 3500004
increase of flood control capacity in 345000

T

direction AB, both annual expected 3400007 (;)ggf 32’223’888 \’ . '
hydropower and firm water supply 3350007 gngc_:ns’ £50.000 .
decrease. These demonstrate that all the 330000+ |__unit: cubic meter |, \
points marked in Figure 2 are noninferior 325000 P
solutions, and hence Table 4 isalso called 6 8 10 12 14 16 18 20 22
decision matrix, which is the basis for AFWS (cubic meter/second)

isi ake decision. . s e . .
decision maker to m Figure 2. Noninferior Solutions for Three Reservoirs

4. CONCLUSIONS

In this paper, a new method is devised to deal with multiobjective problem of multireservoir system with
stochastic inflows, and its effectiveness is justified by applymg it to the modeled multireservoir system in Tone
river basin. The following concluding points are made.

1. Constraint technique is effective in the sense that it transforms a multiobjective optimization problem
into a uniobjective one, which can be solved by scalar optimization approaches.

2. Decomposition iteration consists in breaking down a multireservoir system into multiple single-
reservoir subsystems. Because state variables in decomposition iteration increase linearly rather than
exponentially with the number of reservoirs, computational space is saved. '

. 3. Simulation analysis is employed,instead of the solution of the large simultaneous set of equations,to
solve for firm water supply and reliability- based flood control capacity, and thus computational time is
substantially reduced. : ?

4. A conjunctive use of constraint technique, dccomposxtxon iteration, and simulation analysis alleviates
the curse of dimensionality considerably. Since this method is effective for solving the three-objective three-
reservoir system, it is promising to apply it to the problem containing more objectives and reservoirs.
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