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Abstract

Many of transition-metal oxides exhibit metal-insulator (MI) transitions induced by

strong interactions between d-electrons. In the vicinity of the MI transition, various

interesting phenomena, such as high-TC superconductivity in cuprates and colossal mag-

netoresistance in manganites, have been discovered. To understand these phenomena, it

is recognized that the orbital degree of freedom, in addition to the charge and spin degrees

of freedom, should be taken into account. Recently, the role of orbital ordering in the

dramatic change in transport and magnetic properties of manganites has been revealed

by resonant x-ray scattering (RXS) techniques.

Among a large variety of transition-metal oxides, the perovskite-type titanium oxide,

YTiO3 and the Ca substituted alloys Y1−xCaxTiO3 have received much attention because

of having smaller Jahn-Teller distortion relative to manganites. The parent material

YTiO3 is a Mott-Hubbard insulator in which one 3d electron of Ti3+ occupies the t2g

orbital keeping the eg orbitals unoccupied. It is a rare example of having ferromagnetism

below the Curie temperature TC = 30K. The origin of this ferromagnetic order has been

considered to be a ferromagnetic superexchange interaction accompanied by antiferro

orbital ordering of the t2g orbitals. By the substitution of Ca2+ for Y3+ in Y1−xCaxTiO3,

the ferromagnetic order disappears at xFP ∼ 0.2, while the system remains insulating up

to xMI ∼ 0.4. For x > xMI, a metallic state becomes stable at room temperature. At the

critical concentration x = 0.39, a first-order transition occurs from the insulating state

to the metallic state upon decreasing temperature below about 150 K. The issues are not

only the origin of the MI transition but also the reason why the value of xMI is far above

that of xFP. In analogy with the manganites, the orbital degree of freedom would play an

important role in both the magnetic and metal-insulator transitions
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To clarify these issues on Y1−xCaxTiO3 , three approaches have been taken in the

present study: (1) a comparison between the Ca substitution effect and pressure effect

on the MI transition, (2) Rietveld analysis of the crystal structure by taking account of

the GdFeO3-type distortion (difference in bond angles of Ti-O-Ti) and the Jahn-Teller

distortion (difference in Ti-O bond lengths), (3) study of orbital ordering by the techniques

of RXS and polarized neutron diffraction (PND).

In Chapter 1, transport and magnetic properties of the 3d transition-metal oxides and

Mott-Hubbard model for the MI transition are briefly described. The previous studies of

YTiO3 and Y1−xCaxTiO3 are also referred. Then, the purpose of the present study is

presented.

Chapter 2 presents the methods of single-crystal growth of Y1−xCaxTiO3 and charac-

terizations by x-ray diffraction analysis and electron-probe microanalysis.

Chapter 3 gives descriptions of experimental methods and techniques including the

transport, magnetic and structural measurements. The PND, which provides the wave

functions from the analysis of magnetic form factors, has been used to study orbital

ordering in the ferromagnetic state for x < 0.2. The RXS technique, which is able to

observe the orbital ordering from the analysis of the anisotropy of the atomic scattering

factor, has been applied to study the substitution effect on the orbital ordering in the

present system for x ≤ 0.75.

In Chapters 4.1-4.3, the results of transport, magnetic, thermoelectric and structural

measurements for Y1−xCaxTiO3 are presented and discussed, which are summarized as

below.

(1) In Chapters 4.1 and 4.2, we made comparison between the Ca substitution

effect and pressure effect on the transport and the structural properties. For

several samples with x ' xMI, we measured the electrical resistivity ρ(T )

and powder x-ray diffraction (XRD) at ambient pressure. For x = 0.37 and

0.39, the MI transitions occur at TMI = 100 K and 150 K on cooling, respec-

tively. Powder x-ray diffraction analysis showed that the monoclinic phase

decomposes into a monoclinic phase and a low-temperature orthorhombic

(LTO) phase on cooling below TMI. This LTO phase is found to be a metallic
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phase from the fact that the residual resistivity decreases when the volume

fraction of LTO increases. For x = 0.37, we measured ρ(T ) and XRD under

pressure. The value of TMI (100 K at P = 0 GPa) increases with increas-

ing pressure, and eventually the metallic phase is stabilized even at room

temperature under P = 1.5 GPa. The phase separation temperature agrees

well with the TMI, and both temperatures increase linearly with increasing x

or pressure. These results indicate that the MI transition in Y1−xCaxTiO3

is not a simple Mott-Hubbard type but is caused by the percolation of the

metallic LTO domains.

(2) In Chapter 4.3, Rietveld analysis of room-temperature powder x-ray diffrac-

tion data is presented for the samples in the whole range 0 ≤ x ≤ 1. It is

found that the tilting angle of the TiO6 octahedron (the Ti-O-Ti bond angle

which is related to the magnitude of superexchange interaction) increases

monotonously with increasing x from 0 to 1. On the other hand, the angle

between the local coordination axes in the TiO6 octahedron decreases from

93.5◦ for x = 0 to 92◦ for x = 0.2. Above x = 0.2, two Ti-O bond lengths

in the ab plane become almost equal, i.e., Jahn-Teller distortion is released.

This structural change should be responsible for the disappearance of the

ferromagnetism at x = 0.2.

In Chapters 4.4 and 4.5, the results of PND and RXS are presented and discussed, as

summarized below.

(3) In the ferromagnetic region x ≤ 0.2, we measured the magnetic form factors

of Ti ions by means of PND in external fields parallel to the c−axis. The

PND intensities have been observed at “forbidden” reflections in the condi-

tions of h + k = 2n + 1, where h and k are the Miller indexes and n is an

integer. By comparing the data with the model of orbital ordering config-

uration, we have determined the wave functions assuming c1|zx〉 + c2|xy〉
(c2

1 + c2
2 = 1) at site 1, for example. The coefficient c1 is determined to be

0.77 for x = 0 and x = 0.05. Above x = 0.1, however, c1 could not be
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determined uniquely. It is suggested that the ferromagnetic order becomes

unstable when the order of orbitals is weakened.

The RXS experiments were performed for 0 < x ≤ 0.75 at room temper-

ature. The main-edge RXS intensity at the 1s → 4p transition energy of

E = 4.982 keV decreases linearly with increasing x up to 0.2, and gradu-

ally decreases up to x = 0.75. On the other hand, the pre-edge intensity

at the 1s → 3d transition energy of E = 4.972 keV decreases rapidly with

increasing x up to xFP and vanishes at xMI. The x dependence of the RXS

intensity at the main-edge has no dramatic change at both xFP and xMI and

is unlike the x dependence of any local lattice distortion. The x dependence

of RXS intensity at the pre-edge, on the other hand, is similar with that of

Jahn-Teller (JT) distortion of the TiO6 octahedron. This means that the

RXS intensity at the pre-edge reflects the orbitally ordered state. Thus, we

have found that the ordering is weakened above x = xFP but remains in the

whole insulating phase for x < xMI.

By combining the above results (1), (2), and (3), it is found that the temperature-

induced MI transition in Y1−xCaxTiO3 at x ∼ 0.39 is not a simple Mott-Hubbard type

but is a result of percolation of domains of the metallic low-temperature orthorhombic

phase. For the insulating phase for 0 < x < 0.2, the strong evidence of orbital ordering is

obtained by both polarized neutron diffraction and resonant x-ray scattering experiments.

It is concluded that the magnetic order becomes unstable when the order of orbitals is

weakened, and the metallic phase appears when the order of orbitals melts for x > 0.4 in

Y1−xCaxTiO3.
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Chapter 1

Introduction

Metal-insulator (MI) transitions are widely observed in condensed-matter systems,

which are accompanied by huge resistivity changes, even over tens of orders of magnitude.

The MI transitions in transition-metal oxides are often driven by strong interactions

between d-electrons. This chapter describes basic properties of transition-metal oxides

and the previous studies of YTiO3, Y1−xCaxTiO3 and related compounds.

1.1 Mott-insulators and orbital ordering

1.1.1 Mott insulators in 3d transition-metal oxides

In the field of transition-metal oxides, the so-called Mott insulator, that is an insulating

state induced by a transition from a metalic state, has been extensively investigated [1–6].

The Mott insulator is a model, which was proposed by Mott in 1949, to understand the MI

transitions due to the strong correlation between d-electrons. Mott considered a lattice

model with a single electronic orbital on each site. Without electron-electron interactions,

a single band would be formed by the overlap of atomic orbitals, where the band becomes

full when two electrons, one with up-spin and the other with down-spin, occupy each site.

However, two electrons sitting on the same site would feel a large Coulomb repulsion,

which split the band into two. The lower band in energy is formed by electrons that singly

occupies one site and the upper one by electrons that occupy a site already occupied by
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another electron, respectively. The lower band filled by one electron per site should make

the system an insulator. In the Mott insulators, the MI transition from an insulator to

a metal takes place with decreasing U or with increasing t. Here, U is the intra-atomic

Coulomb energy of a d-electron orbital and t is a transfer integral between the unoccupied

d-band and the filled p-band of ligand oxygens neighboring d-atoms [2]. To understand

the electron correlation effects in the MI transition, the Mott-Hubbard model with the

parameter of the ratio U/t is often used. In the case U À t, the system is insulating due

to the strong repulsion between electrons, whereas in the case U ¿ t, the system becomes

metallic.

Zaanen, Sawatzky and Allen (ZSA) have pointed out that the insulator of 3d electron

systems can be classified into two categories as shown in Fig 1.1 [7]. One is the Mott

insulator (so-called Mott-Hubbard (MH) insulator), where the charge gap is governed

by the Hubbard splitting (U) of the d-band. The other is the so-called charge transfer

(CT) insulator, where the charge gap is typically an energy difference (∆) between filled

p-bands of ligand anions and the unoccupied upper Hubbard 3d band. In general, t2g-

electrons system such as titanates and vanadetes, in which t2g orbitals are partially filled

and eg orbitals are unoccupied, are classified to the MH-type insulator. On the other

hand, eg-electrons system such as manganites and cuprates, in which t2g orbitals are fully

occupied and eg orbitals are partially filled, are the CT-type insulator.

Near the MI transition point, the physical properties at these metallic region are fre-

quently quite different from those of ordinary metals, as measured by transport, magnetic

and optical probes. Various interesting phenomena, such as high-Tc superconductivity in

cuprates and colossal magnetoresistance in manganites, have been discovered in the vicin-

ity of the MI transition. Although electron-electron interactions indeed play the central

role in these phenomena, we should take account of another aspect of electrons — orbital

degrees of freedom.

1.1.2 Orbital Ordering

Here, we focus on a perovskite-type manganese oxide Nd1/2Sr1/2MnO3. This material

is one of the typical charge-ordering oxides showing a colossal negative magnetoresistance
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Figure 1.1: Zaanen-Sawatzky-Allen Framework [7].

(CMR) [9]. At room temperature it is a paramagnetic metal and shows ferromagnetism

below the Curie temperature TC = 255 K. On further cooling, a first-order metal-to-

insulator transition is observed at the charge-ordering temperature TCO = 150 K as shown

in Fig. 1.2. To understand the mechanism of this jump at TCO K in the electrical resis-

tivity, the possibile charge ordering (CO) was investigated by various methods. In fact,

superlattice reflections were observed at Qcharge = (0, 1, 0) in the Pbnm symmetry by a

resonant x-ray scattering method [27]. This observation of superlattice reflections was

the discovery of the charge ordering in this manganese oxide. To date, it has been found

that many transition-metal oxides such as LaMnO3, La1.5Sr0.5MnO4 show charge and/or

orbital ordering [18,24].

Now, it is well recognized that the orbital degree of freedom, in addition to the charge

and spin degrees of freedom, plays an important role in determining the electronic and

magnetic properties of transition-metal oxides. Among perovskite-type 3d transition-

metal oxides, the eg-electron system such as manganites, exhibits a large Jahn-Teller

distortion in the MnO6 octahedron due to a strong electron-lattice coupling. The resultant

orbital ordering has attracted much attention [18]. Despite the electron-lattice coupling
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Figure 1.2: Temperature dependence of the electrical resistivity of Nd1/2Sr1/2MnO3. Ar-

rows denote transition temperatures, TC; the Curie temperature, TCO; the charge-ordering

temperature and TN; the Néel temperature [9].
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in the t2g-electron system is weaker than that in the eg-electron system, orbital ordering

occurs in certain t2g-electron systems like YVO3 and YTiO3 [8, 13, 15, 19, 21]. YTiO3 is

considered as a typical Mott-Hubbard insulator. In this thesis, we focus on YTiO3 and

Y1−xCaxTiO3.

1.2 Physical properties of YTiO3 and Y1−xCaxTiO3

YTiO3 is a d1-system, which is well known as a Mott-Hubbard insulator with a value

of U ∼ 1eV [3]. The ferromagnetic state [35–38] with a Curie temperature TC ∼ 30 K

is atypical for a Mott insulator because most of Mott insulators are antiferromagnetic

as seen in LaTiO3 and V2O3 [5, 6]. YTiO3 crystallizes in an orthorhombic perovskite

(so-called GdFeO3-type) structure as shown in Fig. 1.3. The GdFeO3-type perovskite is

a distorted derivative of a cubic perovskite (see Fig. 1.5). The axes of TiO6 octahedra in

a GdFeO3-type structure tilt from the principal crystal axes. The distorted bond angle

of Ti-O-Ti is approximately 140◦ [17]. YTiO3 also shows a Jahn-Teller distortion of the

type d as shown in Fig. 1.4, where the longer and shorter Ti-O bonds are ∼ 2.08 Å and

∼ 2.02 Å, respectively [17].

In Ca substituted alloys Y1−xCaxTiO3 , the number of 3d electrons per Ti atom can be

controlled from 1 to 0 with increasing Ca content x from 0 to 1, and thereby hole carriers

are doped at the Ti site. The previous studies on Y1−xCaxTiO3 by using polycrystalline

samples revealed that the ferromagnetism vanishes at x ∼ 0.15, while the system remains

insulating up to x ∼ 0.4 [3, 4, 39–44]. Above x ∼ 0.4, the system changes into a metallic

state below room temperatures. For x = 0.37 ∼ 0.39, a temperature induced transition

from the insulating state to the metallic one occurs upon decreasing temperature [3,4,39–

43]. At the critical concentration xcr = 0.39, the electrical resistivity ρ(T ) drops by two

orders of magnitude at 150 K [3,4,40–43]. Upon approaching xcr from the metallic region,

both the electronic specific-heat coefficient and Pauli’s paramagnetic susceptibility are

significantly enhanced [4, 39]. This enhancement was taken as an experimental evidence

for the divergence in the carrier mass. Thus, the MI transition in Y1−xCaxTiO3 had been

considered as a typical example of a Mott-Hubbard type transition [2].
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Figure 1.3: The crystal structure of the GdFeO3-type perovskite. In the case of YTiO3,

it shows a Jahn-Teller distortion of type d, in which the elongated TiO6 octahedron are

alternatively arranged in the ab-plane. The same pattern repeats along the c-axis [17].
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Figure 1.4: Two types of Jahn-Teller distortion. In the case of YTiO3, it shows a Jahn-

Teller distortion of type d, [17].

Figure 1.5: The crystal structure of the cubic perovskite.
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More recently, temperature-dependent structural transformations have been found

in the vicinity of the MI transition [45]. The high-resolution powder x-ray diffraction

experiments on samples for x = 0.37 and 0.39 have revealed a phase transition from

orthorhombic (space group Pbnm) to monoclinic (P21/n) occurring at T ∼ 230 K on

cooling. For the monoclinic phase, the angle β between the a and c axes gradually increases

from 90◦ up to 90.15◦. On further cooling below 100 K and 150 K for x = 0.37 and 0.39,

respectively, a low-temperature orthorhombic phase (LTO, space group Pbnm) appears

and coexists with the monoclinic phase. For x = 0.41, the two phases coexists even

at room temperature. The volume fraction of the LTO phase increases with decreasing

temperature and saturates to the value of 25, 80 and 90% for x = 0.37, 0.39 and 0.41,

respectively, at 10 K. Since the MI transition associated with such a phase separation is

beyond the conventional theory based on the Mott-Hubbard model, further studies on

the MI transition of Y1−xCaxTiO3 are necessary.

Figure 1.6: The x− T phase diagram of Y1−xCaxTiO3.
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1.3 Purposes of the present study

In this thesis, we focus on the t2g-electron system of titanate YTiO3 and its Ca subsu-

tituted compounds Y1−xCaxTiO3. To clarify the role of the orbital degree of freedom both

in the magnetic transition and the metal-insulator one in Y1−xCaxTiO3 , three approaches

have been taken in the present study: (1) a comparison between the Ca substitution effect

and pressure effect on the MI transition, (2) Rietveld analysis of the crystal structure to

estimate the GdFeO3-type tilting distortion (difference in bond angles in Ti-O-Ti) and

the Jahn-Teller distortion (difference in Ti-O bond lengths), (3) observation of orbital

ordering by polarized neutron diffraction (PND) and resonant x-ray scattering (RXS)

techniques.
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Chapter 2

Crystal growth and characterizations

of Y1−xCaxTiO3

2.1 Single-crystal growth

For the single-crystal growth of Y1−xCaxTiO3 (0 ≤ x ≤ 1), we used CaCO3, TiO2,

Ti2O3 and Y2O3 with purity of 4N, 3N, 3N and 4N as starting materials, respectively.

Single crystals were prepared by the following sequence. At the first step, the mixture

of CaCO3 and TiO2 was heated in an alumina crucible in air at 1000 ◦C for 36 hours by

using a resistive heating furnace (muffle furnace). Thereby, the following reaction occurs,

CaCO3 + TiO2 → CaTiO3 + CO2 ↑.
Thus obtained polycrystalline sample CaTiO3 was mixed with powders of Y2O3 and

Ti2O3, and the mixture was stuffed into a rubber tube. The mixed powder was isostatically

pressed up to 180 kgf/cm2 into a rod of 8 mm in diam. and 100 mm in length. The rod

was inserted into a boron nitride tube and heated in a vacuum at about 1000 ◦C for 45

minutes by a high-frequency induction heating furnace (see Fig. 2.1).
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Figure 2.1: Schematic diagram of the high-frequency induction heating furnace used for

sintering; (a) overview of the furnace and the carbon tube with the sample rod, (b) details

of assemblies for setting the sample rod in the BN tube.
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Figure 2.2: Schematic diagram of the ellipsoidal mirror furnace equipped with four halogen

lamps. This furnace was used for the crystal growth by the floating zone method; (a) side

view, (b) top view and (c) enlarged view of sample.

Thereby the following reaction takes place,

(1− x) (Y2O3 + Ti2O3) + x CaTiO3 → Y1−xCaxTiO3−y + y
2
O2 ↑.

Here, it is noted that powder x-ray diffraction analysis of the sintered rod showed the

presence of a few % of raw materials of Y2O3 and Ti2O3 and oxidized Y2Ti2O7 with

the pyrochlore structure. The rods were used to grow single crystals by a floating zone

method being free from contamination from a crucible (see Fig. 2.2).
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Figure 2.3: Photograph of the as-grown single crystal of YTiO3.

The feed rod was hung by Mo wires at the center of an ellipsoidal mirror furnace

equipped with four halogen lamps. A molten zone was scanned by a speed of 10 mm/h

in a reduction atmosphere of mixture of Ar 50% and H2 50% at the flow rate of 5 `/min.

The typical size of a single crystal was of 8 mm in diam. and 80 mm in length as shown

in Fig. 2.3.

Thermogravimetric analysis (TGA) of the as-grown crystal indicated the oxygen defi-

ciency y in Y1−xCaxTiO3−y to be 0.02− 0.05. Therefore, the crystal was heat-treated in

air at 400 ◦C for 4 hours to recover the oxygen stoichiometry. This heat-treating condition

was determined by TGA measurements at different temperatures and periods.
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2.2 Characterization of samples by x-ray diffraction

analysis and electron-probe microanalysis

The single-crystal nature of the Y1−xCaxTiO3 sample was examined by Laue photos,

powder x-ray diffraction analysis and electron-probe microanalysis (EPMA). The Laue

pattern indicated that the crystal structure is of the orthorhombic GdFeO3-type with the

space group of Pbnm at room temperature. Powder x-ray diffraction showed that all the

samples for 0 ≤ x ≤ 1 are the single phase. The x-ray diffraction patterns and estimated

lattice parameters are listed in Fig. 2.4 and Table. 2.1, respectively. EPMA showed that

there is no deviation of the Ca concentration from the nominal value within the accuracy

of 1% for the whole rod.
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Figure 2.4: Laue photos of the single crystal of YTiO3.
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Figure 2.5: Powder x-ray diffraction patterns of YTiO3 and CaTiO3 taken by using Cu

Kα radiation.

Table 2.1: Lattice parameters of YTiO3 and CaTiO3 with the orthorhombic GdFeO3-type

structure.

Compounds Lattice parameters

a (Å) b (Å) c (Å)

YTiO3 5.338 5.683 7.615

CaTiO3 5.381 5.445 7.648
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Chapter 3

Experimental methods

3.1 Electrical resistivity

The electrical resistivity was measured from 1.3 to 300 K by a conventional four-probe

method. Four leads of gold wires (φ 50 µm) were fixed on the sample by silver paste.

The contact resistance between the wire and the sample was a few 10 Ω. The electrical

resistivity under quasi-hydrostatic pressure was measured in the temperature range from

1.3 to 300 K. Hydrostatic pressure up to 2 GPa was applied by using a clamp-type piston-

cylinder pressure cell. This cell is made of hardened beryllium-copper. Daphne oil was

used as the pressure transmitting medium. Pressure was determined from the known

pressure dependence of the electrical resistance of a manganin wire.

3.2 Magnetic susceptibility and magnetization

The magnetic susceptibility and magnetization were measured by using a commercial

superconducting quantum interface device (SQUID) magnetometer (MPMS, Quantum

Design). The magnetic susceptibility was measured in the temperature range from 2 to

350 K in fields of 1, 10, 100 mT and 1 T. The measurements of magnetization were

performed in fields from 0 up to 5 T at 2 K for ferromagnetic samples.
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3.3 Powder x-ray diffraction

High resolution powder x-ray diffraction (XRD) experiments for detailed analysis of

crystal structure were performed by using synchrotron radiation at SPring-8 and Photon

Factory. The powdered samples were prepared by crushing the high-quality single crys-

tals. The powder size was made less than 3 µm by a precipitation method in order to

obtain a homogeneous intensitiy distribution in the Debye-Scherrer powder ring. In the

precipitation method, we followed a following procedure.

1. The single crystals are crushed into powder with a pestle and a mortar made of

agate for 1 hour.

2. The powder is precipitated in methanol for 1 hour.

3. Supernatant liquid is skimmed and dried well.

The obtained powder sample was sealed in the soda glass capillary tube of 0.2 mm in

diam. For the samples of Y1−xCaxTiO3 with x = 0.37, 0.39 and 0.41, XRD measurements

at various temperature from 20 K to 300 K were carried out by a large Debye-Scherrer

camera installed at the beam line BL-02B2, SPring-8 [10]. A He-gas circulation-type

cryostat was used for the temperature variation from 300 K down to 20 K at intervals

of 20 K. The data were collected by a 0.01◦ step from 8.0◦ to 74.0◦ in 2θ for the x-ray

exposure time of 32 min.

The powder x-ray diffraction for 0 ≤ x ≤ 1 was measured at room temperature by the

micropowder diffractometer at the BL-1B, Photon Factory, KEK [11]. The x-ray exposure

time was 10 to 60 min, depending on the filling factor and the intensity of the incident

radiation. The XRD pattern was recorded by a 0.04◦ step from -44.0◦ to 122.0◦.

Powder x-ray diffraction experiments under pressure up to 2 GPa were carried out at

BL10XU, SPring-8 by using a diamond anvil cell (DAC). Pressure was generated in the

DAC through a 1:1 mixture of methanol/ethanol as pressure transmitting medium. On

both cooling and heating, the pressure was kept constant by the adjustment of the gas

pressure loaded to the membrane which holds the gasket in the DAC. The absolute value

of loaded pressure was determined from the pressure dependence of the wavelength in the
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fluorescence line of a ruby chip enclosed in the DAC. Temperature dependences of the

XRD patterns were obtained from 10 K up to 230 K for the sample of x = 0.37.

The wavelength of the incident x-ray was selected to be 0.735 Å (E ∼ 16.9 keV) to

avoid the large background due to the K-edge scattering (0.728 Å; E ∼ 17.0 keV) from

yttrium atoms in the sample. The structural parameters (a, b, c, α, β, γ, atomic positions)

were determined by the Rietveld analysis with the RIETAN-2000 program [12]. In the

analysis, the set of parameters x was determined to minimize the following described

S(x) by a nonlinear least-squares method,

S(x) =
∑

i

wi[yi − fi(x)]2,

where yi, fi(x) and wi(= 1/yi) are the measured intensisy at the diffraction angle 2θi, a

calculated intensity and statistical weight of the data, respectively.
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Figure 3.1: Rietveld fitting of the x-ray diffraction pattern of YTiO3 measured at the

BL-1B, PF, KEK.
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3.4 Polarized neutron diffraction

Polarized neutron diffraction (PND) technique is a powerful method to observe the

orbital ordering in a ferromagnet [14]. The advantage of this technique is that it can

directly determine the accurate wave functions for the orbital ordered state. The disad-

vantage is that it is useful only below the Curie temperature TC. To determine the wave

function, we compare the magnetic form factor µf(K) experimentally observed with that

calculated for some supposed wave functions, where K is the scattering vector.

For the PND measurements, we measured the forbidden magnetic diffractions which

satisfy the conditions of h + k = 2n + 1, where h and k are the Miller indices and n is

the integer. This means that these special magnetic diffractions should appear with the

existence of the antiferro orbital ordered configuration. These diffractions originate from

the aspherical contribution of the spin density distribution.

In order to obtain the magnetic form factor, we measured some pairs of the reflection

for both parallel spin (spin flipper off) and anti-parallel (on) to the direction of applied

magnetic field B which saturates the magnetization as shown in Fig 3.2. From the ob-

served reflection intensities Coff and Con for each reflection lines at the flipper off and on,

we obtain the ideal intensities of I+ and I−, where the subscripts “off” and “on” stand

for the switching arrangement of a spin flipper equipment, and + and − denote that the

neutron spin is parallel and anti-parallel for the direction of B, respectively. Here, I+

and I− is derived from C, the monitoring time M , the background intensities BG and

poralization ratio of a spin flipper p as following;

I+ =
pIoff − (1− p)Ion

2p− 1
, I− =

pIon − (1− p)Ioff

2p− 1
,

where Ion and Ioff is a normalized intensity when the flipper on and off, respectively,

Ion =
Con

Mon

− BGon

MBG

, Ioff =
Coff

Moff

− BGoff

MBG

.

In the analysis of PND, the observed polarization ratio R, which is the ratio of the

intensities I+ and I−, was related to γ0 = FM/FN after instrumental corrections as below,

R =
I+

I−
=

(
FN + FM

FN − FM

)2

=

(
1 + γ0

1− γ0

)2

,

20



where FM and FN are the magnetic structure factor and the nuclear structure factor,

respectively. Here, we used the knowledge of FN which was obtained from the Rietveld

analysis of powder x-ray diffraction data for each sample of Y1−xCaxTiO3 (x = 0.05, 0.10

and 0.15). The magnetic form factor µf is expressed as following;

µf(K) =
2FM∑

j D exp {2πi(K · rj)} ,

where K is the scattering vector, r is the atomic position in the unit cell, and D is

expressed as D =
e2γN

mc2
= −0.539× 10−15 m,

(e = 1.602× 10−19 C : charge of an electron, γN = 5.051× 10−27 J/T : magnetic moment

of a neutron, m = 9.109× 10−31 kg : mass of an electron, c = 2.998× 108 m/s2 : velocity

of light).

We describe the calculating method for the magnetic form factors based on the theoret-

ical model of the orbital ordering. The calculation will be compared with the experimental

results in Chap. 4.4.

The PND experiments were done for single crystals of Y1−xCaxTiO3 (x = 0.05, 0.10

and 0.15) with the typical sample size of about 3 × 3 × 6 mm3. We used the triple-axis

spectrometer, TOPAN, installed at the beam port 6G of the JRR-3M reactor at JAERI,

Tokai. The data were collected at 1.6 K under a magnetic field B = 1 T applied parallel

to the easy magnetization axis of c-axis with the incident neutron energy of 32.4 meV

(wave length λ = 1.59 Å).

3.5 Resonant x-ray scattering

Resonant x-ray scattering (RXS) is one of the techniques to observe the orbital or-

dered state [16]. This method was first applied to a manganite La0.5Sr1.5MnO4 [18], and

has been exploited to other 3d and 4f materials, e.g. YTiO3 [19], LaTiO3 [20], YVO3

[21], V2O3 [22], NaV2O5 [23], LaMnO3 [24], La1−xSrxMnO3 [25], Pr1−xCaxMnO3 [26],

Nd0.5Sr0.5MnO3 [27], LaSr2Mn2O7 [28], Fe3O4 [29], KCuF3 [30], DyB2C2 [31], CeB6 [32],

and UPd3 [33].

In the RXS we make use of the anomalous scattering factor at the absorption-edge

energy of the target atom in the system. Therefore, we obtain local information of the
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specific atom. In general, the x-ray diffraction intensity for (hkl) reflection I(hkl) is

expressed by using the crystal structure factor Fhkl as;

I(hkl) ∝ |Fhkl|2 , Fhkl =
∑

j

fj exp (ikhkl · rj) ,

where f is the atomic scattering factor, khkl is the scattering vector of the (hkl), and r is

the atomic position in the unit cell. The atomic-scattering factor at the x-ray energy E

near the absorption energy EA is composed of three terms,

f(E) = f0 + f ′(E) + f ′′(E) ,

where f0, f ′ and f ′′ are the normal Thomson scattering factor and real and imaginary

parts of the anomalous scattering factor, respectively. It is noted that these anomalous

scattering factor should be described as a tensor when the orbitals are ordered. Since

the crystal structure factor is a tensor, the RXS intensity depends on both the azimuthal

angle and polarization analyzer angle. The azimuthal angle Ψ is the angle around the

scattering vector as shown in Fig. 3.3 The polarization analyzer angle φ is the angle of

the scattered beam from the PG(0 0 4) analyzer crystal.

Here, we consider the case of LaMnO3 with the antiferro orbital ordering, as shown in

Fig. 3.4. In LaMnO3, Mn3+(1) and Mn3+(2) are alternatively arranged with the (3y2−r2)

and (3x2 − r2) type orbitals, respectively, based on the xy-coordinates. The ordered

orbitals of Mn3+(1) and Mn3+(2) are elongated to the direction of y and x, respectively.

The atomic scattering tensors for each Mn site are expressed as the following, respectively,

f̂1 =




f⊥ 0 0

0 f‖ 0

0 0 f⊥


 , f̂2 =




f‖ 0 0

0 f⊥ 0

0 0 f⊥




where f‖ and f⊥ are the principal values of parallel and perpendicular to the direction of

elongated (3z2 − r2) type orbital, respectively. By taking account of the transformation

introduced by the angular dependence around the scattering vector (azimuthal scan), we

can calculate the azimuthal angle dependence of the orbital ordered superlattice intensity

in the configuration shown in Fig. 3.3;

I(θ, Ψ) ∝ (f‖ − f⊥)2 cos2 θ sin2 Ψ,

23



Sample

Analyzer

Detecter
(φ = 90 deg.)

Detecter
(φ = 0 deg.)

π’

σ’
π

σ

Ψ

φ

k'
k

Synchrotron
radiation

Figure 3.3: Schematic view of the RXS experimental configuration and definition of the
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Figure 3.4: The orbital ordering in the ab-plane of the perovskite manganite, LaMnO3.

The orbital ordering along the c axis repeats the same pattern [24].
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where θ is the Bragg angle of the orbital ordered superlattice. In the case of Y1−xCaxTiO3,

the azimuthal dependence of the RXS intensities are quite complicated, because of having

four Ti sites as shown in Fig. 3.5. If the antiferro orbital ordering proposed by Mizokawa

et al. [34] is realized in Y1−xCaxTiO3 , the azimuthal angle dependence of the (1 0 0) and

(0 0 1) reflections should exhibit twofold symmetry. At the (0 1 1) reflection, on the other

hand, the azimuthal angle dependence of the σ → σ′ component would show a fourfold

symmetry, while the σ → π′ component has a period of 360◦, where σ and π mean the

directions of linear polarization perpendicular and parallel to the scattering plane.

For the measurements, samples were shaped into blocks with surfaces of (1 0 0), (0

0 1) and (0 1 1) of approximately 3× 3 mm2 and the surfaces were polished with Al2O3

powders of 1 µm. The full width at half maximum of the typical mosaic width was about

0.07◦. The experiments were performed on a six-axes diffractometer at BL-16A2, Photon

Factory, KEK. The incident x-ray was monochromatized by a flat double-crystal Si(1 1

1) monochromator and focused by a bent cylindrical mirror. The incident energy was

tuned to the Ti K-edge, which was experimentally determined to be 4.966 keV from

the fluorescence measurement. At this energy, the energy resolution was about 1 eV. To

separate from the diffracted beam to the linearly polarized σ′ and π′ components, we used

a PG(0 0 4) analyzer crystal as necessary, which gives a scattering angle of about 96◦ at

this energy. The azimuthal angle and energy dependences of the RXS were measured at

room temperature for all samples.

25



Figure 3.5: The crystal structure of Y1−xCaxTiO3 (Space Group : Pbnm), where oxygen

ions are located at the apical of octahedrons. The dashed line represents the unit cell.

Four Ti ions are at (0, 1/2, 0), (1/2, 0, 0), (0, 1/2, 1/2) and (1/2, 0, 1/2) for the sites 1, 2,

3 and 4, respectively. The quantum axes xn, yn, zn (n = 1 ∼ 4) are defined from each

titanium site toward the neighbouring oxygen ion.
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Chapter 4

Results and discussion

4.1 Transport and magnetic properties

Figure 4.1(a) presents the temperature dependences of the electrical resistivity ρ for

samples of Y1−xCaxTiO3 (x = 0.3, 0.37, 0.38, 0.39, and 0.41), where the electrical current

direction is parallel to the orthorhombic a-axis.

With increasing x from 0 to 0.41, ρ at 300 K is decreased by four orders of magnitude,

as can be seen in Table. 4.1. To examine the anisotropy of ρ(T ), we measured ρ(T ) for

three current directions I ‖ a, ‖ b and ‖ c. As a result, no systematic differences were

observed.

The high-temperature semiconducting behavior of ρ(T ) is described by the Arrhenius’

equation; ρ(T ) = ρ1 exp (Eg/2kBT ), where ρ1, Eg and kB are a coefficient, an energy

gap and the Boltzmann constant, respectively. The values of Eg are listed in Table. 4.1,

and plotted as a function of x in Fig. 4.2. On cooling below ∼ 200 K, ρ(T ) for x =

0.38 and 0.39 shows a sharp peak which is followed by a drastic decrease. The thermal

hysteresis is characteristic of a first order transition, which is coupled with lattice degree

of freedom such as the phase transition and the phase separation [3]. With increasing

x, the hysteresis width gradually decreases. As for the MI transition temperature, Tρ,

we took the temperature where the data of ρ(T ) on heating has the maximum. Thus

determined Tρ’s are 85, 145 and 165 K for x = 0.37, 0.38 and 0.39, respectively. The

ratio ρ(Tρ)/ρ(4.2K) for x = 0.39 is ∼ 104, which is larger by two orders of magnitude
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Figure 4.1: Temperature dependences of (a) electrical resistivity, (b) magnetic susceptibil-

ity and (c) volume fraction of the low-temperature orthorhombic phase in Y1−xCaxTiO3 .

Dashed and solid lines show heating and cooling processes, respectively. The inset shows

the normalized resistivity (ρ − ρ0)/ρMAX vs T 2, where ρ0 is the residual resistivity and

ρMAX is the maximum value at temperatures below 300 K. The data for x = 0.38, 0.39

and 0.41 are multiplied by 10000, 10000 and 100, respectively.
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than that reported for polycrystalline samples [3, 4, 40–43]. For x = 0.41, by contrast,

ρ(T ) shows a metallic behavior without hysteresis in the whole temperature region. At

low temperatures, ρ(T ) for all samples obeys the T 2-law, ρ = ρ0 + AT 2 as was observed

in polycrystalline samples [3, 43, 44]. The residual resistivity ρ0 decreases from 25 Ωcm

for x = 0.37 to 10−4 Ωcm for x ≥ 0.39.

Table 4.1: Parameters to describe the electrical resistivity ρ(T ) of Y1−xCaxTiO3 . At

low temperatures, ρ(T ) obeys the T 2 law, ρ(T ) = ρ0 + AT 2. Above Tρ, ρ(T ) obeys the

activation law with the energy gap Eg.

x ρ(300K) ρ0 A Tρ Eg

(Ωcm) (Ωcm) (Ωcm/K2) (K) (K)

0.0 3.2×101 — — — 4800

0.10 8.7×100 — — — 2640

0.20 1.7×100 — — — 2040

0.30 3.5×10−1 — — — 1130

0.37 3.6×10−2 2.45×101 1.19×10−3 85 3600

0.38 2.9×10−2 2.64×10−3 2.74×10−7 145 2560

0.39 1.3×10−2 6.87×10−4 1.02×10−8 165 1600

0.41 6.1×10−3 8.46×10−5 7.35×10−9 — —

First, we discuss the hole-doping effect on ρ(T ). A simple picture for the MI transition

based on the Mott-Hubbard model is as following. If x holes per formula unit are doped,

the number of 3d electrons per Ti ion n would decrease as n = 1 − x. At a small x, say

0.05 as was observed in La1−xSrxTiO3 [39], the holes produced in the lower Hubbard band

would become mobile, then the insulating state changes to a metallic state. However, the

transition in Y1−xCaxTiO3 occurs at a large value x = 0.39, as shown in Fig. 4.1. For

the insulating phase, the energy gap Eg estimated from ρ(T ) is listed in Table. 4.1. The

magnitude of Eg as a function of x decreases linearly for 0.37 ≤ x ≤ 0.39, and the linear

extrapolation of Eg(x) to larger x region leads to a critical concentration xh
c = 0.405 where

Eg vanishes. At x = 0.41 just above xh
c , in fact, a metallic state is stabilized even at 290
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K.

In Fig. 4.1(b), we show the temperature dependences of magnetic susceptibility χ(T ) of

selected samples under a magnetic field of 1 T applied parallel to the a axis. No anisotropy

in χ(T ) was observed, for all paramagnetic samples with x in the range 0.3 ≤ x ≤ 0.41.

χ(T ) for T > 200 K obeys the Curie-Weiss law, χ(T ) = Ch/(T − θh
p ), where Ch is the

Curie constant and θh
p is the Weiss temperature. The parameters obtained by a least

squares fit are listed in Table. 4.2. The effective magnetic moment µeff was evaluated

from; µeff =
√

3kBCh/NA, where NA is the Avogadro’s number. In order to describe

the data of χ(T ) below 50 K for 0.37 ≤ x ≤ 0.41, the inclusion of the temperature

independent term was necessary, ie, χ(T ) = χ`
0 + C`/(T − θ`

p), where χ`
0 originates from

diamagnetic and Pauli paramagnetic contributions. For x = 0.37, no peak appears in

χ(T ), even though ρ(T ) has a broad peak at Tρ = 100 K. For x = 0.38 and 0.39, a broad

peak appears in χ(T ) at Tχ = 170 K and 180 K, respectively. The values of Tχ are almost

same as those of Tρ.

We pay our attention to the metallic phase at low temperatures, where ρ(T ) follows

the T 2 law. From the values of the residual resistivity ρ0 and coefficient A listed in

Table. 4.1, one notices that both A and ρ0 rapidly decrease by four orders of magnitude

between x = 0.37 and 0.38. In order to consider the reason for the large drop of ρ0, we

recall that the metallic LTO phase appears at 100 K and 150 K for x = 0.37 and 0.39,

respectively [45]. For x = 0.41, however, the volume fraction of the LTO phase is 60%

at room temperature. The volume fraction of the LTO phase increases on cooling and

saturates to 20, 80 and 90% for x = 0.37, 0.39 and 0.41, respectively. By comparing the

results of ρ(T ) and the volume fraction for x = 0.39 in Figs. 4.1(a) and 4.1(c), we find

that the ρ(T ) starts to drop when the LTO phase appears. When the volume fraction of

the LTO phase is saturated, then ρ(T ) obeys the T 2 law.

In certain manganites and cuprates, phase separations into metallic and insulating do-

mains are known to be responsible for the transition from an insulating state to a metallic

state [49]. Monte Carlo simulations of ρ(T ) for such systems using two or three dimen-

sional clusters indicated that the resistivity behaves metallic when the volume fraction of

metallic phase amounts to 20 ∼ 30% [50–52]. In the present system Y1−xCaxTiO3 , the
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percolation of the metallic LTO phase may lead to the metallic behavior in ρ(T ).

We discuss the hole-doping effect on χ(T ) by analyzing the parameters listed in Ta-

ble. 4.2. At high temperatures, where the whole sample is in a single phase of the high-

temperature orthorhombic, χ(T ) obeys a Curie-Weiss law, χ(T ) = Ch/(T −θh
p ). By using

the Curie constant Ch, the effective magnetic moment µeff per Ti atom was evaluated as

µh
eff =

√
3kBCh/NA. Based on the assumption of the valence states Y3+

1−xCa2+
x (Ti3+

1−xTi4+
x )O3 ,

on the other hand, the average spin moment µs per Ti atom is calculated as µs =
√

1− x × 2
√

S(S + 1), where S = 1/2 for the Ti3+ ion. From the values of µh
eff and

µs, the ratio µh
eff/µs was evaluated and listed in Table. 4.2. The fact that the ratio is

nearly 1 in the whole range of 0 ≤ x ≤ 0.39 confirms that x holes per formula unit is re-

ally doped by the Ca substitution in the insulating region. In the metallic region x ≥ 0.4,

the doped hole x corresponds to the carrier number, n = 1 − x, which was first pointed

out from the x dependence of the Hall coefficient [4].
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At temperatures below 50K, the samples for x ≥ 0.37 are decomposed into the mon-

oclinic and the LTO phases. When the volume fraction of the LTO is saturated, χ(T )

obeys a modified Curie-Weiss low, χ(T ) = χ`
0 +C`/(T −θ`

p). In Table. 4.2, the parameters

χ`
0, C`, θ`

p and µ`
eff are listed. It should be noted that the values of µ`

eff/µh
eff are 0.17, 0.069

and 0.025 for x = 0.37, 0.38 and 0.39, respectively. This significant decrease in µ`
eff/µh

eff

below 1 can be understood if the size of localized moments in the insulating phase above

Tρ is reduced in the monoclinic phase below Tρ. On going from x = 0.37 to 0.41, the value

of χ`
0 is decreased to less than half. This x dependence of χ`

0 can be smoothly connected to

the previous result for x ≥ 0.4 [3,39]. This drop in χ`
0 for x ≥ 0.4 indicates the reduction

in the electron correlation as the system changes into the metallic phase.

Figure 4.1(c) represents the temperature dependences of the volume fraction of the

LTO phase estimated from powder x-ray diffraction analysis [45]. To compare Tρ and the

phase separation temperature TPS, we define TPS as the temperature in which the volume

fraction of LTO is 10% of its saturated value. The values of TPS are plotted as a function

of x in Fig. 4.5. These are same as those of Tρ.

4.2 Pressure effects on structural and transport prop-

erties

The previous study of pressure effect on the MI transition in polycrystalline samples

of Y1−xCaxTiO3 (x = 0.375, 0.39 and 0.40) showed that application of pressure of about

1 GPa changes the system into a metallic state [4,47,48]. For comparison, we have chosen

single crystalline samples with x = 0.37 and 0.39 for the resistivity measurements under

pressure. Here, it should be noted that the samples were cut from a different rod from

that used for the measurements of ρ(T ) and χ(T ) under ambient pressure.

Figure 4.3 represents the results of ρ(T ) under various pressures for x = 0.39. The

sharp transition at Tρ = 165 K under ambient pressure is changed to a gradual transition at

a low pressure of 0.16 GPa. Because no maximum is observed, we take for convenience the

transition inflection point in the ρ(T ) curve as the temperature Tρ(P ). Upon increasing

pressure up to 0.96 GPa, Tρ increases and the value of ρ(T = 280 K) decreases by one
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order of magnitude. It is noteworthy that in the metallic state below 150 K, ρ(T ) does

not depend on pressure, and obeys the T 2-law below 70 K. The overall temperature

dependence at P = 0.96 GPa resembles that for x = 0.41 at P = 0 GPa shown in

Fig. 4.1(a).

10-4

10-3

10-2

10
-1

100

10
1

ρ 
( Ω

cm
 )

3002001000
T ( K )

Y0.61Ca0.39TiO3
I ll a

0.16
0.47
0.57
0.75
0.96

P = 0 GPa

Figure 4.3: Temperature dependences of electrical resistivity in Y0.61Ca0.39TiO3 under

various constant pressures up to 1 GPa. Dashed and solid lines show heating and cooling

processes, respectively. Above 150 K, ρ(T ) rapidly decreases with increasing pressure and

shows a metallic behavior, while ρ(T ) is almost independent of pressure below 150 K.

For the sample of x = 0.37, we show in Fig. 4.4 the temperature dependences of

ρ(T ) and volume fraction of the LTO phase under various pressures. For the resistivity

measurements, we used a clamp-type piston-cylinder pressure cell, in which the pressure

decreased by about 0.1 GPa on cooling due to the solidification of the pressure transmit-

ting medium. The correction of the pressure value was made by using the known pressure
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dependence of resistance in a manganin wire [46]. In Fig. 4.4(a), the pressure value es-

timated at Tρ in the heating process is noted. Upon increasing pressure, Tρ increases

steadily, while the residual resistivity ρ0 decreases by three orders of magnitude in the

narrow range 0.44 ≤ P ≤ 0.58 GPa. It should be noted that the sharp transition in ρ(T )

at 0.84 GPa is similar to that of x = 0.39 at P = 0 (see Fig. 4.3). The width of hysteresis

decreases and vanishes at P = 1.2 GPa. At higher pressures, the system behaves metallic

in the whole temperature region, and ρ(T ) obeys the T 2-law below 70 K.

The volume fraction of the LTO phase under pressure was estimated by powder x-ray

diffraction experiments with the method described in Chapter 4.1. At P = 0, the LTO

phase appears below 120 K, and the volume fraction increases on cooling and saturates

to a value of 25% of the whole sample. We define the phase separation temperature TPS

by the same way as at ambient pressure. With increasing pressure up to 0.8 GPa, both

TPS and the volume fraction increase. At P = 1.7 GPa, TPS eventually exceeds 300 K and

the LTO phase is stabilized in the whole volume.

In this section, we compare the hole-doping effect with the pressure effect on both the

MI transition and the phase separation in Y1−xCaxTiO3 . In Fig. 4.5, we represent four sets

of data of characteristic temperatures; the pressure dependence of Tρ and TPS for x = 0.37,

the pressure dependence of Tρ for x = 0.39, and x dependence of Tρ for 0.37 ≤ x ≤ 0.41

at ambient pressure. Here, the origin at P = 0 for x = 0.39 is shifted upward by 0.82

GPa with respect to that for x = 0.37 so that the curve of Tρ(P ) for x = 0.39 lies on the

curves of Tρ(P ) and TPS(P ) for x = 0.37. This agreement between the two sets of data

implies that the effect of hole-doping of Ca 2% on the MI transition corresponds to that

of application of pressure of 0.82 GPa. This correspondence can be used to normalize the

horizontal scale x in order to plot the data of Tρ(x) for 0.37 ≤ x ≤ 0.41 together in Fig. 4.5.

Now, all the data of Tρ(P ), TPS(P ) and Tρ(x) agree well. Thus, both hole-doping and

application of pressure have equivalent effects on both the MI transition and the phase

separation in Y1−xCaxTiO3 . Similar correspondence was reported in another titanate

LaTiO3+δ and in a manganite La1−xSrxMnO3 , where both hole-doping and application

of pressure stabilize the metallic state as a common result of the decrease in the ratio

U/t [53, 54].
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Figure 4.4: Temperature dependences of (a) electrical resistivity and (b) volume fraction

of the LTO phase in Y0.63Ca0.37TiO3 under pressures up to ∼ 2 GPa. Dashed and solid

lines show heating and cooling processes, respectively.
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Figure 4.5: Pressure dependences of Tρ(P ) and TPS(P ) for x = 0.37 and 0.39, and x

dependences of Tρ at ambient pressure for Y1−xCaxTiO3 . Open (◦) and closed (•) circles

show Tρ(P ) and TPS(P ) for x = 0.37, respectively. Open squares (2) represent Tρ(P ) for

x = 0.39, and the zero point of Tρ(P ) for x = 0.39 is shifted by 0.82 GPa higher than

that of Tρ(P ) for x = 0.37. Crosses (×) show x dependence of Tρ at ambient pressure

in Y1−xCaxTiO3 . Closed triangles (N) represent the temperature of the phase transition

from the high temperature orthorhombic phase (HTO) to the monoclinic one.
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Powder x-ray diffraction analysis has shown that the MI transition in Y1−xCaxTiO3 is

a result of percolation of the metallic LTO domains. In Fig. 4.5, the linear extrapolation

of the data of Tρ(x) and TPS(x) to smaller x region leads to the lower critical concentration

xc ∼ 0.33 where Tρ(x) or TPS(x) vanishes. This fact suggests that the phase separation

and MI transition may remain until x is decreased to x = 0.33 at ambient pressure. This

critical concentration is much larger than xc = 0.05 for a typical Ti-based Mott transition

system La1−xSrxTiO3 [39].

One possible reason for the large difference in the critical concentration between 0.33

in Y1−xCaxTiO3 and 0.05 in La1−xSrxTiO3 is the difference in the charge gap in the host

compounds. The Mott-Hubbard gap of YTiO3 is of 1 eV. On the other hand, that of

LaTiO3 is of 0.1 eV [3, 55]. Another reason may be the orbital ordering in the former.

It is known that the mother material LaTiO3 for La1−xSrxTiO3 is an antiferromagnetic

insulator without orbital ordering, then a metallic state is easily realized by hole-doping

at a low level [56]. In contrast, the mother material YTiO3 for Y1−xCaxTiO3 is a ferro-

magnetic insulator with orbital ordering, then the insulating state might be stable as long

as the orbital order remains [8,13,14,19]. If this is the case, the orbital ordered state may

remain up to x = 0.33. To observe the orbital ordered state in the present system, polar-

ized neutron diffraction and resonant x-ray scattering experiments have been performed.

These results are described and discussed in Chapter 4.4 and 4.5.

39



4.3 Rietveld analysis of powder x-ray diffraction

The powder diffraction patterns of YCaxTiO3 were analyzed with the Rietveld method

by using the program RIETAN-2000 [12] for x = 0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.38, 0.5, 0.75

and 1 at room temperature. The results of the analysis are summarized in Table. 4.3.

For all x except x = 0.38, the value of the goodness-of-fit indicator S = Rwp/Re are less

than 1.3, where Rwp and Re is a weighted pattern R-factor and an expected R-factor,

respectively. Rrp and Re is expressed as,

Rwp =

(
Σiwi[yi − fi(x)]2

Σiwiy2
i

)1/2

, Re =

(
Np −Nr −Nc

Σiwiy2
i

)1/2

,

where yi, fi(x), wi(= 1/yi), Np, Nr, and Nc is the measured intensity at the diffraction

angle 2θi, a calculated intensity, statistical weight of the data, the number of data of the

measured intensities, the number of the fineness parameters and the number of conditions,

respectively. The space group was assigned to Pbnm for all data. This implies that

there is no structural phase transition from x = 0 to 1 at room temperature within our

experimental accuracy.

The bond angles of Ti-O-Ti; ΘIn (along ab-plane) and ΘOut (along c-axis), the bond

lengths of Ti-O; Ti-Ox, Ti-Oy and Ti-Oz, the ratios of Ti-O (Jahn Teller distortion);

∆x
JT = Ti-Ox/Ti-Oz and ∆y

JT = Ti-Oy/Ti-Oz and the bond angles between local co-

ordination axes of O-Ti-O; Ox-Ti-Oy (∠(xy)), Oy-Ti-Oz (∠(yz)) and Oz-Ti-Ox (∠(zx))

estimated from structural parameters are listed in Table. 4.4. Here, the local coordination

axes x, y and z are along the Ti-O bond directions near [11̄0], [110] and [001] as shown

in Fig. 3.5. Suffix x, y and z means this local coordination axes at site 1 and 3. For the

site 2 and 4, the suffix x is exchanged for y. Ti-Ox, Ti-Oy and Ti-Oz in TiO6 octahedra

is defined as the bond length between Ti and O as shown in Fig. 4.7 (a). As shown in

Fig 4.6, ΘIn and ΘOut denote in-plane (ab-plane) Ti-O-Ti angle and out-of-plane Ti-O-Ti

angle which is along c axis, respectively. Fig. 4.7 (b) shows the bond angles of O-Ti-O;

∠(xy), ∠(yz) and ∠(zx). ∆x
JT and ∆y

JT are defined as the ratio between the equatorial

Ti-OE and the apical Ti-Oz bond lengths, where E = x and y.
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(Å

)
2.

07
7(

4)
2.

08
4(

5)
2.

07
0(

4)
2.

05
7(

5)
2.

05
0(

4)
2.

03
0(

5)
2.

00
8(

2)
1.

99
1(

4)
1.

97
4(

4)
1.

96
1(

3)

T
i-
O

y
(Å
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(Å

)
2.

02
5(

2)
2.

01
6(

2)
2.

01
8(

2)
2.

01
8(

2)
2.

01
7(

2)
2.

01
0(

2)
2.

00
3(

1)
1.

99
4(

1)
1.

96
6(

1)
1.

95
1(

1)

∆
x J
T

1.
02

6(
2)

1.
03

4(
4)

1.
02

6(
3)

1.
01

9(
3)

1.
01

6(
3)

1.
01

0(
3)

1.
00

2(
1)

0.
99

8(
3)

1.
00

4(
3)

1.
00

5(
2)

∆
y J
T

0.
99

8(
3)

1.
00

0(
3)

1.
00

1(
3)

1.
00

2(
3)

1.
00

4(
3)

1.
00

8(
3)

1.
00

6(
2)

1.
00

8(
3)

1.
00

3(
3)

1.
00

2(
2)

O
x
-T

i-
O

y
(d

eg
)

90
.5

(1
2)

90
.2

(1
2)

90
.2

(1
2)

90
.1

(1
2)

90
.0

(1
2)

90
.1

(1
2)

90
.1

(1
3)

90
.1

(1
3)

89
.9

(1
3)

89
.5

(1
4)

O
y
-T

i-
O

z
(d

eg
)

90
.2

(1
5)

90
.9

(1
5)

90
.7

(1
5)

90
.3

(1
5)

90
.2

(1
5)

90
.5

(1
5)

90
.4

(1
6)

90
.2

(1
6)

90
.1

(1
7)

90
.5

(1
7)

O
z
-T

i-
O

x
(d

eg
)

93
.4

(1
4)

92
.7

(1
4)

92
.5

(1
4)

92
.2

(1
4)

91
.8

(1
4)

91
.8

(1
4)

91
.9

(1
4)

91
.8

(1
4)

91
.6

(1
5)

90
.9

(1
5)

44



In Figs. 4.8(a) and 4.8(b), the lattice constants a, b and c, and unit cell volume V

are shown, respectively. The lattice constant b decreases, while a and c increase with

increasing x. The crystal system goes from orthorhombic to quasi-cubic with increasing

x. The unit cell volume shrinks as x increases and the decreasing rate grows at around

x = 0.2. This change at x = 0.2 may be related with the magnetic transition.
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Figure 4.8: x dependences of (a) lattice constants and (b) volume in Y1−xCaxTiO3 at

room temperature. Circles (©), triangles (4) and squares (¤) show lattice constants of

a, b and c/
√

2 axes, respectively.

Figure 4.9 shows x dependence of the bond angles ΘIn (angle in ab-plane) and ΘOut

(angle alongc-axis) which is related to the tilting of TiO6. Both ΘIn and ΘOut increase
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linearly with increasing x. The tilting of TiO6 relaxes from ΘIn,Out ∼ 140◦ for x = 0 to

∼ 155◦ for x = 1, though still distorted in a GdFeO3-type.
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Figure 4.9: x dependences of the bond angle of Ti-O-Ti in Y1−xCaxTiO3 at room tem-

perature. Open circles (◦) and closed circles (•) show the bond angle of ΘIn in-plane

(ab-plane) and ΘOut out-of-plane (along c axis), respectively.

Next, we focus differences in the Jahn-Teller (JT) distortion, i.e., the Ti-O bond

lengths and the O-Ti-O bond angles as shown in Figs. 4.10 and 4.11. The bond lengths

Ti-Ox and Ti-Oz gradually decrease with increasing x. On the other hand, Ti-Oy slightly

increases with increasing x up to 0.3 and decreases above x = 0.3. The ratio ∆x
JT is

close to unity in the highly doped region 0.4 ≤ x ≤ 1, and ∆y
JT is almost 1 in whole

region 0 ≤ x ≤ 1. Thus, it is found that TiO6 octahedra which is alternately extended

in ab-plane for x = 0 becomes almost regular above x = 0.4. This relaxation of JT

distortion at x = 0.4 is consistent with the MI transition. In the insulating state, a

TiO6 octahedron is elongated in one direction and transfer t becomes anisotropic, then

3d electron at the Ti-site should be difficult to conduct. While, in the metallic region,

TiO6 octahedra regular and t is isotropic, then electron mobilizes easily. For the bond
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angle between the coordinated axes, ∠(xy) and ∠(zx) are 90◦ in whole region 0 ≤ x ≤ 1

as shown in Fig. 4.11(a). On the other hand, ∠(yz) decreases from 93.5◦ at x = 0 to

92◦ at x = 0.2. Above x = 0.2, the bond angle of ∠(yz) remains constant deviated from

90◦. This means that the local crystal structure changes at xFP = 0.2, above which the

ferromagnetism disappears. This change in ∠(yz) is due to the y direction moving of

oxygen O(2) as shown in Table. 4.3 and Fig. 4.11(b).

From these results, it is expected that 3d orbitals is splitted as shown in Fig. 4.12.
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Figure 4.10: Ca dependences of (a) Ti-O bond lengths and (b) the ratio between Ti-OE

and Ti-Oz (E = x, y) in Y1−xCaxTiO3 . Circles (•), triangles (N) and open squares (¤)

show Ti-O bond lengths between Ti and Ox, Oy and Oz, respectively.
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Figure 4.12: Schematic view of the energy level of the 3d orbitals (a) 0 · x · 0:2, (b)

0:2 · x · 0:4 and (c) x ¸ 0:4 in Y1¡xCaxTiO3.

4.4 Polarized neutron di®raction

The ¯nal analyzed results of the magnetic form factors ¹f are shown in Fig. 4.13 with

open circles. The bars indicate the statistical uncertainties. Note that these magnetic re-

°ections are \forbidden" ones in the usual magnetic structure factor calculation. It means

that these magnetic re°ections should newly appear with the existence of the \antiferro"

orbital ordering. These re°ections can be observed from the aspherical contribution of

the spin density distribution. Therefore, we emphasize that the presence of the magnetic

re°ections at these forbidden reciprocal points is a strong evidence for the existence of

the antiferro orbital ordering in Y1¡xCaxTiO3 (x · 0:15).

Theoretical calculations by means of unrestricted Hartree-Fock approximation by Mi-

zokawa and Fujimori predict orbital ordering in YTiO3 as expressed by the following:

jª1i = c1jz1x1i + c2jx1y1i

jª2i = c1jy2z2i ¡ c2jx2y2i

jª3i = c1jz3x3i ¡ c2jx3y3i

jª4i = c1jy4z4i + c2jx4y4i;
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Figure 4.13: The magnetic form factors indicated by open circles (◦) with error bars. The

values calculated from the obtained wave functions are also plotted with crosses (×).
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where |znxn〉, |ynzn〉 and |xnyn〉 denote the wave function of irreducible representation

in the t2g [34] and c1/c2 denotes the ratio of the wave function with the normalization

condition as c2
1+c2

2 = 1−x. Here, it is noted that the bond lengths TiOx and Ti-Oy are the

longest in the TiO6 octahedron due to the JT distortion for each site n = odd and even,

respectively. In order to determine the coefficient c1, we compared the experimental results

with the theoretical model. In this case, the magnetic form factor fn(Q) theoretically

calculated by Blume [57] and Trammel [58], with neglecting the orbital angular momentum

term as a first-order approximation, can be expressed as,

fn(Q) = 〈j0〉
− 5

14

[
3 cos2 θn − 1 + 3 sin2 θn

{
(c2

2 − c2
1) cos 2φn + 2c1c2 sin 2φn

}] 〈j2〉

− 3

14

[
35 cos4 θn − 30 cos2 θn + 3− 5 cos2 θn(7 cos2 θn − 1)

×{
(c2

2 − c2
1) cos 2φn + 2c1c2 sin 2φn

}] 〈j4〉, (4.1)

where θn and φn (n = 1 ∼ 4) denote the spherical coordinates of the scattering vector Q

relative to the quantization axes at site n and 〈jk〉 (k = 0, 2 and 4) are expectation value

of the spherical Bessel functions given in ref. [59]. We calculate µHf calc
n with c1, c2 and

µH as unknown parameters by using eq. (4.1), and evaluate the goodness-of-fitting S as

expressed the following:

S =

√√√√∑
j

(
µf obs − µHf calc

j

)2

wj

,

where j is the number of the observed reciprocal points, w is the experimental statistics,

µf obs is the observed magnetic form factor and µH is the magnetic moment of 3d electrons.

In Fig. 4.14, we show the c1 and µH variations of S classified by the shading with

intervals of 2.5. In the pure white ares, S is moe than 30 and in the black one, S is less

than 2.5. We determined the best-fitted parameters which give the smallest S = 1.1, 1.3

and 0.5 for x = 0.05, 0.1 and 0.15, respectively. The parameters which give the smallest

S are listed in Table. 4.5.

The coefficient c2
1 of 0.5 = (0.71)2 for x = 0.05 is almost the same value of 0.6 = (0.77)2

for x = 0. This means the orbital ordering is stable for small diluting Ti3+ with Ti4+.
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Figure 4.14: The c2
1 and µH variations of the goodness-of-fitting S classified by the shading.

S becomes smaller as the color of the area becomes more black. The white crosses denote

the smallest S.
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However, c2
1 becomes 0 above x = 0.1 in analysis. But this value is uncertain due to the

largeness of possible range of c2
1 within the analytical error. Then, we could not determine

the unique wave functions for 0.1 ≤ x ≤ xFP. Anyway, it is found that the strong evidence

of orbital ordering is obtained by the polarized neutron diffraction x ≥ xFP. From these

results, it is suggested that the dispersion of the ordered orbitals would increase toward

the magnetic transition x = xFP.

Table 4.5: The fitting parameters c2
1 and µH for comparison between the observed mag-

netic form factors and calculated ones in Y1−xCaxTiO3 (x = 0.05, 0.1 and 0.15). µ5T is

estimated from the measurements of the magnetization at 2 K.

x c2
1 µ (µB)

µH µ5T

0.0 0.6 0.72 0.84

0.05 0.5 0.62 0.78

0.1 0 0.14 0.69

0.15 0 0.07 0.51
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4.5 Resonant x-ray scattering

We have measured the absorption spectra of a titanium foil (50 µm thickness) near

Ti K-absorption edge to calibrate the incident x-ray energy in every experiments. The

absorption spectrum of the titanium foil has a small peak at the K-absorption edge as

shown by an arrow in Fig 4.15. The actual energy value was 4.9665 keV in this case. We

calibrated the observed energy by shift to the standard value of 4.9645 keV in ref. [60].
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Figure 4.15: Absorption spectrum of Ti foil near a titanium K-absorption edge.

For the investigation of the orbitally ordered state of Ti 3d-electron in Y1−xCaxTiO3

(0 < x ≤ 0.75), we have studied the RXS at the “forbidden” reflections, (0 0 1), (0 1 1)

and (1 0 0), near Ti K-edge. To avoid contaminations due to multiple scattering (MS), the

energy dependence was measured at several azimuthal angles. The energy dependences

of RXS intensity at (0 0 1), (0 1 1) and (1 0 0) free from the MS are shown in Fig 4.16

(a), (b) and (c), respectively. Figs. 4.17 (a), (b) and (c) show the magnified figure near

pre-edge energy (E ∼ 4.972 keV) at (0 0 1), (0 1 1) and (1 0 0), respectively. To correct

variations dependent on sample shapes, the intensities of these forbidden reflections are

normalized by the intensitied of the fundamental reflection peaks of (0 0 2), (0 2 2)
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and (2 0 0), respectively. Furthermore, the normalized intensities are again normalized

by the respective structure factors of the fundamental reflection peaks estimated from

Rietveld analysis for Ca concentration dependence. The energy spectrum at the (0 0

1) shows three resonant peaks at 4.972 keV (pre-dege), 4.98 keV (main-dege) and 4.992

keV, and one shoulder at 4.989 keV. At the (0 1 1) reflection, four peaks are observed at

4.972 keV (pre-dege), 4.982 keV (main-edge), 4.986 keV and 4.993 keV. At the (1 0 0)

reflection, six peaks are observed at 4.972 keV (pre-dege), 4.979 keV (main-edge), 4.982

keV, 4.993 keV, 5.001 keV and 5.008 keV. In each reflection, several resonant peaks are

observed in Y1−xCaxTiO3 at the energy higher than the main-edge energy, although only

one RXS peak was observed in manganite systems [18,24]. The RXS energy spectrum of

Y1−xCxTiO3 are similar to the case of YVO3 [21].

We discuss whether Ca the concentration dependences of the RXS intensities are

the same or not for each peak. Fig. 4.18 shows the Ca concentration, x, dependences

of the RXS at the (0 0 1). The x-dependences of the RXS are classified to two types

as following: (1) pre-edge, and (2) main-edge and others at higher energies. The pre-

dege intensity decreases rapidly with increasing x up to x ∼ 0.2 = xFP and vanishes at

x ∼ 0.4 = xMI. On the other hand, both the intensity at the main-edge energy and those

at higher energies are almost constant with increasing x up to 0.1 and gradually decrease

up to x = 0.75. Thus, x dependence of the RXS at pre-edge is different from that at

main-edge. This fact means that the RXS at pre-edge originates from the mechanism

different from that at main-edge. From these results, it is found that the RXS intensities

depend on the excitation energy.

Second, we focus on the azimuthal angle Ψ dependences of the RXS intensities at

pre-edge and main-edge. It is important that the intensity of the RXS depends on the

difference of Ψ from the fundamental reflections. The Ψ dependence of the RXS intensities

directly provides the information of the symmetry on the anisotropic structure factor.

Figs. 4.19 (a), (b), (c) and (d) show the Ψ dependences of the RXS at (0 0 1), (1 0 0),

(0 1 1) at σ → π′ scattering and (0 1 1) at σ → σ′ scattering for x = 0.1, respectively.

The azimuthal angle Ψ is defined as follows; Ψ = 0 when σ ‖ b-axis of sample for (a)

and (b), and Ψ = 0 when σ ‖ a-axis for (c) and (d). Ψ dependences of the (0 0 1) and
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Figure 4.16: Energy dependences of RXS at (a) (0 0 1), (b) (0 1 1) and (c) (1 0 0) in

Y1−xCaxTiO3.
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Figure 4.17: Energy dependences of RXS near E ∼ 4.972 keV (pre-dege) at (a) (0 0 1),

(b) (0 1 1) and (c) (1 0 0).
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(1 0 0) reflections exhibit two-fold symmetries. At the (0 1 1) reflection, on the other

hand, the Ψ dependence at σ → π′ scattering has a period of 360◦ and that at σ → σ′

scattering shows a four-fold symmetry as shown in Figs. 4.19 (c) and (d), respectively.

For 0 < x ≤ 0.5, the Ψ dependences of the RXS coincide with those of YTiO3 (see Fig. 2

in ref. [19]). The Ψ dependence at the pre-edge agree with those at the main-edge in

Y1−xCaxTiO3. From these results, the RXS at the pre-edge by 1s → 3d transition seems

to arise from a 1s → 4p dipole transition by induced the hybridization between the Ti

4p electrons and the neighboring Ti 3d electrons like the case of YTiO3. Hence, the RXS

intensity at the pre-edge can be considered as the order parameter of the orbital ordering.
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Then, we focus on the Ca concentration, x, dependences of the RXS at the pre-edge

energy. Fig. 4.20 (a) shows the x dependences of the RXS at (0 0 1) and (0 1 1) reflections

at the pre-edge energy in Y1−xCaxTiO3. Here, wo don’t touch the RXS intensities at the

(1 0 0) reflection at the pre-edge energy because we can not precisely estimate due to small

signal-noise ratios in our experimental accuracy. Both RXS intensities at the (0 0 1) and

(0 1 1) reflection at the pre-edge energy rapidly decrease with increasing x up to 0.15

∼ 0.2 and vanish at x = 0.4. It means that the orbital ordering is strongly suppressed

with increasing x up to xFP = 0.2, where magnetic order disappears, and vanishes at

xMI = 0.4, where metallic phase is stabilized. x dependence of the bond angle ∠(yz)

between local coordination axes shows a tendency to decrease with increasing x up to xFP

and is become a constant value of 92◦ above xFP as shown in Fig. 4.20 (b). For x ≥ xMI,

the ratio in bond lengths between Ti-Ox and Ti-Oz in TiO6 becomes 1. Namely, the JT

distortion is released and the TiO6 octahedron becomes isotropic for x ≥ xMI = 0.4. From

these results, it is found that the orbital ordering becomes to be strongly suppressed with

increasing x from 0 to xFP and vanishes at xMI.

Next, we discuss the Ca concentration, x, dependences of the RXS at the main-edge

energy. Fig. 4.21 shows the x dependences of the RXS at the (0 0 1), (0 1 1) and (1

0 0) reflections at the main-edge energy. The RXS intensities gradually decrease with

increasing x up to 0.75 and the decreasing rate slows down above x = 0.3. In the metallic

phase of x ≥ xMI = 0.4, the RXS intensity becomes less than one-tenth of that for x = 0.

This RXS intensity has small relation to the orbital ordering, because it is found that the

orbitally ordered state is vanished above xMI from the RXS intensities at pre-edge. The

RXS intensity at the main-edge seems to be caused by the energy level splitting of the Ti

4p orbitals based on the theoretical model by Igarashi and there is three possible origins

as following. The first is that the energy level splitting is arised from the JT distortion,

the second is the tilts of the neighboring octahedron, and the last is that the Coulomb

interaction between the Ti 3d and 4p orbitals. The first model is impossible because the

JT distortion is released above xMI. In addition, this mechanism can not explain the Q-

position dependence, the differences between three reciprocal lattice vectors, of the RXS

intensity in YTiO3 [19]. The second model is based on the deviation from 180◦ of the
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Ti-O-Ti tilting angle. These deviation does not change extremely; (140◦ for x = 0 and

147◦ for x = 0.5). Then, the RXS intensity originated from the tilting of the neighboring

octahedron should be almost independent of x. We can not explain the difference of the

RXS intensities ten times as large as between x = 0 and x = 0.5. As a result, the RXS

intensity is expected to be originated from the third mechanism, coulomb interaction in

Ti 3d and 4p orbitals.
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Figure 4.21: Energy dependences of RXS near E ∼ 4.972 keV (pre-dege) at (0 0 1), (0 1

1) and (1 0 0) reflections.

At last, we describe about the wave functions of the orbital ordered state. From the

ratios between three RXS reflections, we can estimate the coefficient c1 by the model

calculation based on the Coulomb mechanism [19]. As shown in Fig. 4.22 (a), these ratios

does not change with increasing x, therefore, the coefficient c1 should be same. In fact,

the rotation angle rx for x = 0.5, which is related to c1, is determined to be the same

value of 45±10◦ as that for x = 0. The atomic scattering factor tensor of the Ti ion

was determined from measurements of the azimuthal angle, polarization. The anisotropic

component of a tensor, ∆fa, was also determined as shown in Fig 4.22.
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In conclusion,we have utilized the resonant x-ray scattering techniques to study sys-

tematically the orbital ordering of the Ti 3d orbitals in Y1−xCaxTiO3. It is found that

the x dependence at the pre-edge (E ∼ 4.972 keV) is different from that at the main-edge

(E ∼ 4.982 keV) as following. The RXS intensities at the pre-edge rapidly decrease with

increasing x up to xFP and vanish at xMI, but the RXS intensity at the main-edge energy

has no such relation. We have also performed the powder x-ray diffraction to examine the

orbitally ordering state through the JT distortion in the crystal structure. The orbital

states derived from the anisotropy of the Ti-O bond length are consistent with that those

from the RXS at the pre-edge. In the insulating phase of Y1−xCaxTiO3 (x < 0.4), we

have succeeded to experimentally confirm the existence of the orbital ordering with the

RXS at room temperature.
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Chapter 5

Summary

In order to investigate the origin of the temperature-induced metal-insulator (MI)

transition in Y1−xCaxTiO3 at x ∼ 0.39 and clarify the role of the orbital degree of freedom

in the magnetic transition and metal-insulator transition, three approaches have been

taken in the present study: (1) a comparison between the Ca substitution effect and

pressure effect on the MI transition, (2) Rietveld analysis of the crystal structure, i.e.,

GdFeO3-type distortion and Jahn-Teller distortion, (3) observation of orbital ordering by

polarized neutron diffraction (PND) and resonant x-ray scattering (RXS) techniques.

(1) We compared the Ca substitution effect and pressure effect on the transport and the

structural properties. We measured the electrical resistivity ρ(T ) for 0.37 ≤ x ≤
0.41 and powder x-ray diffraction (XRD) at ambient pressure. For x = 0.37 and

0.39, the MI transitions occur at TMI = 100 K and 150 K on cooling, respectively.

Powder x-ray diffraction analysis showed that the monoclinic phase separates into

the monoclinic phase and low-temperature orthorhombic (LTO) phase on cooling

below TPS = TMI. This LTO phase is found to be a metallic phase from the fact

that the residual resistivity decreases when the volume fraction of LTO increases.

For x = 0.37, we measured ρ(T ) and XRD under pressure. The value of TMI (100 K

at P = 0 GPa) increases with increasing pressure, and eventually the metallic phase

is stabilized even at room temperature under P = 1.5 GPa. The phase separation

temperature agrees well with the MI transition temperature, and both temperatures

increase linearly with increasing x or pressure. These results indicate that the MI
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transition in Y1−xCaxTiO3 is not a simple Mott-Hubbard type but is caused by the

percolation of the metallic LTO domains.

(2) Rietveld analysis of powder x-ray diffraction data at room temperature has been done

for the samples in the whole range 0 ≤ x ≤ 1. It is found that the tilting angle of

the TiO6 octahedron (GdFeO3-type distortion; the bond angle of Ti-O-Ti which is

related to the magnitude of superexchange interaction) increases monotonously with

increasing x from 0 to 1. On the other hand, the angle between the local coordination

y and z axes along the Ti-O bond directions decreases from 93.5◦ for x = 0 to 92◦ for

x = 0.2. Above x = 0.2, two Ti-O bond lengths in the ab plane become almost equal,

i.e., Jahn-Teller distortion is released. This structural change should be resemble for

the disappearance of the ferromagnetism at x = xFP.

(3) In the ferromagnetic region x ≤ 0.2, we measured the magnetic form factors of Ti ions

by means of PND in external fields parallel to the c−axis. The PND intensities have

been observed at “forbidden” reflections in the conditions of h + k = 2n + 1, where

h and k are the Miller indexes and n is integer. By comparing the observations with

the model of orbital ordering configuration, we have determined the wave functions

based on the model assuming c1|zx〉 + c2|xy〉 (c2
1 + c2

2 = 1) at site 1, for example.

The coefficient c1 is determined to be 0.77 for x = 0 and x = 0.05. Above x = 0.1,

c1 could not be determined uniquely due to the large range of analyzing error. It is

suggested that the ferromagnetic order becomes unstable when the order of orbitals

is weakened.

The RXS experiments were performed for 0 < x ≤ 0.75 at room temperature. The

main-edge RXS intensity observed at the 1s → 4p transition energy of E = 4.982

keV decreases linearly with increasing x up to 0.2, and more gradually decreases up

to x = 0.75. On the other hand, the pre-edge intensity at the 1s → 3d transition

energy of E = 4.972 keV decreases rapidly with increasing x up to xFP and vanishes

at xMI. The x dependence of the RXS at the main-edge has no dramatic change at

both xFP and xMI and is unlike any local lattice distortion. The x dependence of RXS

at the pre-edge, on the other hand, is similar with that of Jahn-Teller (JT) distortion
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of the TiO6 octahedron. This means that the RXS intensity at the pre-edge reflects

the orbitally ordered state. Thus, we have found that the ordering is weakened above

x = xFP but remains in the whole insulating phase for x < xMI.

By combining the above results (1), (2), and (3), it is found that the temperature-

induced MI transition in Y1−xCaxTiO3 at x ∼ 0.39 is not a simple Mott-Hubbard type

but is result of percolation of the domains of the metallic low-temperature orthorhombic

phase. For the insulating phase for 0 < x < 0.2, the strong evidence of orbital ordering is

obtained by both polarized neutron diffraction and resonant x-ray scattering experiments.

The magnetic order becomes unstable when the order of orbitals is weakened, and the

metallic phase appears when the order of orbitals melts for x > 0.4.
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