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Abstract

Molecular dynamics model calculations for the thermal decomposition of

N2O with external magnetic field were performed. The effect of external mag-

netic field was modeled by parameterization of the interaction term between

the singlet and triplet potential surfaces. It was suggested that the increase of

the rate constant by external magnetic field could be explained by means of

the increase of interaction term which is dependent on the angle of the Jacobi

coordinate.
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1 Introduction

Until the early 1970’s, most scientists believed that the magnetic field could not

exert appreciable effects upon chemical reactions because of its much smaller energy

compared with the ordinary activation energy of chemical reactions. However, it has

been admitted that an ordinary magnetic field affects the predissociation of iodine

vapor and the interconversion of ortho- and para- hydrogen [1]. One of the interest-

ing scientific problems is to control chemical and biological reactions with external

magnetic fields [2]. At the 1970’s magnetic quenching was found for fluorescence

from an excited singlet state of CS2 in the gas phase [3, 4] and in the dissociation

reaction system including biradicals [2, 5, 6]. Then the magnetic effects have been

studied for many reaction systems from both experimental and theoretical point of

view.

Recently, Saito et al. [7] observed that the external magnetic field of about 2 kG

at temperatures higher than 2000K accelerated the following reaction,

N2O −→ N2(
1Σ+

g ) + O(3P ). (1)

Both the rate constant and activation energy were higher than that for the reaction

without magnetic field. Schematic potential energy diagram of the N2O molecule is

shown in Fig. 1. In the analysis of this reaction, non-adiabatic transition between

the singlet and triplet surfaces is included. Saito et al. [7] suggested that the crossing

point at which strong interaction occurs between the potential surfaces was changed

by the external magnetic field, and that the transition became easier at some crossing

point which was higher energy level than the usual transition point with no magnetic

field.

Some theoretical studies have been performed to investigate the potential energy

surface(PES) in a strong magnetic field [8, 9] and dynamics on the PES [10]. Ac-

cording to these studies, the effect on the dissociation rate by the weak magnetic

field such as 2 kG is estimated to be negligibly small. Theoretical investigations

on the PES of N2O were performed including the spin-forbidden process in the de-
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composition [11, 12]. Chang et al. [13] re-estimated the empirical potential energy

surface proposed by Zahr et al [11]. Recently, Nakamura and Kato [14] estimated a

very accurate potential energy surface by ab initio molecular orbital calculations.

Marks and Thompson [15, 16] performed molecular dynamics(MD) calculations

for the N2O dissociation process. They theoretically estimated the dissociation rate

of N2O and concluded that this reaction is mode-specific spin-forbidden reaction.

Chang and Yarkony [13] proposed a new dissociation path via the 23A” state which

was higher state than the 13A” state. According to their paper, the spin-orbit

interaction between 11A’( the ground state of N2O ) and the 23A” state is a few

cm−1, that is, even if the reaction is affected by the external magnetic field, it seemed

difficult to explain the experimental results reported in Ref. [7].

In previous studies treated dinamically by Zahr et al. [11] and Marks and Thomp-

son [15,16], the spin-orbit interaction of N2O, which included a non-adiabatic inter-

action term, was treated to be constant. On the other hand, Chang and Yarkony [13]

and Nakamura and Kato [14] treated this interaction as a variable depending on the

molecular configuration, taking a maximum when N-N-O is collinear. To examine

the magnetic field effect on the decomposition rate of N2O, we extended the interac-

tion term between the singlet and triplet surfaces as a function of the angle N-N-O.

Also, MD simulations were performed to examine the influence of the interaction

term.

2 Theory

Total Hamiltonian with external magnetic field is postulated as follows [17],

H = H0 + HSO + Hmag + HZ (2)

where H0 is the term without the relativistic interaction and external magnetic field,

HSO is the spin-orbit interaction, Hmag is the external magnetic fields interacting

with electronic orbital motion, and HZ is the interaction between electron spin and
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magnetic field. HSO in Eq. (2) is expressed as follows,

HSO =
gβ2

4πε0c2
[
∑

n,i

ZnS(i) · Ln(i)

r3
ni

−
′∑

i,j

2S(i) · Li(j) + S(i) · Lj(i)

r3
ij

] (3)

where, S(i) is the spin angular momentum operator of electron i, Li(j) is the angular

momentum operator of the jth atom, Zn is the charge of the nth atom. The influence

of the external magnetic field for nuclei is negligibly small. Interaction term between

nuclears is also very small compared with that between electrons, that is, HSO is

nearly constant. Hmag in Eq. (2) is expressed by two terms, these are the first and

second order term for the external magnetic field [17],

Hmag = β
∑

i

B · L(i) +
e2

8m

∑

i

(B × ri)
2, (4)

where B is the uniform external magnetic field, L(i) is the angular momentum

operator of the ith atom, and β is the Bohr magneton. The first term in Eq.

(4) gives the orbital paramagnetism of free atoms in states with non-zero angular

momentum. But in second order it also contributes to diamagnetism, reducing

the main contribution which arises from the second term. Eq. (4) means that

the anisotropy of the orbital varies with the change of the electron motion by the

external magnetic field. HZ is simply the electron spin-field coupling given by

HZ = gβ
∑

i

B · S(i) (5)

and gives the orbitally independent part of the Zeeman effect. The orbital contri-

bution, sometimes included in a Zeeman term of the form β
∑

i B · [L(i) + gS(i)],

arises in fact from the first term of Eq. (4), which is dealt separately.

Next, the total wavefunction of system will be supposed to the next equation,

|Φ >= |Ψ1 > +|Ψ2 >, (6)

where |Ψ1 > and |Ψ2 > are the singlet and triplet wavefunctions, respectively.

Furthermore, it will be assumed that each state is only one in each multiplicity.

Thus, the following time-independent Schrödinger equation can be solved,

H|Φ >= E|Φ > . (7)
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The diagonal elements of Eq. (7) are potential energy for the singlet and triplet

surfaces. And the off-diagonal element is the interaction term between two states,

Vi =< Ψi|H |Ψi > (8)

for i = 1 and 2, and

V12 =< Ψ1|H |Ψ2 > . (9)

As stated above, there is an interaction of atomic motion with magnetic field, which

means that the Hamiltonian for molecule with external magnetic field include the

angular momentum operators, i.e., the interaction is anisotropic.

In the model of gas phase reaction, the MD simulation seems to be a powerful

tool. However, as a practical problem, it is difficult to apply it to the effect of atomic

motion with the external magnetic field explicitly. Thus, we tried to simplify this

effect to perform the MD calculations as in the following sections.

3 Methods of Calculation

We investigate the N2O thermal decomposition process using MD calculations. On

this paper, we describe our procedure in detail.

3.1 Potential energy surfaces

In the previous papers [11, 13, 14], potential surfaces of the N2O molecule were

proposed both for the singlet and triplet states. The potential energy surfaces used

in this work are those of Zahr et al. [11] presented in their study of the quenching of

O(1D) by N2, in order to compare our calculated rate constant with those of Marks

et al [15,16]. Their potential energy surfaces, both for the singlet and triplet states,

are expressed by the Jacobi coordinate, defined by Fig. 2, where r is the N − N

bond distance, R is the distance between O atom and the center-of-mass of N2, and

γ is the angle between vector r and R.
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3.2 Decision of transition

Thermal decomposition process of N2O to N2(
1Σ+

g ) and O(3P) include non-adiabatic

transition process between the singlet and triplet surfaces. The transition between

two surfaces is accounted to occur when trajectory of the MD simulation pass the

crossing point of the two potential surfaces, in the way whether the sign of the

difference between the two potential surfaces change or not,

ΔV (t) = V1(t) − V2(t). (10)

If the signs of ΔV (t) and ΔV (t − Δt) are the same, the trajectory does not over

the crossing point. On the other hand, if the signs are different, it is found that the

trajectory passed the crossing point in the time interval between t −Δt and t. The

time that trajectory passed through the crossing point is defined as tc.

The transition probability is calculated when the trajectory passes the crossing

point. At each crossing point, we calculate the Landau-Zener transition probability

[18] for a single passage through the crossing surfaces,

PLZ = 1 − exp
−2πV 2

12

h̄|ΔF · v| , (11)

where V12 is the interaction term which couples the two potential surfaces. The

term V12 will be discussed later. ΔF is the difference in the forces F1 and F2 of the

lower and upper states, respectively, evaluated at the crossing point, while v is the

nuclear velocity at the crossing point.

To estimate Eq. (11), it is necessary to calculate the coordinate { qi(tc) }, the

momentum { pi(tc) }, the gradient of the potential surface { ∂V1/∂qi } and { ∂V2/∂qi

} at the time of the crossing point. Marks et al. [15] calculated the following scheme:

when the sign of ΔV (t) is changed, the trajectory is propagated along opposite time

by a small time step. When the energy difference between the two potential energy

surfaces is very small, the quantities can be obtained.

However, if this method is used, trajectory calculation must be propagated along

opposite time whenever the trajectory passes the crossing point, and it causes the
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increase of the computational time. In order to avoid this problem, we use the

interpolation as an appropriate method.

In the case of very small time step, the gradients of both the singlet and triplet

potential surfaces near the crossing point are taken to be constant approximately.

Then, by using the absolute value of ΔV (t) instead of the relative value,

A(tc) = A(t − Δt) + (A(t) − A(t − Δt))
ΔV (t − Δt)

ΔV (t − Δt) + ΔV (t)
, (12)

where vector A represents coordinate q, momentum p, and gradients of the potential

V1 and V2. The time passed through the crossing point is

tc = t + Δt
ΔV (t − Δt)

ΔV (t − Δt) + ΔV (t)
. (13)

Since this method is not need the time propagation step to the opposite time, we

can calculate the crossing point at minimum cost.

When the trajectory is reached the crossing point, the judgment of transition

is performed. Transition probability PLZ is compared to uniform random number

R [0,1], and if PLZ > R, then transition is happened and the propagation of this

trajectory is stopped, or the propagation is continued.

3.3 Estimation of magnetic field effect

In our simulation, it is important to estimate the interaction term V12 in Eq. (11).

According to Zahr et al. [11], V12 is equal to the spin-orbit term, and is constant.

Marks et al. [15, 16] used their potential surface. Chang et al. [13] performed ab

initio calculations and concluded that the spin-orbit term is not constant and HSO

takes the highest value when N2O is collinear. Although the main component of

V12 is the spin-orbit term, other contributions must be considered. To construct a

simple model for the transition between the singlet and triplet surfaces, we use the

expression for V12,

V12 = A + B cos 2γ, (14)

7



where A and B are constants and γ is Jacobi coordinate for N2O molecule. Our

model is somewhat complicated compared to the previous model for the non-adiabatic

transition of N2O. In the case of without the external magnetic field, we adopt

A = 80 cm−1 and B = 50 cm−1. Compared with Chang et al. [13], our parameters

overestimate the spin-orbit term for the collinear case, but a merit of this larger pa-

rameter is to include another factor for the interaction term effectively. Parameter

A is independent of molecular configuration and is a molecular-specific parameter.

On the other hand, parameter B is dependent on molecular configuration and cor-

responds to the anisotropic term. Furthermore, as Eq. (4) shows, the magnetic

field term includes the angular momentum operator, thus, we postulate that these

parameters vary with the external magnetic field. In comparison to the case without

the external magnetic field, the interaction term is perturbed by the external mag-

netic field. Actual interaction is indeed more complicated, and can not formulate

using some simple functions, as shown the last section. Since our objective is to

estimate the dissociation rate constant of N2O, we adopt a simplified Eq. (14) to

avoid time-consuming step.

3.4 Trajectory calculation

Trajectory calculations are performed with the total energy range between 65 to

85 kcal mol−1. The sampling of initial geometry and velocity with microcanoni-

cal distributions of energy were performed using the “efficient microcanonical sam-

pling”(EMS) method [19, 20] with no rotational angular momentum [21]. For each

energy, 5000 trajectories run, and its total trajectory length for each run is 10 ps. A

large number of trajectories lowers the fluctuation of the rate constant for each total

energy. We use the 6-th symplectic integrator [22] with time step of 0.4 fs. The sym-

plectic integrator is numerical integration schemes for Hamiltonian systems, which

conserve the symplectic two-form dp∧dq exactly, so that (q(0), p(0)) −→ (q(τ), p(τ))

is a canonical transformation. This algorithm is accurate and has no accumulation
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of numerical errors for total energy in contrast to the other common algorithm to

solve the Hamilton equation of motion. Practically, the elapsed time for each time

step wastes compared with common integrator, such as the Runge-Kutta method.

However, if accuracy of the same order are requested for the energy conservation,

we can set up longer time step. Rate constant k(E) is obtained from least-square

fitting of the equation,

ln
Nt

N0
= −k(E)t, (15)

where Nt is the number of non-reactive trajectories at time t and N0 is the number

of total trajectories.

4 Results and discussion

4.1 Dependence of the rate constant on various conditions

To look for the best condition of trajectory calculations, we first examine the depen-

dence of the rate constant for various conditions. It is considerable that there are

some causes which make rate constant vary for conditions of simulation; for example,

Markov walk number for the EMS method and propagating time step. In the present

work, 1000 trajectories run with the interaction term V12 = 80 cm−1(constant) for

all conditions. Under these conditions, it is expected that the number of reactive

trajectories and transition probability are changed and, thus, microcanonical rate

constants k(E) are changed.

Markov walk number dependencies for the EMS method are shown in Table

1. Under these conditions, we use the 6-th symplectic integrator with propagating

time step of 0.4 fs. Marks et al. [15] generated twenty thousand states. In general,

if the number of the Markov walk and trajectories are small, the rate constant

depends on the initial geometry. In our simulations, if the available energy is low,

the explicit dependency on the Markov walk number becomes clear for small walk

number. However, if the available energy is fairly large, the dependency becomes
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ambiguous, thus we take a large number of trajectories. In order to treat under the

same conditions as Marks et al., we took 10,000 for the number of Markov walk.

Time step dependence for the trajectory calculation are shown in Table 2. As the

integrator of equation of motion, both the 4th Runge-Kutta and the 6th symplectic

methods are used. When the time step of trajectory calculations using the former

method is larger than 0.2 fs, the total energy decreases considerably because of

cumulative numerical error, i.e., conservation of total energy is not guaranteed.

Although the rate constant should be independent of the integrator and of the time

step, it is clearly changed for the long time step as shown in Table 2, suggesting

that this approach is not suitable. Furthermore, if the time step is fairly large, the

trajectories which graze the crossing curve are not counted.

Distribution of transition point are shown in Figs. 3 and 4. Number of trajecto-

ries are 5000 and total energies are 85 kcal mol−1. In these figures, one coordinate(R

for Fig. 3 and r for Fig. 4) is fix. In the case of V12=constant, B = 0, in Eq. (14),

transition points are uniformly distributed. On the other hand, in the case of which

the parameter B is not zero, transition points distribute near collinear region, i.e.,

near γ = 0. It is caused that we adopt to V12 that is the largest in the case of

collinear configuration.

4.2 Rate constant k

Results of microcanonical rate constant k(E) are shown in Table 3. When V12 is

constant, our simulation corresponds to the condition of Marks et al. Our micro-

canonical rate constants give always a little smaller values than those of them. This

may be arisen from the different sampling of the initial condition or using the dif-

ferent potential energy surfaces. However, the tendency is comparable to Marks et

al. It means that V12 shows an angular dependency ( A = 80 and B = 50 cm−1),

i.e., rate constants are a little larger for variable V12. This is based on the fact that

using Eq. (14), the interaction term between the singlet and triplet surfaces becomes
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larger in the case of collinear configuration compared to the case of V12=constant.

The parameters A and B are varied to examine anisotropic dependency for the

interaction term V12. On this paper, we compare the rate constants at 2000K,

since the experimental temperature range are 1800-2300 K. From a shock tube ex-

periment, Arrhenius expressions for bimolecular reaction rates with and without

external magnetic field are given in reference [7]. It is found that the rate con-

stant of N2O decomposition with 2kG external magnetic field is about 19 % larger

than without magnetic field at 2000 K. In order to compare the experimental rate

constant, calculated microcanonical rate constant kMC is convert to canonical rate

constant kCA multiplied by Boltzmann factor,

kCA =

∑
N kMC exp(−E/kBT )
∑

N exp(−E/kBT )
. (16)

Numerical canonical rate constants at 2000 K with experimental rate constant are

shown in Table 4. In our simulations, since classical mechanics and empirical poten-

tial energy surfaces are used, it is difficult to discuss quantitatively the value of the

rate constant. However, we could compare the ratio between rate constants with

and without the external magnetic field, and also compare with the ratio obtained

from our model calculation.

Our calculated results are shown in Table 5. The ratio is the value divided by

the rate constant in the case of A = 80 and B = 50 cm−1. It is natural that rate

constants become large when parameters A and B also become large. As seen in

this table, the ratio increases with increasing parameters A and B. This explains

qualitatively the experimental results. To give the experimental ratio( 19 % ), the

value should be increased by about 15 cm−1 for the parameter A, while it should

be increased by about 20 cm−1 for the parameter B. The first term of Eq. (14)

is independent of the angle and is considered to be a characteristic parameter of

molecule, which is not expected to change largely. On the other hand, the second

term is dependent on the angle, and therefore, V12 could be affected by external

magnetic field resulting the change of the rate constant. Hence, we found out that
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there is a possibility of the magnetic field effect on the chemical reaction.

5 Summary

To explain the experimental results of enlargement of the dissociation rate constant

for N2O to N2(
1Σ+) and O(3P) with external magnetic field, MD simulations were

performed. Interaction term between the singlet and triplet surfaces was modeled by

two parameters, which one is dependent on the angle of the Jacobi coordinate, and

the other is independent on it. According to our rough model, the increase of the

rate constant can be explained by increasing of the non-adiabatic interaction term,

especially the angle dependent term. In this field, there is no sufficient investigation

both in experiment and theory. We will continue further investigations in the future.
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Table 1: Rate constant(in ps−1) dependency for Markov walk num-

ber. Other trajectory conditions are as followed: integrator is the 6th

Symplectic method, time step of propagation is 0.4 fs, and 1000 trial

run. Rate constant for 5000 trial run are also shown.

total energy / kcal mol−1

number of Markov walk 65 70 75 80 85

10 8.70x10−3 4.18x10−2 7.13x10−2 1.07x10−1 1.19x10−1

100 5.63x10−3 4.30x10−2 7.84x10−2 1.11x10−1 1.30x10−1

1000 7.06x10−3 4.03x10−2 6.94x10−2 1.03x10−1 1.27x10−1

10000 4.36x10−3 3.53x10−2 7.81x10−2 1.06x10−1 1.28x10−1

100000 5.29x10−3 3.47x10−2 6.89x10−2 1.08x10−1 1.21x10−1

1000000 6.11x10−3 3.43x10−2 7.31x10−2 1.00x10−1 1.29x10−1

10000a) 6.02x10−3 3.58x10−2 7.46x10−2 1.26x10−1 1.24x10−1

a) results of 5000 trial runs.
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Table 2: Rate constant(in ps−1) dependency for time step of trajec-

tories using the 6th Symplectic method and the 4th Runge-Kutta

method. Other trajectory conditions are as followed: 1000 trial run

and total energy is 85 kcal mol−1. Difference between initial total en-

ergy and average of total energy by each time step | < H > −E| and

variance < H2 > − < H >2 are also shown.

integrator time step / fs k / ps−1 | < H > −E| < H2 > − < H >2

the 6th Symplectic 0.1 0.160 0.000851 0.269

0.2 0.160 0.00170 0.380

0.4 0.154 0.00340 0.538

0.5 0.155 0.00423 0.601

0.8 0.161 0.00710 0.760

1.0 0.168 0.0108 0.850

the 4th Runge-Kutta 0.1 0.151 0.000931 0.269

0.2 0.149 0.00921 0.380

0.4 0.154 0.146 0.545

0.5 0.155 0.759 0.708

0.8 0.147 4.81 2.65

1.0 0.114 23.2 12.9
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Table 3: Microcanonical rate constant k(E) (in cm−1).

k(E)/ps−1

E/kcal mol−1 Marks et al.a) constantb) variablec)

65 0.019 0.0060 0.0109

66 0.0100 0.0187

67 0.0176 0.0274

68 0.0229 0.0373

69 0.0280 0.0447

70 0.053 0.0358 0.0526

71 0.0435 0.0651

72 0.0523 0.0705

73 0.0568 0.0772

74 0.0619 0.0846

75 0.111 0.0746 0.0891

76 0.0801 0.0962

77 0.0856 0.0994

78 0.0917 0.1118

79 0.1037 0.1101

80 0.171 0.1256 0.1335

81 0.1110 0.1234

82 0.1193 0.1217

83 0.1212 0.1238

84 0.1228 0.1217

85 0.206 0.1241 0.1277

a) reference [15]. b) this work. V12 = 80, constant. c) this work. V12 = 80+50 cos(2γ).
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Table 4: Canonical rate constant k(T ) (in s−1).

k(T )

Temperature / K Expl.a) Marks et al.b) constantc) variabled)

2000 9.753 × 102 5.64 × 103 4.50 × 103 7.62 × 103

a) reference [7]. b) reference [15]. c) this work. V12 = 80, constant. d) this work.

V12 = 80 + 50 cos(2γ).
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Table 5: Canonical rate constant k(T ) (in s−1) depending parameters

A and B at 2000 K.

Aa) Ba) k(T )/s−1 ratiob)

80 50 7.62 × 103 1.0

85 50 8.35 × 103 1.09

90 50 8.90 × 103 1.17

95 50 9.61 × 103 1.26

100 50 1.03 × 104 1.35

80 55 8.10 × 103 1.06

80 60 8.48 × 103 1.11

80 65 8.84 × 103 1.16

80 70 9.21 × 103 1.21

80 75 9.63 × 103 1.26

a) V12 = A + B cos(2γ). b) ratio divided by rate constant in the case of A=80 and

B=50.
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Figure caption

Figure 1. Schematic potential surfaces of N2O. V1 and V2 are the singlet and

triplet surfaces, respectively. N-N distance and angle γ are fixed to equilibrium

geometry. The definition of γ and R are refered to Figure 2.

Figure 2. N2O molecule and definition of the Jacobi coordinate.

Figure 3. Distribution of transition point. The horizontal axis is r and the

vertical axis is γ, respectively. (a)V12=80 cm−1=constant. (b)V12=80 + 50 cos(γ).

Figure 4. Distribution of transition point. The horizontal axis is R and the

vertical axis is γ, respectively. (a)V12=80 cm−1=constant. (b)V12=80 + 50 cos(γ).
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