
A Mathematical Model for Invasion Range of

Population Dispersing Through Patchy

Environment

Hiromi SENO1∗and Shinko KOSHIBA2

1 Department of Mathematical and Life Sciences

Graduate School of Science, Hiroshima University

Higashi-hiroshima 739-8526 JAPAN

seno@math.sci.hiroshima-u.ac.jp
2 Department of Information and Computer Sciences

Faculty of Science, Nara Women’s University

Nara 630-8506 JAPAN

December 19, 2006

Abstract

In this work, to focus the question of how the dispersion of an invading
population is affected by the spatial distribution of patches that have re-
source available for its settlement and reproduction, we develop a mathe-
matical model with a simple stochastic process, and analyze it. We classify
those patches into three classes: free, occupied and abandoned, depending
on the state of patch use by the population. We especially consider the
range expanded by invaded patches, the invaded range R, assuming a
certain generalized relation between R and the total number of invaded
patches k, making use of an index, a sort of fractal dimension, to char-
acterize the spatial distribution of invaded patches. We show that the
expected velocity is significantly affected by the nature of spatial distri-
bution of resource patches, and is temporally variable. When the invading
population finally goes extinct at a moment, the terminal size of invaded
range at the moment is closely related to the nature of spatial distribution
of resource patches, which is explicitly demonstrated by our analysis.

keywords: invasion – metapopulation – patch – fractal dimension – veloc-
ity – stochastic process

INTRODUCTION

In nature, a variety of species expand their spatial distribution depending on
their ecological characteristics, settling their habitats composed of patchy envi-
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ronments, for instance, of trees, of wetland, or of mountains (Anderson and May
1986; Andow et al. 1990; Dwyer et al. 1997; Jeger 1989; Johnson et al. 1992;
Levin 1992; Neuhauser 2001; O’Neill et al. 1988; Pascual et al. 2002; Russell
et al. 1992; Turner et al. 2001; van den Bosch et al. 1997; With 2002). In gen-
eral, such patchy environment corresponds to the spatially patchy distribution
of resources required for the settlement and the reproduction of population.
In human case, we may consider the geographical place favorable to construct
town or village as such patch. Since such spatial distribution of resources could
be reflected to the resulted population distribution, the spatial distribution of
population would appear patchy in not a few cases. Such patchiness of popula-
tion distribution can be discussed from the viewpoint of fractal, too (Gautestad
and Mysterud 1994; Haskell et al. 2002; Keymer et al. 2000; Mandelbrot 1982;
Morse et al. 1985; Palmer 1988; Russell et al. 1992; Sugihara and May 1990;
Turner et al. 2001; With 1994; With and King 1999; With 2002).

In this paper, with a mathematical model, we consider the effect of spatial
distribution of resource patches on the nature of spatial expansion of population
distribution. Especially we focus on the velocity of its spatial expansion from the
original place where the invasion of population begins. The velocity of spatial
expansion of invaded region must be affected by the nature of spatial distribu-
tion of resource patches. Velocity of spatial expansion of population distribution
has been theoretically discussed in various contexts mostly with mathematical
models of reaction-diffusion system (Brauer and Castillo-Chávez 2001; Dieka-
mann and Heesterbeek 2000; Fagan et al. 2002; Murray 2002a; Murray 2002b;
Shigesada and Kawasaki 1997), integro-differential or integro-difference equa-
tions (Atkinson and Reuter 1976; Brown and Carr 1977; Kot and Schaffer 1986;
Medlock and Kot 2003; Mollison 1977; Neubert et al. 2000), percolation theory
or network theory (Bailey el al. 2000; Grassberger 1983; Keeling 1999; Meyers
et al. 2003; Newman 2002; Otten et al. 2004; Sander et al. 2002; Stauffer and
Aharony 1991; Tan et al. 2000) , cellular automaton or lattice dynamics (Brown
and Bolker 2004; Filipe and Gibson 1998; Filipe et al. 2004; Levin and Durrett
1997; Sato et al. 1994). Especially, mathematical models with percolation the-
ory or network theory have been attracting researchers who are interested in
the invasion threshold which is the critical condition to determine weather the
infection stops in a finite period or keeps its spatial expansion.

In contrast, we here try to discuss the velocity with a mathematical model of
stochastic process, analyzing the expected velocity. In our modeling, to incor-
porate the effect of heterogeneous spatial distribution of resource patches on the
spatial expansion of invaded region, we characterize the spatial distribution of
resource patches with an index, fractal dimension (Hastings and Sugihara 1993;
Mandelbrot 1982), and introduce it into the model. So our model describes
the population dynamics with a stochastic process, and the spatial expansion of
invaded region with a fractal nature of spatial distribution of resource patches.
This type of combination of population dynamics and spatial expansion may be
regarded as an approximation for the real interrelationship between them. We
show that our modeling would be useful to get theoretical insights or develop
the more advanced or practical model about the spatial expansion of invaded
region.
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MODELING

Assumptions

In our modeling, we classify the patches into three classes, depending on the
state of patch use by the population: free, occupied and abandoned. Occupied
patch means the patch where the population is consuming the resource in it,
making its reproduction. Abandoned patch does the patch exhausted its re-
source and abandoned by the population. Free patch is the patch that has not
been invaded yet. Population dispersion occurs only from occupied patches, and
the disperser invades some free patches. Such invasion to free patches causes
the expansion of invaded region determined by the population distribution in
space.

As for the class of abandoned patch, in another contexts, we may regard it
as the population extinction within the patch. If the considered population is
of a harmful insect to be exterminated, such abandoned patch may be regarded
as the artificially exterminated patch aggregating the insect. In our modeling,
it is essential that the patch belonging to the class of abandoned patch is not to
provide the disperser from it or to attract any disperser into it. In this sense,
the abandoned patch may be regarded as the isolated patch.

With such abandonment of patches, our model could be regarded as for
a spatial dispersion of population which appears as an outbreak at a certain
habitat and moves away from the origin, consuming every available resource,
for instance, like a grasshopper outbreak.

Our modeling assumes the followings:

• Invasion rate depends only on the total number of occupied patches.

• Only free patch could be invaded.

• Abandoned patch is never invaded or used again.

• Settlement and abandonment of a patch are independent of those of any
other patches.

We should remark that the invasion rate is determined by the number of patches
instead of population size like (Seno and Matsumoto 1996). Population size of
disperser would be closely related to the population size in occupied patches as
the source of dispersers. Hence, in our modeling of this paper, we assume that
the population size of disperser would be positively related to the number of
occupied patches.

We do not consider the population dynamics within each patch, but classify
the patch as mentioned above in terms of its use by the population. In this
sense, our modeling can be regarded as a sort of metapopulation dynamics (for
instance, see Hanski 1994a; Hanski 1994b; Hanski 1999; Johnson et al. 1992;
Keymer et al. 2000; Ovaskainen and Hanski 2001; With and King 1999), Besides,
according to the classification of patches into three classes and their definitions,
our modeling may be regarded as corresponding to a kind of SIR epidemic
dynamics (for instance, see Brauer and Castillo-Chávez 2001; Diekamann and
Heesterbeek 2000; Murray 2002a; Shigesada and Kawasaki 1997).

In this paper, we focus the number of occupied patches, h, and that of
invaded patches which consist of occupied and abandoned, k. Invaded patch
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is an occupied or abandoned one, that is, a patch which has experienced the
invasion. The number of abandoned patches is given by the difference k − h.

Model Construction

Probability distribution for the state of patch use

We donote by P (k, h, t) the probability of state such that there are k invaded
patches and h occupied patches at time t in the considered system. To deter-
mine the probability P (k, h, t), we consider the possible transitions of state in
sufficiently small time interval (t, t + ∆t] with our modeling assumptions, and
derive the following system of differential equations that govern the temporal
variation of probability P (k, h, t):

dP (k, h, t)
dt

= −(β+γ)hP (k, h, t)+γ(h+1)P (k, h+1, t)+β(h−1)P (k−1, h−1, t),

(1)
for k ≥ 2, h ≥ 1, k ≥ h + 1, and the following additional two:

dP (k, 0, t)
dt

= γP (k, 1, t), (2)

dP (k, k, t)
dt

= −k(β + γ)P (k, k, t) + (k − 1)βP (k − 1, k − 1, t) (3)

for k ≥ 1. Parameter β is the settlement rate, and γ the abandonment rate. If
the considered population is of a harmful insect to be exterminated, γ may be
regarded as the extermination rate for a patch aggregating the insect.

The essence of modeling for the derivation of above equations is as follows:
Probability that a free patch is invaded during sufficiently small period ∆t by
the disperser from an occupied patch is assumed to be given by β∆t + o(∆t)
independently of the distance between these patches. Since we assume that the
settlement to a free patch by the disperser from an occupied patch is independent
of that by any other occupied one, the probability that a free patch is invaded
by any of dispersers from h occupied ones becomes βh∆t + o(∆t). Probability
that an occupied patch is abandoned is assumed to be given by γ∆t + o(∆t).
When there are h occupied patches, the probability that only one of them is
abandoned is given by the probability for the abandonment of an occupied patch
and that for the non-abandonment of the other h− 1 occupied ones. Therefore,
the probability that only one occupied patch is abandoned during sufficiently
small period ∆t is given by γh∆t + o(∆t). Probability that more than one
occupied patches are abandoned is to be o(∆t). Moreover, from the assumption
of independence between settlement and abandonment, the probability that
both settlement and abandonment occur during the time period ∆t is given by
o(∆t), because the probability for each of them has the order ∆t.

Initial condition

We assume that the invasion begins with a patch at time 0, so that the initial
condition is given by

P (k, h, 0) =

{
1 if k = h = 1,

0 otherwise.
(4)
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Figure 1: Illustrative explanation of the relation of the fractal dimension d to the spa-
tial pattern of patch distribution. Schematic process of settlement and abandonment
is also shown. White disc indicates free patch, black occupied, and grey abandoned.
(a) d ≈ 1; (b) 1 < d < 2; (c) d ≈ 2.

An invader species is assumed to be introduced into the considered environment
in artificial or natural reason. Then the invader species settles in a patch which
is the original place of invasion.

Expansion of invaded range

Next, we consider the range expanded by invaded patches, say, the invaded
range. We characterize the invaded range by the minimal diameter R which
includes all invaded patches.

In the case when the invaded range expands in every direction with the
same probability, the shape of invaded region can be approximated by the disc,
and therefore, when the spheric nature of the earth can be negligible and be
approximated well by the plane, the range R approximately has the following
relation with the number of invaded patches k: k ∝ R2. However, since the
expansion of invaded range is constrained by the spatial distribution of resources,
which could be in general heterogeneous, the shape is possibly inhomogeneous
in direction. It is likely that the shape can be characterized by its fractal nature
(for the concept of “fractal”, for instance, see Hastings and Sugihara 1993;
Mandelbrot 1982; Sugihara and May 1990). To deal with such case, we assume
the generalized relation between the invaded range and the total number of
invaded patches as follows:

k ∝ Rd (1 ≤ d ≤ 2), (5)

where the power d characterizes the spatial pattern of invaded region occu-
pied by invaded patches (Fig. 1). Power d is called cluster dimension or mass
dimension, which is a sort of fractal dimension (Hastings and Sugihara 1993;
Mandelbrot 1982). When d ≈ 2, the spatial distribution of invaded patches
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Figure 2: Illustrative explanation of range R(2).

can be approximated well by a disc. When d ≈ 1, the distribution can be ap-
proximately regarded as one dimensional, that is, the invaded patches can be
regarded to be arrayed along a curve.

This idea of introduction of fractal nature into the mathematical model for
the spatial patch distribution is the same as that in Seno (1993). This modeling
may be regarded as a sort of mean-field approximation for the percolation pro-
cess on an anisotropic/fractal lattice or the growing network (Bailey el al. 2000;
Grassberger 1983; Meyers et al. 2003; Newman 2002; Otten et al. 2004; Sander
et al. 2002; Stauffer and Aharony 1991; Tan et al. 2000). In such previous mod-
els, the main problem was the invasion threshold which is the critical condition
to determine if the invasion stops in a finite period or keeps its spatial expan-
sion. In contrast, we are now going to focus the velocity of spatial expansion of
invaded range.

For convenience to apply the relation (5) for our modeling, we now define
the proportional constant C:

k = CRd (1 ≤ d ≤ 2). (6)

Next, conventionally we define the mean distance R(2) from one patch to the
nearest neighbour (Fig. 2). In our modeling, R(2) is assumed to be corresponding
to the expected invaded range expanded by two invaded patches, that is, k = 2.
Therefore, from (6), we assume that

2 = CR
d

(2). (7)

Hence, from (6) and (7), for the expected number of invaded patches 〈k〉t at time
t, we assume the following relation for the expected invaded range rt at time t:

〈k〉t = 2rd
t (1 ≤ d ≤ 2), (8)

where rt is the expected invaded range measured in the mean distance R(2):
rt ≡ Rt/R(2).

Further, we can define the expected velocity Vt of expansion of the invaded
range at time t by

V t =
drt

dt
.
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So, from (8), we can obtain the following relation between the expected velocity
V t and the expected number 〈k〉t of invaded patches at time t:

V t =
1
d

(
1
2

)1/d

〈k〉1/d−1
t · d〈k〉t

dt
. (9)

ANALYSIS

Expected Number of Occupied Patches

We denote by 〈h〉t the expected number of occupied patches at time t. It is
defined by

〈h〉t =
∞∑

k=1

k∑
h=1

hP (k, h, t). (10)

From (1) and (3), we can obtain the following:

d

dt
〈h〉t = (β − γ)〈h〉t,

and then

〈h〉t = e(β−γ)t, (11)

where we used the initial condition (4) for (10): 〈h〉0 = 1.

Expeceted Number of Invaded Patches

As for invaded patches, we denote by 〈k〉t the expected number of invaded patches
at time t, defined by

〈k〉t =
∞∑

k=1

k

{
k∑

h=0

P (k, h, t)

}
. (12)

From (1), (2) and (3), we can obtain the following:

d

dt
〈k〉t = β〈h〉t.

With (11), we can solve this differential equation and get

〈k〉t =
β

β − γ
{e(β−γ)t − 1} + 1, (13)

where we used the initial condition (4) for (12): 〈k〉0 = 1.
Now, we consider the saturated value of 〈k〉t as t → ∞. From (13), for

β ≥ γ when the settlement rate is not less than the abandonment rate, 〈k〉t
becomes positively infinite as t → ∞. On the other hand, for β < γ when the
abandonment rate is greater than the settlement rate, the saturated value is as
follows:

〈k〉t→∞ =
γ

γ − β
. (14)
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Figure 3: Temporal development of the expected invaded range. (a) 0 < β/γ < 1/2,
numerically drawn for β = 0.3 and γ = 0.8; (b) 1/2 ≤ β/γ ≤ 1, for β = 0.3 and
γ = 0.5; (c) 1 < β/γ < d, for β = 0.55 and γ = 0.5; (d) β/γ ≥ d, for β = 0.55 and
γ = 0.5.

Expected Invaded Range

Since, from (8),

rt =
(
〈k〉t
2

)1/d

, (15)

we can consider how the expected invaded range rt depends on the fractal
dimension d of the spatial distribution of patches, making use of (13). For
0 < β/γ < 1/2, when the abandonment rate is sufficiently greater than the set-
tlement rate, the expected invaded range rt gets larger as d is larger (Fig. 3(a)).
This means that the invaded range is expected to become wider as patches
are more uniformly distributed. In contrast, for β/γ ≥ 1/2, the expected in-
vaded range gets smaller as d is larger (Fig. 3(b-d)). In this case, the invaded
range is expected to be narrower as the patches are more uniformly distributed.
Therefore, in our model, only if the settlement rate is smaller than half of the
abandonment rate, the more uniform distribution of free patches causes the
wider expected invaded range (Fig. 4).

Now, we consider the saturated value of expected invaded range as t → ∞.
From (13) and (15), for β ≥ γ, rt becomes positively infinite as t → ∞ (Fig. 3(c,
d)). For β < γ, it saturates to the following value as t → ∞ (Fig. 3(a, b)):

rt→∞ =
(
〈k〉t→∞

2

)1/d

=
(

1
2
· γ

γ − β

)1/d

. (16)
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Figure 4: d-dependence of the saturated value of expected invaded range. (a) 0 <
β/γ < 1/2, numerically drawn for β = 0.3 and γ = 0.8; (b) β/γ ≥ 1/2, for β = 0.3
and γ = 0.5.

Expected Expansion Velocity of Invaded Range

From (13), we can get the following expected expansion velocity of invaded
range, V t defined by (9):

V t =
1
d

(
1
2

)1/d

βe(β−γ)t

[
β

β − γ
{e(β−γ)t − 1} + 1

]1/d−1

=
1
d

(
1
2

)1/d

〈k〉1/d−1
t {(β − γ) (〈k〉t − 1) + β} . (17)

When β/γ ≤ 1, that is, when the abandonment rate is not less than the set-
tlement rate, the expected velocity V t monotonically decreases in time (Fig. 5(a)).

When 1 < β/γ < d, that is, when the settlement rate is greater than the
abandonment rate and small enough so as β/γ less than d, the expected velocity
V t decreases in the earlier period and then turns to increase monotonically
(Fig. 5(b)). We denote by tc the time at the moment when the expected velocity
turns from decreasing to increasing. From (9), we can get

tc =
1

β − γ
ln

γ

β
d. (18)

When β/γ ≥ d, that is, when the settlement rate is sufficiently greater than
the abandonment rate, the expected velocity V t monotonically increases in time
(Fig. 5(c)).

In case of β/γ > 1, from (17) for sufficiently large t,

V t ≈
1
d

(
1
2

)1/d

β

[
β

β − γ

]1/d−1

e{(β−γ)/d}t =
1
d

(
1
2

)1/d

(β − γ)〈k〉1/d
t . (19)

Therefore, if β/γ > 1, the expected velocity V t exponentially increases for suffi-
ciently large t, with the exponent inversely proportional to the fractal dimension
d.

Consequently we can see how the expected velocity V t depends on the fractal
dimension d of the spatial distribution of patches. The expected velocity gets
smaller as d is larger (Fig. 5(a-c)) for any value of β/γ. Therefore, in our model,
the more uniform distribution of patches causes the slower expansion of invaded
range.
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Figure 5: Temporal variation of the expected expansion velocity of invaded range.
(a) 0 < β/γ ≤ 1, numerically drawn for β = 0.3 and γ = 0.5; (b) 1 < β/γ < d, for
β = 0.5 and γ = 0.4; (c) β/γ ≥ d, for β = 0.5 and γ = 0.4.

Probability for Termination of Invasion

We denote by Ph=0 the probability for the termination of invasion. Once all the
occupied patches disappear in space because of abandonment, the invasion can
no longer continue and restart. This means the termination of invasion. If the
invasion terminates at time t, the state of patch use at time t−∆t should be with
only one occupied patch for sufficiently small ∆t, and it should be adandoned
during ∆t without causing any new settlement. When the number of invaded
patches is k at time t, the probability for this event is given by

P (k, 1, t)[1 − β∆t − o(∆t)] · [γ∆t + o(∆t)] = γP (k, 1, t)∆t + o(∆t). (20)

Therefore, the probability for the termination of invasion between t−∆t and t
is given by the sum of (20) over any possible k.

Making use of the probability generating function (p.g.f.) defined by

f(x, y, t) =
∞∑

k=1

k∑
h=0

P (k, h, t)xkyh, (21)

we can derive the probability Ph=0 for the termination of infection (as for the
detail of p.g.f., see Appendix):

Ph=0 =
∫ ∞

0

γ
∞∑

k=1

P (k, 1, t)dt

=
∫ ∞

0

γ · ∂f

∂y

∣∣∣∣
x=1,y=0

dt

=
∫ ∞

0

γ · e−(β−γ)t{(β − γ)/β}2

1 − e−(β−γ)tγ/β
dt

= min
{

γ

β
, 1

}
. (22)

When the probability Ph=0 is 1, that is the case when the abandonment rate
is greater than the settlement rate, the invasion certainly terminates in a finite
time (Fig. 6).
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Figure 6: Parameter dependence of the probability for the termination of invasion,
Ph=0. (a) β-dependence; (b) γ-dependence.

Figure 7: Parameter dependence of the expected time for the termination of invasion
〈t〉h=0. (a) β-dependence; (b) γ-dependence.

Expected Time for Termination of Invasion

We denote by 〈t〉h=0 the expected time at which the termination of invasion
occurs. From the arguments in the previous section, we can obtain it as follows:

〈t〉h=0 =
∫ ∞

0

tγ
∞∑

k=1

P (k, 1, t)dt

=


+∞ if β ≥ γ;

1
β

ln
γ

γ − β
if β < γ.

(23)

For β < γ when the abandonment rate is greater than the settlement rate, we
can expect the invasion terminates at a finite time 〈t〉h=0 (Fig. 7).

Expected Number of Invaded Patches at Termination of
Invasion

We denote by 〈k〉h=0 the expected number of invaded patches at the termination
of invasion. Integral

∫ ∞
0

γP (k, 1, t)dt gives the probability that the number of
invaded patches is k at the termination of invasion. Therefore, making use of
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the p.g.f. (A.28), we can get the following:

〈k〉h=0 =
∞∑

k=1

k

∫ ∞

0

γP (k, 1, t)dt

= γ

∫ ∞

0

∞∑
k=1

kP (k, 1, t)dt

= γ

∫ ∞

0

∂

∂y

(
∂f

∂x

)∣∣∣∣
x=1,y=0

dt

=
γ

γ − β
. (24)

From (14) and (24), we see that the expected number of invaded patches at
the termination of invasion, 〈k〉h=0, is identical to the saturated value of 〈k〉t,
〈k〉t→∞:

〈k〉h=0 = 〈k〉t→∞.

Therefore, 〈k〉h=0 has its natures same as for 〈k〉t→∞. Hence, the expected
range at the termination of invasion is also equal to the saturated range of rt,
rt→∞.

DISCUSSION

In this work, to focus the question of how the dispersion of an invading popula-
tion is affected by the spatial distribution of patches that have resource available
for its settlement and reproduction, we developed a mathematical model with
a simple stochastic process, and analyzed it.

In reality, a variety of species expand their spatial distribution depending
on their ecological characteristics, settling their habitats composed of fragmen-
tated/patchy environments, for instance, of trees, of wetland, or of mountains
(Brown and Bolker 2004; Caraco et al. 2001; Drenth 2004; Johnson et al. 1992;
Neuhauser 2001; O’Neill et al. 1988; Otten et al. 2004; Pascual et al. 2002;
Russell et al. 1992; Turner et al. 2001; van den Bosch et al. 1997; With 2002).
So we can regard each of such spatially fragmentated habitats as the patch
available for an invader population. In human case, we may consider such patch
as the geographical place favorable to construct town or village.

We assumed that those available patches are classified into three classes:
free, occupied and abandoned, depending on the state of patch use by the popu-
lation. Occupied patch is where the population is consuming the resource in it,
making its reproduction. Abandoned patch is where the resource is exhausted
and the population abandoned. It may be regarded as the patch where the
population goes extinct within it. Free patch is the patch that has not been
invaded yet. Dispersers/migrators appear only from occupied patches, and the
dispersers/migrators invade into some free patches. Such invasion to free patches
causes the expansion of considered population distribution in space.

In our modeling, we do not consider the population dynamics within each
patch, but classify the patch as mentioned above in terms of its use by the pop-
ulation. In this sense, our modeling can be regarded as a sort of metapopulation
dynamics (Hanski 1999; Johnson et al. 1992; Keymer et al. 2000; With and King

12



1999), or more specifically a sort of stochastic patch occupancy modeling (Hanski
1994a; Hanski 1994b; Ovaskainen and Hanski 2001). Besides, according to the
classification of patches into three classes and their definitions, our modeling
may be regarded as corresponding to a kind of SIR epidemic dynamics (for in-
stance, see Brauer and Castillo-Chávez 2001; Diekamann and Heesterbeek 2000;
Murray 2002a; Shigesada and Kawasaki 1997).

We considered the probability for the state such that k invaded and h occu-
pied patches exist at time t. Invaded patches consist of occupied and abandoned
ones, that is, those which have experienced the invasion. We constructed the
system of differential equations to describe the temporal variation of the proba-
bility distribution, and analyzed it. Then, we developed the mathematical mod-
eling for the range expanded by invaded patches in space, the invaded range,
which can be characterized by the expected minimal diameter R which includes
all invaded patches. We assumed a certain generalized relation between R and
the total number of invaded patches k, making use of an index called cluster
dimension or mass dimension, that is a sort of fractal dimension (Hastings and
Sugihara 1993; Mandelbrot 1982; Sugihara and May 1990), to characterize the
spatial distribution of patches. With the relation, we derived the temporal vari-
ations of expected invaded range and its expected expansion velocity. Although
we applied the fractal dimension to incorporate some notion of space or het-
erogeneity in space into our model, the location or the configuration of patches
in space is not explicitly introduced in it. In this sense, our model could be
regarded as one between non-spatial population dynamics model and numerical
spatial dynamic model, and may be a kind of semi-spatial model as called by
(Filipe et al. 2004).

In our modeling, a free patch is invaded with probability proportional to
the total number of occupied patches, that is, the total number of habitats with
inhabiting population. Our modeling assumption may be translated as follows:
the invasion for a free patch would be proportional to the total population size
of all occupied patches, as in Seno and Matsumoto (1996) which analyzes a
mathematical model for population dynamics to expand its spatial distribution
with patch creation by the existing population. This is not exactly compara-
ble to our model in this paper, because ours is of metapopulation dynamics
with a given spatial distribution of resource patches, without considering the
population dynamics within each patch or the patch size.

From the results of our analysis on the mathematical model, we found that
the expected velocity is significantly affected by the nature of spatial distribution
of resource patches, and is temporally variable, differently from those results fre-
quently derived for the mathematical model with the reaction-diffusion system
in continuous and homogeneous space (for instance, see Murray 2002a; Murray
2002b; Okubo and Levin 2001; Shigesada and Kawasaki 1997). Consequently we
found three types of temporal variation of expected velocity of invaded range
expansion, depending on the fractal dimension for the spatial distribution of
resource patches: monotonically decreasing, monotonically decreasing, and in-
creasing after initially decreasing.

The last case implies that we have to pay attention to the expansion of
invaded region even if its velocity is observed to decrease, especially in the early
period of invasion. Invader population might decrease its velocity of spatial
expansion in early period and then turn to increase the velocity to expand its
spatial distribution faster and faster.
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It may be more realistic that a free patch would be invaded by dispersers
from some spatially neighbour occupied patches. For instance, this may be
incorporated by introducing a fractal-dimension-dependence of settlement rate.
Such assumption for the location or the configuration of patches in space makes
the model more difficult to be mathematically analyzed, although it must be
interesting from the viewpoint of mathematical biology. This will be surely the
next step of this type of mathematical model to be considered.

Some cellular automaton models or lattice models have been considered such
population invasion in heterogeneous space (Bailey el al. 2000; Brown and Bolker
2004; Filipe and Gibson 1998; Filipe et al. 2004; Grassberger 1983; Keeling 1999;
Levin and Durrett 1997; Meyers et al. 2003; Newman 2002; Otten et al. 2004;
Sander et al. 2002; Sato et al. 1994; Stauffer and Aharony 1991; Tan et al. 2000).
Computer-aided numerical analysis has been always useful in the analysis for
such model, whereas numerical calculations could not necessarily derive the
general result about the nature of population invasion in heterogeneous space.
Only a few mathematical methods could reach some general features of such
model, for instance, the mean field approximation and the pair approximation
etc. (see Caraco et al. 2001; Filipe and Gibson 2001; Filipe et al. 2004; Pascual et
al. 2002; Ovaskainen and Hanski 2001; Ovaskainen et al. 2002; Sato et al. 1994)
Even though such model could be easily constructed, for instance, by a type
of celluler automaton, we do not argue here such type of numeric models any
more.

In this paper, we consider our mathematical model in the general context
of spatial expansion of invaded range of population dispersing through spatially
patchy distribution of resource. With some necessary modifications, our mod-
eling could be easily applied for the more specified case of the spatial expansion
of population distributed through a patchy/fragmentated habitats in space.

If we consider a population dynamics of sexual reproduction, we may regard
the patch as the female individual or a sort of female group, which is searched by
dispersing males (as for a mathematical modeling on the same standing point,
for instance, see Hirata and Seno 1997). The abandonment of patch is regarded
as the mated female (group) which becomes out of mating target.

For the case of prey-predator population dynamics, the patch in our model
could correspond to the prey individual or group (as for the same standing point,
for instance, see Russell et al. 1992). In this case, the prey is regarded as the
resource for predator, and the abandonment of patch is as the consumption of
prey by predation, or the extinction of both prey and predator in it.

In case of host-parasite population dynamics, the patch corresponds to the
host individual or group under parasitism by dispersing parasites. The aban-
donment of patch is regarded as the parasitized host, so that this is the case
when the parasitized host cannot be parasitized again without multi-parasitism.

As another contexts for the application of our model, we could consider the
epidemic dynamics of disease transmission through immobile units of infection,
as town, plant, etc. and classify those units into three classes: susceptible,
infective and recovered (Koshiba and Seno 2005). Along this contexts of epi-
demic dynamics, the parameter β can be regarded as the infection rate from
an infective unit to a susceptible one while γ can be as the recovery rate with
immunity or the death rate. In this case, the invaded range considered in this
paper corresponds to the range expanded by infected units, so that it means
the spatial range damaged by the epidemic disease. Our modeling assumption
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that the settlement rate depends only on the total number of occupied patches
corresponds to, for instance, the case that the epidemic vector has a high mobil-
ity to transmit the disease, or the case that the disease transmission is through
the matrix environment (e.g. wind, water or soil) surrounding susceptible units
(Bailey el al. 2000; Drenth 2004; Otten et al. 2004). Environment-dependent
way of disease transmission and the sanitary/health condition determine the
nature of infected area expansion (Gilligan 2002; Keeling et al. 2001; van den
Bosch et al. 1997). In case of plants or crops under attack from pests and dis-
eases, the spatial distribution of susceptible hosts is considered as important
for the spread of infection (Brown and Bolker 2004; Caraco et al. 2001; Drenth
2004; Jules et al. 2002; Otten et al. 2004; van den Bosch et al. 1997). However,
little is known about the effect of environmental heterogeneity on the spatial
expansion of epidemics.

For the spatial expansion of population distribution, some well-known math-
ematical models are of reaction-diffusion system in spatially continuous space
(Murray 2002a; Murray 2002b; Okubo and Levin 2001; Shigesada and Kawasaki
1997). However, in general, it is not easy or is sometimes much tactical to in-
troduce the nature of spatial heterogeneity of habitat distribution into such
model with reaction-diffusion system. In contrast, in case of spatially discrete
models, frequently constructed by cellular automaton or lattice space (Bailey
el al. 2000; Brown and Bolker 2004; Filipe and Gibson 1998; Filipe et al. 2004;
Levin and Durrett 1997; Otten et al. 2004; Rhodes et al. 1997; Sato et al. 1994),
introduction of spatial heterogeneity is relatively easy, whereas mathematical
analysis is rarely easy and becomes harder as the number of factors governing
the population dynamics increases, so that a number of numerical calculations
are required. Stochastic model like ours is another way for the theoretical study
that could give some new insights, as some researches in landscape ecology in-
dicate (Dunning et al. 1995; Fortin et al. 2003; Turner et al. 2001; Wiegand et
al. 1999). Since there has been few models to consider the velocity of spatial
expansion of invaded region over such spatially distributed patchy environment,
we hope that our modeling consideration would be a pioneer approach to the
problem.

APPENDIX

Applying (1), (2) and (3) with a cumbersome and careful calculation, we can
derive the following partial differential equation for the probability generating
function (p.g.f.) f(x, y, t) defined by (21):

∂f(x, y, t)
∂t

= {−(β + γ)y + γ + βxy2}∂f(x, y, t)
∂y

. (A.25)

From (4), the initial condition is given by

f(x, y, 0) =
∞∑

k=1

k∑
h=0

P (k, h, 0)xkyh

= P (1, 1, 0)xy

= xy. (A.26)
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In addition, the following condition can be derived:

f(1, 1, t) =
∞∑

k=1

k∑
h=0

P (k, h, t) = 1, (A.27)

because the sum of probability for any possible k and h corresponds to the
occurrence of any event.

With condition (A.26) and (A.27), we can solve (A.25) as follows (for in-
stance, see p.62-63 in Bailey 1957):

f(x, y, t) = x ·
[
v+(x) − v̂(x){v+(x) − y}

Φ(x)

]
, (A.28)

where

Φ(x) = {v+(x) − y} + {y − v−(x)}e−βxv̂(x)t;
v̂(x) = v+(x) − v−(x),

and v+(x) and v−(x) are functions of x, given by two distinct roots of the
following equation in terms of ξ:

βxξ2 − (β + γ)ξ + γ = 0.

Acknowledgements

The author HS thanks to Sergei V. Petrovskii for his encouragement and valu-
able suggestions to complete the manuscript.

References

[1] Anderson, R.M. and May, R.M., 1986. The invasion, persistence and spread
of infectious disease within animal and plant communities. Phil. Trans. Roy.
Ser. B 314: 533-570.

[2] Andow D.A., Kareiva, P.M., Levin, S.A. and Okubo, A., 1990. Spread of
invading organisms. Landscape Ecology 4: 177-188.

[3] Atkinson, C. and Reuter, G.E.H., 1976. Deterministic epidemic waves. Math.
Proc. Camb. Phil. Soc. 80: 315-330.

[4] Bailey, N.T.J., 1957. The Mathematical Theory of Epidemics, Charles Griffin
& Co. Ltd., London.

[5] Bailey, D.J., Otten, W. and Gilligan, C.A., 2000. Saprotrophic invasion
by the soil-borne fungal plant pathogen Rhizoctonia solani and percolation
thresholds. New Phytol. 146: 535-544.
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