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1 An Example

Given a > 0 consider the surface z3 = 1a((z1)® + (22)?) in R®. The standard Euclidean
structure dz; ® dz; + dzo ® dxs + dxs ® dz3 induces a Riemannian structure g on the surface.
We are interested in a complex C'-parameter ¢ such that

(1.1) g = Re(Ad{ ® A\d() for some C*-valued function A.

This means the metric g is Hermitian with respect to the parameter ¢. Such a parameter is
called isothermal with respect to the metric g.

To discuss an equation for isothermal parameters to satisfy, we fix an known complex
parameter z, in this case z = z; + v/—1z; is a natural one. The quantity |8,(|? — |8:¢|? is
~ exactly the Jacobian J[{ : z] where 0, = 'f% and 8y = %. Without loss of generality we may

restrict ourself to the situation J[¢ : 2] > 0. The right hand side of (1.1) reads

(1.2) (I + |81%) Re(dZ ® dz) + 2 Re(afdz ® dz).

Here we write a = \0,( and 8 = A8:(. Note that |A\8,{|?> — |[A8:C|? is positive. Actually any
Riemannian metric have such a representation for some complex valued functions « and 3
with |a|? — |8]? > 0. We now pay attention to the gauge invariance.

1.3 Lemma. Two pairs (o, 8) and (¢/,3') determine the same Riemannian metric by (1.2)
if and only if there ezists a U(1)-valued function u such that o' = ua and f' = uf.

We note that if [o|? — |B]? > 0 then the ratio y := £ is well defined and |u| < 1.

1.4 Definition. The gauge invariant quantity u is called the Beltrami coeﬂiment denoted
by blg; 2], of the Riemannian metric g with respect to the parameter z.

We now determine the Beltrami coefficient of g with respect to the parameter

z:=1x1+ \/:—lxg.
Observe that dz; ® dz; + dzs ® dzy = Re(dZ ® dz). While
dzs ® drs = §(Zdz + 2dz) ® §(Zdz + 2dZ).
Expanding the right hand side we get

(1.5) g=(1+ %a2|z|2) Re(dz ® dz) + %a2 Re(22dz ® dz).

Comparing (1.2) and (1.5), we infer that
: 1
Q2 (1 -+ blg; ) = 1 + 2%l and 2laf’blg; 2] = 772"

We see that 2|a| = 1+ 1/1+a?|2|? (o is determined up to U(1)-factor due to the gauge
symmetry) and hence

(1.6) ‘ blg; 2l =a z2/(1 + /1 + a2|z|2)?
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Once the Beltrami coefficient u is determined, the equation to be solved isl
Ad¢ = a(dz + blg; 2]dz).

We see that the function ) is an integral factor, i.e., the 1-form $(dz + blg; 2]dz) is closed.
To eliminate the gauge factor, we extract the ratio of the coefficients of dz and dz. We thus
reach the following equation with b[g; 2] given in (1.6):

o¢
oz
called the Beltrami equation associated with g with respect to the parameter z.

(1.7) = bg; 2] 5>

1.8 Lemma. Let ¢ be a complez C-parameter on a surface equipped with a Riemannian
structure. Then ( is isothermal if and only if it solves the associated Beltrami equation.

An complex parameter introduces a complex structure on the surface. A complex struc-
ture 7 and a Riemannian metric g are compatible if and only if all holomorphic parameters
are isothermal with respect to g. In the next section we discuss the subject from the view
point of complex structures.

2 Some general theory

Let S be a Riemann surface and let g be a Riemannian metric on S. We do not assume that
the complex structure and g are compatible.

Suppose (U, () and (V,€) are isothermal C'-parameters with respect to g. f U NV #
then there exists a nonnegative function ¢ such that Re(d{ ® d¢) = ¢ Re(df@ d)onUNV.
If both ¢ and £ are positively oriented, this means the mapping (o £~ : E(UNV) — C is
conformal. Thus an atlas consisting of positively oriented isothermal C’1 -parameters Wlth
respect to g introduces a complex structure compatible with g.

The way to find isothermal parameters with respect to g is as follows:

Step 1 Given a holomorphic parameter (U, z), determine the Beltrami coefficient bg; z].
That is to find a function p on U such that |u| < 1 and g is a conformal change of
(1 + |u[*) Re(dz ® dz) + 2 Re(udz ® dz).

Step 2 Find a C'-parameter solving the associate Beltrami equation 8;¢ = blg; 2]0.¢. If
necessary choose U sufficiently small so that the equation is solvable on U.

* 2.1 Remark. Suppose (V,w) is another holomorphic parameter with U NV = §. Then
blg;w] = 4blg; z] on U NV where dw = \dz.

Thus the isothermal parameter problem leads us to the the existence problem of (locally)
diffeomorphic solutions to the associated Beltrami equation. To develop a deeper theory it
is necessary to accept coefficients which may not originate from Riemannian metrics. We
even relax their continuity. In what follows D and E denote domains in C.

2.2 Definition. p: D — C is called a generalized Beltrami coefficient if it is measurable
and sup, |u| < 1 for all compact subsets A. Blt(D) denotes the space of all generalized
Beltrami coefficients on D. Let p € Blt(D). We say a function f : D — C solves the
Beltrami equation with coefficient p if it is partially ACL and measurable and the weak
partial derivatives are locally integrable and satisfy Ozf = u0, f a.e.
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If u vanishes then Beltrami equation reduces to Cauchy-Riemann equation in the sense
of distribution, whose solution is necessarily holomorphic.

2.3 Lemma. Let p € Blt(D). Suppose that a function f : D — C solves the Beltrami
equation with coefficient .

(i) If f(D) C E and g : E — C is a holomorphic function then go f : D — C solves the
Beltrami equation with coefficient .

(ii) Ifw: D — C is a holomorphic parameter then f ow™ : w(D) — C solves the Beltrami
equation with coefficient (p%—) ow™. '

The argument on the existence problem is quite deep.

2.4 Lemma. Given p € Blt(C) with compact support, there ezists a self-homeomorphism
¢ : C— C which solves the Beltrami equation with coefficient p.

Any self-homeomorphism of C continues to a self-homeomorphism of C U {oco}. Thus,
making use of Mobius transformations, we deduce the next from Lemma 2.3 and Lemma 2.4.

2.5 Corollary. If u € Blt(C) vanishes on a nonvoid open subset and ||ulleo < 1 then there
15 a homeomorphism ¢ : C — C solving the Beltrami equation with coefficient u.

2.6 Theorem. Let D be the unit disk and u € Blt(D). If ||ulloo < 1 then there ezists a
homeomorphism ¢ : D — D solving the Beltrami equation with coefficient .

Proof. According to Corollary 2.5 there exists a homeomorphism f : C — C solving the
Beltrami equation with coefficient plp. Clearly. f(D) is simply connected and omit some
neighbourhood of co. We infer by Riemann’s mapping theorem that there exists a bi-
holomorphic mapping ¢ : f(D) — D. The composition g o f is a desired one. O

To relax the support condition we introduce the notion of quasi-conformal mappings.

2.7 Lemma. Let o, € C and K > 1. Then the following siz conditions are equivalent:
(i) min{|al], |8]} < £} max{|al, |6]}.

(ii) maxyey( |av + 0] < K mingeyq) |ov + 9]

(1) 4]a] 18] < (K = )|l =167

(iv) 2(je* +181%) < (K + %)|laf® = 16?]- .

(v) uar + 0B + [u + @l < K(uf? + [v]?)| o — 8] for all u,v € C.

(Vi) Jua + vB|? + |[uf + val? > =(ul*+ lvl2)]|a}2 — Iﬂlz| for all u,v € C.

2.8 Definition. A mapping ( : D — C is called quasi-conformal if it is locally homeomor-
phic, partially ACL and, for each compact set A in D, there exists K > 1 such that

10|+ 18¢] < K(|8:€] — 18¢]) a.e. on A.

If the bound K can be chosen independent of compact sets A then ( is called K-quasi-
conformal.

2.9 Remark. A local homeomorphism solving a Beltrami equation is quasi-conformal.

We are going to show that every quasi-conformal mapping satisfies a Beltrami equation.



2.10 Definition. W,.(D) denotes the space of all partially ACL measurable functions on
D whose weak partial derivatives are locally square integrable. For f € Wj..(D) and a Borel
subset A we write Enrg(f; A) := [,{|0.f[> + |8zf|*}vol (energy integral).

2.11 Lemma. Let ( : D — C be quasi-conformal. Then it is totally differentiable a.e. and
belongs to Wie(D). If ¢ is injective then

¢*vol = [ J[( : 2] vol
and, provided it is K -quasi-conformal on A,
vol(¢(A)) < Enrg(¢; A) < (K + %)vol(¢(A4)).

Proof. The continuity and the partial ACL property imply that ¢ is partially differentiable
a.e. As for continuous open mappings from a 2-dimensional domain into C, the a.e. partial
differentiability automatically implies the a.e. total differentiability (c.f. Gehring and Lehto).
On the other hand if a local homeomorphism is totally differentiable a.e. then its Jacobian
is locally integrable. Observe that on each compact subset

. + 8¢ < S + £)(0.C1F = 107} = 5K + $)JIC 2

holds a.e. for some K > 1. Therefore the partial derivatives are locally square integrable.
The dimension being 2, the change of variable formula is valid (7!). O

2.12 Corollary. 1-quasi-conformal mappings are nothing but conformal mappings.

Proof. Let ¢ : D — C be a l-quasi-conformal. Then 8;¢( = 0 a.e. Since { € Wj,(D), it
satisfies Cauchy-Riemann equation in the sense of distribution. O

2.13 Theorem. Let K 2 1and ¢ : D — C be a parameter. If it is orientation preserving,
¢ € Wiee(D) and there ezists an open base O such that

Enrg(¢; A) < (K + £)vol(¢(A)) for all A€ O
then ( 1is K -quasi-conformal.

Proof. Since ( is injective and continuous, and ¢ € Wj,.(D), the change of variable formula
is valid. It therefore follows that

0P+ 18P < (K + 2T 2 2] ae.
Thus we infer by Lemma 2.7 that ¢ is K-quasi-conformal. a

To prove the next statement the so-called geometric view point is indispensable.

2.14 Theorem. Let( : D — C and & : E — C be quaéi—confarmal mappings with ((D) C E.
Then € o { is quasi-conformal. If ¢ is injective then (7' : {(D) — C is quasi-conformal.

2.15 Lemma. Let ¢ : D — C be a finitely covered quasi-conformal mapping. Then the image
measure (,vol is absolutely continuous and its density function is given by the summation of
7{%;] over each fiber of (.



Proof. We may assume that ( is injective by localizing ¢. Applying Lemma 2.11 to (!
we see that (,vol = ((7!)*vol is absolutely continuous and its density function is given by
J[¢7! : z]. On the other hand applying Lemma 2.11 to ¢ we see that (*vol is absolutely
continuous, which means (-image of a null set also has zero-measure. Combining with the
a.etotal differentiabilty of ¢ and ¢!, we obtain that J[( : 2] o (7 J[(" : 2] =1 a.e. O

2.16 Corollary. Let ( : D — C be a quasi-conformal mapping. Then there ezists a Borel
set of full measure on which ¢ is totally differentiable and |85¢| < |0,¢|.

Proof. Due to Lemma 2.11 and Lemma 2.15, the set
{z € D : ( is differentiable, J[( : z] > 0}
is of full measure. Up to null sets the above set coincides with
{z € D: ¢ is differentiable, 9, # 0},

which is thus of full measure. Finally note that IK;;i <lfor K>1. O

2.17 Definition. Let ¢ : D — C be a quasi-conformal mapping. We set

0 elsewhere

dlt[¢] = {@?C/azC on{zeD:( ié‘diﬁerentiable, |8:¢] < 0.} '

The measurable function dlt[¢] is called the complex dilatation of ¢.
Clearly the complex dilatations are generalized Beltrami coefficients.

2.18 Theorem. If ¢ : D — C is quasi-conformal then { € Wioo(D), 8¢ = dlt[¢]0,¢ a.e. |
We investigate the transformation rule of Beltrami equations.

2.19 Definition. Let ( : D — C be a quasi-conformal mapping with ((D) C E. Given
u € Blt(E) define a generalized Beltrami coefficient on D by

dltf¢] + po ¢ Z£
L= (€l + $% a on {z € D : (¢ is differentiable, |0;¢| < 10:C1}
1+d1t[C]u°C%¢

and (*u := 0 elsewhere. (*u is called the pull-back of u by (.

Since quasi-conformal mappings preserves the notion of measure zero, it follows that if
p=v ae. then (*u=_Cv a.e.

2.20 Lemma. Suppose { : D — C is quasi-conformal, ((D) C E and f : E — C is
a.etotally differentiable and measurable. Then f o ( is totally differentiable a.e. .

(1) 8:(f 0 ) = (.£) 0 €L + (B5f) 0 (BL a.e., Ba(f 0 C) = (8:) 0 (B + (8:S) 0 (B ace.
(ii) If zf = ud,f a.efor some u € Blt(E) then 0:(f o) =(*ud,(fo() ae

(iii) If 8,f and 8;f are locally square integrable then so are 8x(f o ¢) and 9,(f o 0).



Proof. Let N be the set of non totally differentiable points for f. Then it is of measure
zero and hence so is (T!(N). We next choose a subset A of D with full measure such that
AN(TH(N) =0, ¢ is totally differentiable on A and |6;¢| < |8,¢| on A. Consequently f o ¢
is totally differentiable on A. Observe that

d(f 0 ) = (8:f) 0 (d{ + (8zf) © Cd on A.
Extracting the coefficients of dz and dZ respectively, we get the chain rule (i). Since
B +10C8,¢ =@ +po(d) on A

and Oz f = u0,f a.e., the equation 0z(f o () = (*1 8,(f o () a.e. follows. We finally prove the
square integrability of derivatives. Let B be a compact subset of D. Then there exists K > 1
such that |0,¢| + |0:¢] < K(]0,¢| — |0¢]) a.e. on B. Applying (v) and (vi) of Lemma 2.7
for a = 0,(, B = 0:(, u= (0,f) o ¢ and v = (8zf) o  we get

10=(F © QI +18:(£ © O < K(/(8:) o ¢* + 1(8=£) 0 ¢I*)J[C : 2],
10:(F © O +10:(F 0 OF 2 %(10:1) o ¢ +1(82f) o ()¢ : ),

both of which hold a.e. on B. Consequently we have that
e2) {0l 0P +los(fo QP vl <K [ {1047 +10:F) vol
B . B
o O)I2 o O)]2 1 2 2
e2) [0 0P a0 w2 g [ (16.SF + 6xs} vl

by Lemma 2.11. ‘ ‘ O

2.23 Lemma. If(: D — C and § : E — C are quasi-conformal mappings with {((D) C E
and v € BIt(((E)) then

dit[¢ o ¢} = ¢*dit[] a.e. and (€ o ()*v = (*(€*v) a.e.
If ¢ : D — C is an injective quasi-conformal mapping and u € Blt(D) then

iy, _ (B dR[E BCY
(C )““‘(l_a—l{[au—az) g a.e

Proof. We see by Lemma 2.15, Theorem 2.18 and Lemma 2.20 that
(¢ 0 () = (*dIt[£]6.(§ o () ave.

Since £ o ( is also quasi-conformal, we get the first relation. We may localize the problem to
discuss the second relation. Given a relatively compact open subset U of {(E) there exists
a quasi-conformal mapping g : U — C such that

dltg] = v a.e.
due to Lemma 2.4. It then follows that
” dlt[g o] = &*v a.e. and hence dlt[(g 0 €) o (] = (*(£*v) a.e

On the other hand we also have that



ditfgo (€0 O)] = (0 v
Consequently weget the second relation. We next discuss the last claim. Since ¢*dlt[¢™!] =0
a.e., we see that

dlt[(]-%g— = —dit[("YoCae
On the other hand we have that

(1,0) = (B¢ ™) 0 ¢, (B¢ ) o) (

Inverting the matrix we get

(18:41 = 10C12)(0:671) 0 ¢ = 0:C ave.,

which implies the desired relation. : O

0:C 859 a.e.

&
aN
P

2.24 Lemma. Let u € BIt(C). If ||ullo < 1 then there exists a quasi-conformal homeomor-
phism ¢ : C — C with dlt[¢] = u a.e., in other words, there exists a self-homeomorphism of
C solving the Beltrami equation with coefficient p.

Proof. According to Corollary 2.5 there exists a homeomorphism g : C —» C solving the
Beltrami equation with coefficient ulgext. Note that g is quasi-conformal and dlt[g] = 1 gext
a.e. Define v € Blt(C) by (ug—’—g) 0 g7'1,5) so that we have

U= dlt[g] +Vog'g_;é _ /,L].Bext +l,l,1’§
1+ dlt[g] vog -g—i—g— 1+ MlBext p,l'g

=/ a.e.

‘The support being compact, there exists a homeomorphism f : C — C solving the Beltrami
equation with coefficient v. Then f is quasi-conformal and dlt[f] = v a.e. We see that fog
is also quasi-conformal and, by Lemma 2.23, dlt[f o g] = i a.e. O

2.25 Theorem. Suppose that both D and E are bounded Jordan domains. Let o : D — E be

a quasi-conformal homeomorphism with ||dlt[¢]|lec < 1. Then p eztends to a homeomorphism
D — E (Caratheodory).

Proof. Choose a homeomorphism ( : C — C solving the Beltrami equation with coefficient
dlt[¢]lp. Note that ¢(D) is also a bounded Jordan domain and (o™ : E — ((D) is a
conformal isomorphism by Corollary 2.12 and Lemma 2.23. The composition extends to a

homeomorphism 1 : E — ((D) by Caratheodory’s theorem. Since ¢(D) = ¢((D), we see that
¥~! o {|p is a desired homeomorphism. O

3 More on quasi-conformal mappings

Recall that Lipschitz continuous functions are totally differentiable a.e.

3.1 Lemma. Suppose ( : D — C is a quasi-conformal mapping and f:E—>Cisa
- Lipschitz continuous function with ((D) C E. Then f o { € Wie(D). If { is injective and
K -quasi-conformal on A then %Enrg(f;((A)) < Enrg(f o (; A) < KEnrg(f;({(A)).



Proof. Due the Lipschitz continuity of f the partial ACL property holds for the composition
fo(¢. Thus we get the result by Lemma 2.20 and the inequalities (2.21). O

To extend Lemma 3.1 to the statement for f € Wi,.(E) we need several results from
Sobolev space theory.

3.2 Lemma. If f € Wioo(E) then there exists a sequence {fi} in CP(E) such that fi
converges to f a.e. and limg;_,oo Enrg(fi — fi; B) = 0 for all compact subsets B. '

The proof of this Lemma is easy. But the next one is much hard to prove. '

3.3 Lemma. Let g: D — C be a Lebesgue measurable function and {gx} be a sequence in
Wiee(D). If limy .o Enrg(gx — g1; A) = 0 for all compact subsets A and g converges to g
a.e. then g € Wioe(D) and limy_o Enrg(gr — g; A) = 0 for all compact subsets A.

3.4 Theorem. Suppose f € Wi,(E), ( : D — C is guasi-conformal and {(D) C E. Then
fo¢ € Wi(D) and the claims (i) and (i) in Lemma 2.20 are valid. If  is injective and
K-quasi-conformal on A then Enrg(f;((A)) < Enrg(f o (; A) < KEnrg(f;¢(A)).

Proof. Given f € Wi,(E), by virtue of Lemma 3.2, we can find a sequence {fx} in C°(E)
such that fj converges to f a.e. and limy ;o Enrg(f — fi; B) = 0 for all compact subsets B
in E. Let Abe a compact set in D. Then there exists K > 1 such that ( is K-quasi-conformal
on A. According to Lemma 3.1, f; 0 ( € Wiee(D) and

Enrg(fy o ¢ — fio (; A) < KEnrg(fi — £i; ((A))-

¢(A) being compact, the latter converges to 0 as k and [ tend to co. On the other hand by
Lemma 2.15 that fo( converges to f a.e. Invoking Lemma 3.3 we infer that fo{ € Wio.(D)
and limg_,o Enrg(fi o ( — f 0 {; A) = 0 for all compact subsets A in D. To prove the chain
rule we choose a subsequence so that 8, (fxo() converges to 9,(f o() a.e., 8z(frx o) converges
to 0z(f o () a.e., O, fx converges to 8, f a.eand 8;fi converges to 8z f a.e. Taking Lemma 2.15
into account we infer that (9,f) o ¢ converges to (8,f) o ¢ a.e. and (8:fx) o ¢ converges to
(8zf) o ¢ a.e. Thus obtain the chain rule for the limit. Consequently we get the rest of the
statement. : O

3.5 Remark. The energy integral is a conformal invariant. Using the energy integral we later
introduce the capacity, which is another conformal invariant.

By a parameter we will mean a continuous injection from a surface into C.

3.6 Corollary. Let ( : D — C be a quasi-conformal parameter and f : D — C be a Lebesgue
measurable function. Then f o (™' : ((D) — C has a holomorphic modification if and only
if f € Wiee(D) and 8z = dit[¢]0.f a.e.

Proof. The implication => was discussed in Lemma 2.3. Since (¢~!)*dlt[¢] = 0 a.eby
Lemma 2.23, we can deduce the converse implication <= from Theorem 3.4. O

3.7 Definition. Given p € Blt(D) set O,(U) := {f € Wiee(U) : 8zf = p0.f a.e.} where
U runs through all open subsets. We call O,(-) the sheaf of the solutions of the Beltrami
equation with coefficient . '



3.8 Theorem. Given p € Blt(D) there ezists a unique complex structure on D whose
structure sheaf is the sheaf of the solutions of the Beltrami equation with coefficient .

Proof. Tt follows from Theorem 2.6 that, for each z € D, there exists a quasi-conformal
parameter (U, () at = with dlt[(] = u a.e. We see by Lemma 2.23 that the family of such
parameters (U, () consistently defines a holomorphic atlas on D. Thus a complex structure
is introduced on D. Corollary 3.6 tells us that its structure sheaf is exactly O, (). O

3.9 Definition. Each y € Blt(D) shall also denote the complex structure whose structure
sheaf is the sheaf of the solutions of the Beltrami equation with coefficient .

We still agree that domains in C are equipped with the standard complex structure unless
otherwise stated.

3.10 Theorem. Let D be a simply connected domain in C and let u € Blt(D). Then there
exists a parameter D — C solving the Beltrami equation with coefficient p, in other words,
there ezists a quasi-conformal parameter ¢ : D — C with dlt[¢] = u a.e.

Proof. D being simply connected and non-compact, there exists a global holomorphic pa-
rameter ¢ : (D, u) — C due to the uniformization theorem. We see by Theorem 3.8 that ¢
in fact solves the Beltrami equation with coefficient . _ 0O

3.11 Corollary. Let D be a domain in C and p € Blt(D). Suppose there ezists a simply
connected domain E in C such that D C E and suppny |u| < 1 for all compact subsets A of
E. Then there exists a quasi-conformal parameter ¢ : D — C with dlt[¢] = u a.e.

Proof. We define v : E — C by v = 1pu. Then it follows that v € Blt(E). Thus the present
claim derives from Theorem 3.10. O

Wé may rephrase Theorem 2.6 and Theorem 2.24 as follows: If D is simply connected and
lullo < 1 then the complex structure u is isomorphic with the standard complex structure.
We mention a bit about moduli problem of complex structures.

3.12 Theorem. Let v : D — E be a homeomorphism, u € Blt(D) and v € Blt(E). Then
p is holomorphic relative to u and v if and only if it is quasi-conformal and ©*v = p a.e.

Proof. We first suppose that ¢ is holomorphic relative to 4 and v. Let (U, ¢) be a holomorphic
parameter for (E,v). Then (o ¢ : (¢} (U), ) — C is holomorphic, which means it solves
the Beltrami equation with coefficient u. Being injective, ¢ o ¢ is quasi-conformal and
dlt[¢ o ] = p. Since ¢ is quasi-conformal and ¢ = (~! o ¢ 0 ¢, we infer that ¢ is quasi-
conformal on ¢~!(U). Thus, by Lemma 2.23, -

- *v = @*(dlt[¢]) = dlt[¢ o ¢] = p.

Conversely suppose that ¢ is quasi-conformal and ¢*v = u. Let (U,¢) be a holomorphic
parameter for (E,v). Then ¢ o ¢ : ¢!(U) — C is quasi-conformal and

dit[¢ o ¢] = @*(dlt[(]) = ¢*v = p.

This implies that { o ¢ : (¢™(U),u) — C is holomorphic and hence ¢ is holomorphic on
@ Y(U) relative to p and v. 0



We may rephrase Theorem 3.12 as follows: Let 4 € Blt(D) and v € Blt(E). Then two
Riemann surfaces (D, u) and (E,v) are conformally equivalent if and only if there exists a
quasi-conformal homeomorphism ¢ : D — E such that ¢*v = p ae.

3.13 Definition. qcAut(D) denotes the group of all quasi-conformal automorphisms of D
and qcAuto(D) := {p € qcAut(D) : homotopic to the identity mapping}. Given u € Blt(D)
write the group of all holomorphic automorphisms of (D, ) by cAut(D; u).

The group qcAut(D) acts on the space Blt(D) by
| BIt(D) x qeAut(D) — BIt(D), (1) — ¢*p.

qcAuty(D) is a normal subgroup of qcAut(D) and Stab(qcAut(D),p) = cAut(D;u) for
each p € Blt(D). The orbit space Blt(D)/qcAut(D) is called the moduli space of complex
structures while Blt(D)/qcAuty(D) is called the Teichmiiler space.

3.14 Lemma. Let u € Blt(D). Then the qcAuty(D)-orbit of ‘u is given by {p*u} where
¢ € qcAut(D) runs through those elements homotopic to an element in cAut(D; ).

Proof. cAut(D;p)qcAuty(D) = {p € qcAut(D) : cAut(D; u) N (gcAuty(D)yp) # 0}. - O

4 The capacity as conformal invariant.

The locally convex topology on C§°(D) induced by the semi-norm Enrg(-; D)*/? is Hausdorff.

We denote its completion by ¢ : C§°(D) — C’3°(D)E_nrg. Let U be an open subset of D. We.

always regard C§°(U) as a subspace of C§°(D). Then the mapping CP(U) — +(C$e(UV))
induced by ¢ realizes a completion relative to the norm Enrg(; U)Y/2.

4.1 Definition. Let Wp(U) be the set of all functions f on D such that there exists an
Enrg(-; D)Y/2-Cauchy sequence {f;} in C$°(U) which converges to f a.e.

‘We immediately deduce the next by the molifying method.
4.2 Lemma. Let f € Wioo(U). If its support is compact then f € Wo(U).

4.3 Corollary. Suppose ¢ : D — C is a parameter and it is K -quasi-conformal on an open
subset U. Let f be a function on ((U). Then f € Wo(¢(U)) if and only if f o { € Wy(U)

Proof. Combine Lemma 4.2 and the argument in the proof of Theorem 3.4. d

Thanks to Lemma 3.2 and Lemma 3.3 there exists a unique linear mapping ® which
preserves the semi-norm Enrg(; D)»l/ 2 and makes the next diagram commutative:

—————FEnrg

Wo(U) —S— Wy(D) —2— C&(D)
Ce(U) —— CPD) == CP(D)

4.4 Lemma. The canonical mapping ® is bijective if and only if the space Wy(D) equipped
with a seminorm Enrg(-; D)'/? is a Hilbert space.
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4.5 Definition. We say the domain D transient 1f the space WO(D) equipped with a semi-
norm Enrg(-; D)*/2 is a Hilbert space.

4.6 Lemma. Let U be a relatively compact open subset of D. Then Poincaré’s ihequalz’ty
holds: [, |f|?vol < (diam U)?Enrg(f; D) for all f € C§°(U).

Consequently if D is bounded then it is transient. In general we have the next criterion.

4.7 Theorem. D is transient if and only if there exists a positive bounded integrable function
p such that [, |f|pvol < Enrg(f; D)2 for all f € C°(D).

In the sequel we assume that the domains D and E are transient.

4.8 Deﬁnition. Let A be a subset of D and U be an open subset of D with A C U.
Cap(A;U) := inf{2Enrg(f; D) ; f € Wo(U), f = 1 a.edn some open set D A}.

We immediately see that Cap(A;U) = inf{Cap(B;U); B open, A C B C U} by the very
definition. Therefore the next derives from Theorem 3.4 and Corollary 4.3.

4.9 Theorem. Let ( : D — C be a parameter. If it is K-quasi-conformal on an open subset
U then 3 Cap(4;U) < Cap(¢(A4);¢(U)) < KCap(A;U) forall ACU.

We note that sets of zero capacity always have zero measure. This is easily seen by the
following lemma (a consequence of Lemma 4.6 and Theorem 4.7).

4.10 Lemma. There ezists a positive bounded integrable function p such that [ 4pvol <

Cap(4; D)% for all Borel sets A. If D is bounded then p = E&%ﬁ)i is'a choice.
However lots of nullsets have positive capacity (see Lemma 4.12).

4.11 Lemma. (i) Suppose A is a compact subset of U. Then Cap(A;U) < 2Enrg(f; D) for
all f € Wo(D)NCU) with f > 1 on A. Moreover Cap(A;U) is realized by

Cap(A; U) = inf{2Enrg(f; D); f € Wo(U)NC(D), f =1 on A}
' = inf{2Enrg(f; D); f € C?(U), f > 1 on A}.
(ii) If A is a compact subset of D theﬁ Cap(A; D) = inf{Cap(A4;U);U open,> A,U C D}.
The relation in (i) is very useful to estimate capacities. As an example we show the next.
4.12 Lemma. Cap(J x {1};(0,1)*?) > 4igth(I) for each compact interval I in (0, 1).
Proof. Suppose that f € C$°((0,1)*2) and f > 1 on I x {1/2}. Then we have that
Jo1/2 02f(s,-)1gth = f(s,1/2) 2 1 for s € I. ‘

Just as in the proof of Poincaré’s inequality we infer that | I(0,1/2) [V £|?vol > Zlgth(l ) and
similarly [, o) [V f]?vol > 2lgth(I). Consequently Enrg(f; (0, 1)*2) > 2lgth(I). Invoking
Lemma 4.11 we reach the result. O

We list few important properties of the capacity and related notions.
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4.13 Lemma. (i) Suppose f € Wioe(D) and g is a measurable function on D. If there exists
a constant C such that |g(z) — g(y)| < C|f(z) — f(v)| for all z,y € D then g € Wipe(D) and
Enrg(g; A) < C?Enrg(f; A) for all compact subsets A. .

(i) Suppose f € Wy(D) and g is a measurable function on D. If there is a constant C such
that |9(z) — g(y)| < C|f(z) — f()| Vz,y and |g(z)| < C|f(z)| Yz then g € Wy(D).

This means that the normal contraction operates on the spaces Wioe(D) and Wy(D).

4.14 Lemma. (i) Cap(A4; D) < Cap(B; D) if A C B. Cap(A; D) > Cap(A;E) if D C E.
(i) If Ax are compact and Ay, D Apyy then Cap((ie1 Ak; D) = infy_y 5. Cap(Ay; D).
(iii) Cap(A U B; D) + Cap(A N B; D) < Cap(4; D) + Cap(B; D).

(iv) If Ay is nondecreasing then Cap(lJs2, Ay; D) = SUPg—12,.. Cap(Ax; D).

- In general the countable subadditivity holds: Cap(|Ug, Ax; D) < -2, Cap(Ax; D).

(v) If A is a Borel set then Cap(A; D) = sup{Cap(B; D) ; B compact, C A}.

We see by (i),(ii) and (iv) that the set function Cap(-; D) is a Choquet capacity.

4.15 Lemma. Let { be a parameter on D such that f o { € Wio.(D) for all f € C(¢(D))
and K := sup{Enrg(f o (; D); f € C5°(¢(D)), Enrg(f;{(D)) < 1} < 400,

(i) Cap(4;U) < KCap(¢(4); ¢(U)) for any subset A and open subset U with A C U.

(ii) If {f o C: f € C§°(¢(D))} is dense in Wo(D) and Enrg(f; (D)) < KEnrg(f o (; D) for
all f € Cg°(¢(D)) then Cap(¢(A);¢(U)) < KCap(A;U) for any A and U with A C U.

Proof. By virtue of Lemma 4.14(v) it suffices to prove the statement when A is compact.
Note that ((A) is compact and ((U) is open. Given € > 0 there exists f € CS°(¢(D)) such
that supp f C ((U), f > 1 on ((A) and

| 2Enrg(f;¢(D)) < Cap(¢(A4);¢(V)) +¢/K.
We see that f o € Wy.(D) and
2Enrg(f o (; D) < KCap(((A);¢(U)) +&.

On the other hand supp f o ¢ = (~!(supp f) being compact and contained in U, it follows
by Lemma 4.2 that f o ¢ € Wo(U). Clearly f o ( is continuous and f o ¢ > 1 on A. Thus we
infer by Lemma 4.11(i) that ’

Cap(4;U) < 2Enrg(f o ¢; D).

Tending € to 0 we get the desired inequality. We can prove (ii) by making use of that
{fo(:feCr(¢(D))} is a special standard core. O

Under the assumption of Lemma 4.15 there exists a unique continuous linear mapping
Wo(¢(D)) — Wy(D) whose restriction on C§°(¢(D)) coincides with f — f o (. However it
is not yet verified whether f o ¢ € Wio.(D) hold for generic f € Wy(¢(D)). Concerning this
point see Lemma 4.23. :

4.16 Definition. Let A C D and f: A — R. f is called quasi-continuous relative to Cap
if given € > 0 there is an open set V such that Cap(V; D) < ¢ and f is continuous off V.

4.17 Lemma. Let f : U — R be a function defined on an open subset of D. If f is
quasi-continuous relative to Cap and f > 0 a.e. then {z € U : f(z) < 0} is of capacity zero.
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4.18 Lemma. Let f be a function on D. Then f € Wio(D) if and only if for each z € D -
there exist f € Wo(D) such that f = f a.e. in some neighbourhood of z.

4.19 Theorem. Every function in Wio.(D) admits a quasi-continuous modification relative
to Cap. Two quasi-continuous modifications coincide up to sets of capacity zero.

4-20 Remark. In view of Lemma 4.18 it suffices to prove Theorem 4.19 for functions in Wo(D).
The key fact is the estimate Cap({|f| > A}; D) < %Enrg(f; D) for f € Wo(D)NC(D). It
turns out that this is also valid for quasi-continuous functions belonging to Wy(D).

4.21 Theorem. Suppose that {fi} is a sequence of quasi-continuous functions in Wy(D).
If limy 00 Enrg(fi — fi1; D) = O then there exists a subsequence which com)erges uniformly
off an open set with arbitrary small capacity.

4.22 Corollary Let {fr} be a sequence of quasi-continuous functions in WO(D) If fi, is
Enrg(+; D)Y/2-Cauchy and converges g.e. then the limit function is quasi-continuous.

4.23 Lemma. Let { be a parameter on D such that f o { € Wiee(D) for all f € C(¢(D))
and K := sup{Enrg(f o (; D); f € C({(D)), Enrg(f;{(D)) < 1} < +oco. Then for every
quasi-continuous f € Wo({(D)) the composition fo( is a quasi-continuous element of Wy(D)
and Enrg(f o ¢; D) < KEnrg(f;((D)).

Proof. Fix a quasi-continuous f € Wy({(D)). There exists a sequence {fx} in CO ¢(D))
and a subset A in D such that limg;. Enrg(fi — fi;¢(D)) = 0 and f; converges to f on
¢(A) and Cap(¢(D\ A); ¢(D)) = 0 according to Theorem 4.21 and Corollary 4.22. It follows
by Lemma 4.15(i) that Cap(D \ A;D) = 0. Hence fj o ¢ converges to f o { g.e. On the
other hand, supports being compact, fx o ( € Wy(D) for all k. Thus {fx o ¢} is a Cauchy
sequence in Wo(D). Consequently we infer by Corollary 4.22 that f o ¢ is quasi continuous
and belongs to Wy(D). O

It is a proper place to mention the spectral synthesis.

4.24 Theorem. Let U be a relatively compact open set in D and f : D — R. Then
feWo(U) & f € Wiee(D) and a quasi-continuous modification vanishes g.e. off U.

We next discuss equilibrium potentials.

4.25 Theorem. Suppose that Cap(A; D) < +o0o. Then Cap(4; D) < 2Enrg(f; D) for all
f € Wo(D) which are quasi-continuous and f > 1 g.e. on A and moreover the equality is
attained by a unique element.

4.26 Definition. We set eqlbg[A4; D] := A{f;excessive on D, f = 1 q.e. on A}, which is
called the equilibrium potential of A relative to D.

4.27 Theorem. eqlbg[A; D] is excessive. If Cap(A4; D) < +oo then eqlbd|A; D] is quasi-
continuous and belongs to Wo(D) and moreover it is the unigue function solving the variation
problem in Theorem 4.25.

4.28 Corollary. (i) Cap(A4; D) =0 if and only if eqlbg[A; D] = 0.
(ii) Suppose D C E. Then Cap(A; D) = 0 if and only if Cap(A4; E) = 0.

Proof. (ii) derives form Cap(A; D) > Cap(A; E) and eqlbg[4; D] < eqlbg[A4; E]|p. O
4.29 Remark. Suppose D and E are bounded and D C E. Then there exists a constant C
such that dist(4,8D)?Cap(4; D) < C(diam E)?Cap(A; E) for all A C D.
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9 Variation problems and modules of quadrilaterals.

For the time being let D be a Jordan domain in C, A be a non-empty compact subset of
0D such that each of its connected component has at least two points. We note that both
A and 0D \ A have finitely many connected components.

5.1 Definition. Let g € C(A). We set
CY(D,A,9):={feC(DUA):C*inD,f=gon A, Enrg(f; D) < 4+00}.

‘Given an open and closed subset I of A we define the quantity mdl(D, A, I), called the
module of the triplet, by inf{2Enrg(f; D); f € C(D,A, 1)}

Recall that any quasi-conformal homeomorphism ¢.: D — E between Jordan domains
with ||dlt[¢]||ec < 1 automatically extends to a homeomorphism D — E, called the canonical
extension (see Theorem 2.25).

5.2 Lemma. Let ¢ be a bi-holomorphz’c mapping from D to a Jordm_z_ domain. Then
mdl(¢(D), ¢(A), #(I)) = mdl(D, A, I) where ¢ is canonically extended to D.

Proof. Let f : DUA — R. Then clearly f € C'(¢(D), ¢(A),14(r)) if and only if fo ¢ €
CY(D, A, 1y). Thus the conformal invariance derives from that of the energy integral. [

5.3 Lemma. Ifg: A — R is locally constant then C'(D, A, g) # 0.

Proof. We may regard D is a unit disk by constructing a suitable bi-holomorphic mapping.
We see by the assumption on A and g that g extends to a C'-class function § on 8D. The
unique harmonic function on D with boundary data § clearly belongs to C*(D, A,g). O

In Theorem 5.4 and Corollary 5.5 we assume that A consists of two connected components
and I is one of the connected components.

5.4 Theorem. 2Enrg(f; D) > mdl(D, A, I) for f € C(D U A); partially ACL, f|a = 1;.
There ezists h € C(D) which is harmonic in D, coincides with 1; on A and whose energy
integral attains %mdl(D, A, ). h is the unique function minimizing the energy integral.

Proof. We may assume that D = (0, a) x (0,b), A = ([0,a] x {0}) U ([0,a] x {b}) and
I =10,a] x {b}. Just as in the proof of Lemma 4.12 we infer that b [, |V f|?vol > a. Clearly
= 1 Im 2 attains the lower bound. a

5.5 Corollary. +mdl(D,A,I) < mdl(¢(D,A,I)) < Kmdl{(D,A,I) for each K-quasi-
conformal parameter ( : D — C whose image is also a Jordan domain:

The quantity mdl(D, A, I) coincides with the module M of the quadrilateral (D, A). In
this case the imaginary part of a bi-holomorphic mapping D — (0, M) x (0,1) solves the
variation problem. Let z be the parameter on D induced by this mapping. Then the function
eV=1272/M mans D to the annulus {z € C: e 2™ < |z < 1}.

5.6 Remark. Is an analogous picture still in force? If the number of connected components for
A'is 2n or 2n +1 then a certain solution for the variation problem constructs a holomorphic
covering mapping from D to a disk from which (n — 1)-disks are removed?
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We return to the general setting, i.e., no restriction on the number of connected compo-
nents of A.

5.7 Definition. C(D, 4, g) := {f € C(DUA) : partialy ACL,Vf € L*(D),f = g on A}
for g € C(A). Let W(D, A, g) be the set of all functions f on D U A such that there exists
an Enrg(-; D)!/2-Cauchy sequence {fs} in C(D, A, g) which converges to f a.e.

5.8 Lemma. W(D, A, g) is an affine space with translation vector space W(D, A,0).
cW(D, A, g) =W (D, A, cg) forc#0 and W(D,A, g) + W(D, A, go) = W(D, A, g1 + g2).

Proof. C(D, A, g) is an affine space with translation vector space C (D,A,0). ]
Clearly C(D, A, g) contains C*(D, A, g).

5.9 Lemma. Suppose that D := (0,a) x (0,1) and A D [0,a] x {0}.

(1) Jio,mx(oe) [f1? Vol < e?Bnrg(f; (0,a) x (0,¢)) for all f € W(D, A,0) and € € (0,1).

(ii) Let x : D — R be Lipschitz continuous. Then xf € W(D,A,0) for all f € W(D, A, 0)
and there exists C such that Enrg(xf; D) < CEnrg(f; D) for all f € W(D, A,0).
(iii) Let x : D — R be Lipschitz continuous and € € Ry If0<x <1, x
[0,a] x [e,1] and there exists C such that |x(z) — x(v)| < Clz — y| for all z,y €
Enrg(xf — f; D) < (2 + C2%?)Enrg(f; (0,a) x (0,¢)) for all f € W(D, A,0).

Proof. The procedure to obtain (i) for f € C(D, A, 0) is exactly the same as in the proof of
Poincaré’s inequality. Invoking Fatou’s lemma we can transfer the inequality to the limit of
approximating sequence for f € W(D, A,0). We next show (ii). Suppose f € C(D, A,0).
Then xf is clearly continuous and vanishes on A. The product xf is also partially ACL
and its partial derivative reads 0;(xf) = (8;x)f + x(0;f). Both x and its partial derivatives
are bounded. Applying (i) we get the square integrability of V(xf). Consequently xf €
C(D, A,0). Moreover we can find a constant C such that Enrg(xf; D) < CEnrg(f; D) for
all f-€ C(D,A,0). Through the limit procedure we get the complete statement (ii). O

5.10 Corollary. The space W (D, A,0) with the norm Enrg(-; D) is a Hilbert space.

Proof. We can find a > 0 and a bi-holomorphic mapping ¢ : D — (O a) x (0,1) such that
#(A) O [0,a] x {0}. Thus we can apply Lemma 5.9(i). O

5.11 Lemma. {f € C(DUA): C® in D,supp f N A = @, Enrg(f; D) < +oo} is dense in
W(D, A,0). In general C*(D, A, g) is dense in W(D, A, g). '

Proof. Given a connected component I of A we can find a > 0 and a bi-holomorphic map-
ping ¢ : D — (0,a) x (0,1) such that ¢(I) = [0,a] x {0} and ¢(A\ I) C [0,a] x {1}. It
follows from (ii) and (iii) of Lemma 5.9 that any element in C(¢(D), ¢(A),0) is approxi-
mated by a sequence in {f € C(¢(D), #(A),0) : supp f N () = @}. Due to the conformal
invariance of the energy integral we see that {f € C(D,A,0) : supp f N I = @} is dense in
W(D,A,0). Repeating this argument we see that {f € C(D,A,0) : suppf N A = 0} is
dense in W(D, A,0). To complete the proof we fix a holomorphic parameter on D whose
image is a rectangle. We thus regard D itself as rectangle. Suppose f € C(D,A,0) and
supp f N A = (). By using reflection method and cutting off we can construct an extension
f € Wy(C) of f with supp f NA = (. Then there exists a sequence { fk} in C§°(C) such that
supp fr NA =0, Enrg(fr — f C) converges to 0 and fj converges to f a.e. Clearly { fx|pua}
is a desired approximating sequence. O

=“;1 on
D then
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5.12 Corollary. mdl(D, A,I) < 2Enrg(f; D) hold for all f € W(D,A,11). Thereis h €
W (D, A, 11) which is harmonic in D and whose energy integral attains %mdl(D, AI). his
a unique function in W(D, A, 11) minimizing the energy integral.

5.13 Theorem. Let ( : D — C be a K-quasi-conformal parameter whose image is also a
Jordan domain. Then +mdl(D,A,I) <mdl(((D,A,I)) < Kmdl(D,A,I).

Proof. Let f be a function on {(D U A). Then, by Theorem 3.4, f € C({(D),{(A), 1¢m) if
and only if fo( € C(D, A, 1;). Combining with Corollary 5.12 we get the statement. O

5.14 Theorem. Let f : DUA — R be Lebesgue measurable. Then f € W(D, A, g) if and
only if f is partially ACL on D, its weak partial derivatives square integrable on D and it
admits a quasi-continuous modification coinciding with g g.e. on A.

5.15 Corollary. If g; # go then W(D, A, g1) NW(D, A, g3) = 0

6 The case ||u|o = 1.

Even if ||ullec = 1 the Beltrami equation may have a homeomorphic solution C — C. A
concrete example is given by the isothermal parameter problem on the surface

z3 = 3a((21)* + (22)?)

in R®. The Beltarami coefficient b[g; 2] of the induced meric is given by (1.6). In fact we can
solve the associated Beltrami equation explicitly.

6.1 Lemma. There exists a diffeomorphism ( : C — C such that
dit[¢] = a?2%/(1 + /1 + a?|2]?)2.
Proof. The function ( := exp{ f a?lzl? S \}1—+t dt}z is a desired one. O

6.2 Remark. Since ((C) = C in Lemma 6.1, the complex structure induced by the parameter
¢ is equivalent to the standard complex structure on C, which is recurrent, i.e., any positive
superharmonic function is a constant function.

6.3 Lemma. There exists an into diffeomorphism ¢ : C — C such that

dlt[¢] = —a?2%/(1 + /1 + a?|2]?)
and ((C) is the unit disk.

Proof. The function ( := —=2&—= is a desired one. _ O

144/ 1+a2|2[?

6.4 Remark. Since {(C) is the unit disk in Lemma 6.3, the complex structure induced by
the parameter ( is equivalent to the standard complex structure on the unit disk, which is
transient, i.e., Green’s functions exist.

The situation in Lemma 6.3 is by no means exceptional.

6.5 Lemma. Suppose ¢ € U(1) and c 7é 1. Then there exists an into diffeomorphism
¢ : C — C such that
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dit[¢] = ca?2?/(1 + /1 + a?|z|?)?
and ((C) is the unit disk.

Taking these examples into account we may raise the following question:

6.6 Question. Let 1 be a generalized Beltrami coefficient on C. Then, by Theorem 3.10,
there exist a quasi-conformal parameter ¢ : C — C with complex dilatation x. When is the
mapping ¢ surjective, equivalently, when is the associated complex structure recurrent?

We give a partial answer.

6.7 Assumption. Let p : Ryp — C be a measurable function with sup,ep slo(s)| < 1 for

all t. Let f : Ryo — C be an absolutely continuous function such that ; f S(ff)( 5 = p(s) for

almost all s. In fact f is given by f(¢) = fo = é;)( 3 ds up to an integral constant.

If ¢ = /()2 then we see that d¢ = e/1#M){(1 4+ 2f'(|2|*)Z)dz + zf'(|2|*)2dZ}. Therefore
¢ = e7U2"); is a global solution to Beltrami equation with coefficient & = 22p(|z|2).

6.8 Lemma. (i) t — 2Re f(t) + logt és strictly increasing.
o\ 1 -
(if) limy 400 (2Re f(t) + logt) = +oo if and only if [ __1lttif((tgzll & — Lo

Proof. 2Re({(t) — (1)) + logt = 2Re [} 28 ds + [ 1ds = [t X0l e .

6.9 Corollary. The complex structure on C associated with the generalized Beltrami coeffi-

cient p = 22p(|2|?) is recurrent if and only if [, }I—léztlp—p(—(t%)l-;dt = +00.

2 .
Let 6 € Rg,1). Observe that maxjs<s 7= lﬂz = 1 ; and minj,<s 7= ’:{2 = ﬁg Suppose

t|p(t)] < 6 for almost all ¢. Then (2Re f(t) 4 logt) > 135 ¢ logt, which diverges as t — +00.

Let @ € U(1l) and ¢ be a measurable function such that sup,epq|l — €(s)| < 1 (&
|5(t)|2 < 2Re s(t)) for all ¢ and limy, o €(t) = 0. Suppose tp(t) ~ a(l —(t)) as t — +oo.
If o # 1 then 2EL®E ~ (2Ree(t) — |e(®)?)/|1 — a|® as t — 400 and hence

1-tp()]?
TR 1-lp(t)P dt /+°°
—_—— < 400 & 2Rec(t) — |e(t —<+oo
/ T ®) - le®)P)
_ + 2 2
While if & = 1 then |1tth’((tt))‘|2 ~ (2Ree(t)—|e(t)|?)/|e(t)|? ast — +o0 and hence [] —;ﬁltt%t))ll g =

+00.
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