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Abstract. We consider a mathematical modelling for the group size determina-
tion by the intra-reactions, self-growth, ostracism and fission within a group, and
by the inter-reactions, immigration and fusion between two groups. In some group
reactions, a conflict between two groups occurs about the reaction to change the
group size. We construct a mathematical model to consider such conflict, taking
into account the inclusive fitness of members in each group. In the conflict about
fusion between two groups, our analysis shows that the smaller group wants to
fuse, while the larger does not. Also the criterion to resolve the conflict is discussed,
and some numerical examples are given, too. It is concluded that, depending on
the deviation in the total cost paid for the conflict by counterparts, the group
reactions could result in a terminal group size different from that reached by a
sequence of outsider’s immigrations into a group.

1. INTRODUCTION

Theoretical considerations for biological group formation have been attrac-
tive for many researchers in biology and mathematical biology [19,26,28].
As an interesting aggregation process related to biology, some mathematical
models have been constructed and analyzed with an analogy of physical ag-
gregation processes (see [5,8,12–14] and their references). Apart from those
models, some mathematical considerations based on individual fitness have
been presented in a number of works. One of such well-known mathemati-
cal considerations is game theoretic modelling (for instance, [3,4]), of which
some are related to foraging theory [7]. Another is modelling with dynamic
programming [17,21,22]. For an example of such modelling analysis, the op-
timal hunting group size of lions was discussed [6,25], taking into account
the physical condition of the hunter and the expected future energy gain.

In such frameworks of mathematical modelling, the relatedness among
individuals has not been taken into account, although it is indicated by the
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theory of evolutionarily stable strategy (ESS) for the relatedness plays an
important role in determining the group size [23,24]. For examples of such
theoretical arguments, see Caraco and Wolf [6], and Packer et al. [25] who
discussed the hunting group size of lions (for other examples in a different
or more general context, see [9–11,16,30,31]).

Assume that the mean fitness per individual within a group of n individ-
uals is given as a function of n, w(n), which increases for a range 1 ≤ n < nG,
and decreases for n ≥ nG. The size nG maximizes the mean fitness w(n) per
individual inside the group, and was called the optimal group size [6,16,25,
30]. The optimal group size nG is derived as the ESS for an insider of the
group. On the other hand, assuming that w(n) falls below w(1) when once
the group size n exceeds a value nS [i.e., w(n) ≥ w(1) for n ≤ nS, while
w(n) < w(1) for n > nS], it is argued that the optimal group size nG cannot
be stable when solitary outsiders can freely join the group; solitary outsiders
are expected to join the group as long as joining the group increases their
own fitness, expanding the group size up to nS, at which solitary outsiders
no longer join the group and remain solitary, stopping group size growth
by a sequence of solitary outsider’s immigrations. Thus, nS was called the
stable group size by Sibly [29], and can be derived as the ESS for a solitary
outsider against the group.

Both of the above-mentioned potential ESSs are based on the direct
fitness, that is, on the fitness gained by each individual itself. However, the
contribution of the relatedness to the determination of group size would be
one of the main factors to be considered: a local population is considered
where the mean degree of genetic relatedness within the population is r.
If the relatedness coefficient r takes a non-zero value, i.e., if individuals
have a significant relatedness, as is the case for many examples of group
forming, the inclusive fitness (IF; see [15]) should be considered instead of
the direct fitness. For example, Rodman [27] discussed groups of relatives
and suggested that the group size to maximize each member’s IF value
exceeds the associated size to maximize the direct fitness (also see [1,2]).

In this paper, with mathematical modelling based on the principle to
increase the IF, we discuss how the optimal group size is determined by
the intra-reactions, ostracism and fisson, and by the inter-reactions, immi-
gration and fusion, between two groups. The aim of our analysis is not to
consider how the change of group size would occur but to derive some the-
oretical results about the criterion to change the group size when it leads
to an increase (or, at least, no decrease) of the IF of members in a group.

2. FITNESS FUNCTION w(n)

In this section, we describe the characteristic nature of the direct fitness
function w(n) considered in this paper, which gives the fitness value per
individual within a group of n individuals. As in [16], we assume that the
direct fitness function w(n) has the following characteristics (see a numerical
example in Fig. 1):
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Fig. 1. A numerical example of the direct fitness function w(n) which gives the
expected fitness per member within a group of size n. As for those specific sizes
indicated in figure, see text. nG = 20, nS = 90, and nc = 13. In addition, Mf = 34,
n∗

S = mf (1) + 1 = 69, and M∗
f = 50 are for the case when r = 0·2 with kji = 1

for any i and j.

(i) There exists the unique group size nG (> 1) such that

w(n) ≤ w(nG) for any n.

(ii) w(n) increases monotonically for n ≤ nG, whereas w(n) decreases
monotonically for n > nG:

w(n) < w(n + 1) for any n < nG;
w(n) > w(n + 1) for any n ≥ nG.

(iii) There exists the unique group size nS such that

w(n) ≥ w(1) for any n ≤ nS;
w(n) < w(1) for any n > nS.

3. FUSION

3.1. Relative inclusive fitness

We define the relative IF value Φi(i + j) per member in the group G(i) of
size i when the group fuses with another group G(j) of size j:

Φi(i + j) := ∆w(i + j, i) + r(i − 1)∆w(i + j, i) + rj∆w(i + j, j), (1)

where ∆w(i, j) = w(i) − w(j). Φi(i + j) gives the change of IF value for
a member g in G(i) when G(i) fuses with G(j), relative to that when
G(i) does not fuse and remains with size i. The first term of (1) means the
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contribution of g’s own fitness, the second does that of the other memebers’
fitness in the same group G(i), and the third does that of members’ in
the counter group G(j), weighted by the relatedness r. Let us remark that
Φi(i) = 0. Indeed, Φi(i) means the relative IF value per member in G(i)
when the size is kept i, so that the IF itself does not change.

Relatedness in this model is commonly given by r between members
within the same group as well as between individuals belonging to differ-
ent groups. This means that r corresponds to the relatedness averaged over
the considered population including all groups. We further assume that
the optimality for group size is governed only by the IF of an individual.
If an individual could behave to afford the higher fitness to the closer re-
lated individuals, such a behavior would be favored by the natural selection.
However, in our prototype model, we assume that such more informative
behavior does not exist, whereas every individuals behave according to the
mean relatedness given as a constant specified for the considered popula-
tion. In addition, the behavioral choice by any member in the same group is
assumed to be identical without any difference to maximize its IF value. As
for a mathematically explicit introduction of qualitative difference between
members in a group, for instance, see [18]. To introduce the difference of
relatedness among individuals may be the next step of our modelling.

3.2. Maximal fusion-acceptable group size

Now we define the maximal fusion-acceptable group size mf (i) for the group
of size i by

mf (i) := max {j| Φi(i + k) ≥ 0 for all k with 0 ≤ k ≤ j} . (2)

Hence, we have Φi (i + [mf (i) + 1]) < 0. Group of size mf (i) is the largest
group with which G(i) wants the fusion. Since Φi(i) = 0 for any i, we find
that mf (i) = 0 if and only if Φi(i + 1) < 0. The group of such size i that
mf (i) = 0 does not want to fuse with any group. As for mf (i), we can find
the following:

Proposition 1. The maximal fusion-acceptable group size mf (i) defined by
(2) uniquely exists. For each i < nc, mf (i) is non-increasing in terms of
the relatedness r, for each i > nc, non-decreasing, and mf (nc) = nc, where

nc := max {j| w(k) ≤ w(2k) for all k ≤ j} . (3)

For any fixed relatedness r, mf (i) is non-increasing in terms of i.

The specific size nc always exists well-defined as follows immediately from
the characteristics of the fitness function w. Moreover, we can easily find
that 1 < nc < nG, since w(1) < w(2) and w(nG) > w(2nG).

In Appendix A, we prove the unique existence of mf (i) for each i, making
use of the following specific sizes ni and Ni:

ni := max{j| w(k) ≤ w(i + k) for all k with 0 ≤ k ≤ j}; (4)
Ni := max{j| w(i) ≤ w(k) for all k with i ≤ k ≤ j} for i < nG. (5)
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The uniqueness of Ni and ni can be easily seen from the characteristics of the
fitness function w. From the unimodality of w, Ni ≥ nG and i + ni ≥ nG.
From the piece wise monotonicity of w, Ni and ni are non-increasing in
terms of i. Moreover, from definitions (4) and (5), N1 = nS, Nni = i + ni,
Nnc = 2nc, and nnc = nc.

In Appendix B, we give the proof of the relation that mf (nc) = nc, and
some other mathematical characteristics of mf (i), which are useful for our
analysis. The dependence of mf (i) on the relatedness r in Proposition 1 is
proved in Appendix C, and the dependence on the group size i is proved in
Appendix D.

As for the specific case of i = 1, Higashi and Yamamura [16] discussed
the corresponding model and got the following result:

Proposition 2. There exists a specific group size Mf defined by

Mf := min {j| mf (j) = 0} , (6)

such that nS ≥ mf (1) + 1 ≥ Mf ≥ nG. As the relatedness r gets larger, Mf

becomes larger.

They called Mf (n∗
G in [16]) the IF-optimal group size, and mf (1) + 1 (n∗

S

in [16]) the IF-stable group size. Mf means the upper bound for group size
with which the group could make a fusion: Any group of size beyond or equal
to Mf never wants to fuse with any other group, while every group of size
below Mf wants to fuse with some group. Since Higashi and Yamamura [16]
considered only the group size determined by a series of solitary outsider’s
immigrations into a group, Mf mean the size with which the group does not
accept any solitary outsider’s immigration, and mf (1) mean the maximal
group size with which a solitary outsider wants to immigrate into the group.
Thus, mf (1)+1 means the minimal group size with which a solitary outsider
never wants to immigrate into the group. From the characteristics of w, we
can easily find that mf (1) ≥ nG − 1.

3.3. Conflict about the fusion

Next, we consider the existence of a conflict about the fusion between G(i)
and G(j). If mf (j) < i when G(i) wants the fusion, the conflict about
the fusion is likely to occur between these groups, because the condition
mf (j) < i means that Φj(j + i) < 0, so that G(j) does not want the fusion.
Therefore, if there exists some i such that mf (mf (i)) < i, the conflict occurs
for such a group G(i) at least when it encounters a group of size mf (i). This
is because G(i) wants to fuse with the group G(mf (i)), while the condition
mf (mf (i)) < i means that

Φi(i + mf (i)) ≥ 0 > Φmf (i)(mf (i) + i), (7)

so that G(mf (i)) does not want the fusion.
In contrast, if mf (j) ≥ i, the fusion can occur between them without

conflict as far as G(i) wants the fusion, because the condition mf (j) ≥ i
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means that Φj(i+j) ≥ 0, so that G(j) does wants the fusion, too. Moreover,
if mf (mf (i)) ≥ i, G(i) can make the fusion whenever it wants.

With mathematical arguments given in Appendix E, we obtain the fol-
lowing proposition and corollary about the occurrence of conflict:

Proposition 3. In the group fusion, if the relatedness between two groups
is 1 or if the larger group wants the fusion, so necessarily the smaller does.
In contast, if the relatedness between two groups is not 1, a conflict about
the fusion could occur only when the group smaller than nc wants the fusion,
while the larger than nc does not.

Corollary 1. Fusion always occurs between two groups of size below nc,
while it never occurs between two groups of size beyond nc.

3.4. Resolution of the conflict

To resolve a conflict, a compromise is necessary between those two groups
in the conflict. Let us consider the conflict between G(i) and G(j) such that
i < nc < j. From Proposition 3, G(i) wants to fuse with G(j), while G(j)
does not with G(i).

Suppose that each member in G(i) has to pay a cost D ji for the conflict
on average over G(i), which in general depends on the group size i and the
counter group size j. Thus, the group G(i) has to pay the total cost iDji

to counter G(j) in the conflict. In the same way, G(j) has to pay the total
cost jDij to reject the group G(i). For mathematical convenience, we define
here the ratio kji of the total cost paid by G(j) to that by G(i) as follows:

kji :=
jDij

iDji
. (8)

Note that kij = 1/kji from this definition.
Along the argument similar with that in [16], for the case that G(j)

wins the conflict and succeeds in rejecting the fusion with G(i), the net
increment of the IF value of each member in G(j)), relative to the IF value
when G(j) yielded to G(i) and let G(i) fuse with G(j), is given by

Ψj(j + i) := −Φj(j + i) − Dij − r(j − 1)Dij − riDji (9)

= −Φj(j + i) −
[

i

j
{1 + r(j − 1)} kji + ri

]
Dji. (10)

The first term of (9) means the increment of the IF value of each member in
G(j), caused by keeping the group size j, relative to the IF value after the
fusion. The second does the cost per member in G(j) about the conflict,
and the third that of the other members in the same group G(j), weighted
by the relatedness r. The last term means the cost paid by members in the
counter group G(i), weighted by the relatedness r.
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In contrast, the net increment of the IF value of each member in G(i)
for the case that G(i) wins the conflict and fuses with G(j), relative to the
IF value when G(i) yielded to G(j) and gave up the fusion, is given by

Ψi(i + j) := Φi(i + j) − Dji − r(i − 1)Dji − rjDij (11)
= Φi(i + j) − {1 + r(i − 1) + rikji}Dji. (12)

The first term of (11) means the increment of the IF value of each member
in G(i), caused by the fusion with G(j). Terms from the second to the
fourth have the meanings corresponding to those of (9).

As long as the conflict continues, relative IF values Ψj(j+i) and Ψi(i+j)
eventually decline toward zero because the cumulative cost must be increas-
ing monotonically in terms of the duration of conflict. At a moment, one of
Ψj(j + i) and Ψi(i+ j) must become zero while the other stays still positive.
Then, from the viewpoint of the IF-optimal choice, the side with zero rela-
tive IF must yield to the other side with a positive relative IF, because the
relative IF value of the former side would become negative if the conflict
still continues. Therefore, it must be the moment of conflict resolution. If
Ψi(i + j) becomes zero while Ψj(j + i) stays positive, then the fusion does
not occur because G(i) gives it up. If Ψj(j + i) becomes zero while Ψi(i+ j)
stays positive, then the larger group G(j) must yield to the smaller G(i)
and accept the fusion with it, increasing the group size by i.

From this argument, we define here the group size m∗
f (j) compromisingly

acceptable for G(j) in terms of the fusion. For each n ≤ m∗
f (j), values of

Dnj and Djn must satisfy that Ψj(j + n) = 0 and Ψn(n + j) ≥ 0 at the
moment of conflict resolution. For n = m∗

f (j), values of Dnj and Djn must
satisfy that Ψj(j + n) > 0 and Ψn(n + j) = 0 at the moment of conflict
resolution.

From (10) and (12), the condition that Ψj(j+i) = 0 or Ψi(i+j) = 0 gives
the relationship of Dji to the other parameters at the moment of conflict
resolution. It can be used to cancel out Dji in the non-negative condition,
Ψi(i+ j) ≥ 0 or Ψj(j + i) > 0. In this way, we can lastly obtain the following
result:

Proposition 4. For the conflict resolution about the fusion between two
groups of size i and j, the fusion compromisingly occurs if and only if the
following F (i, j) is non-negative:

F (i, j) := [{1 + r(j − 1)} kji + rj] iΦi(i+j)+[1 + r(i − 1) + rikji] jΦj(j+i),
(13)

where kji is a positive constant defined by (8) at the moment of conflict
resolution.

Note that signs of F (i, j) and F (j, i) coincide, because F (j, i) = kijF (i, j)
with kij = 1/kji > 0. We remark that, when both Φi(i + j) and Φj(j + i)
are non-negative, the sign of F (i, j) is correspondingly non-negative for any
value of kji. Hence, the occurrence of fusion determined by the sign of F (i, j)
in the above proposition includes also any consenting case without conflict.
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From Proposition 4, we now get another definition of the group size
m∗

f (i) compromisingly acceptable for G(i): F (i, j) ≥ 0 for all j with 1 ≤
j ≤ m∗

f (i) and F (i,m∗
f (i) + 1) < 0. The existence of m∗

f (i) for each i can
be easily proved since F (i, 0) = 0, Φi(i + j) < 0 and Φj(i + j) < 0 for
suffciently large j > nG. From the definition of m∗

f (i), when the fusion
between G(i) and G(j) with j ≤ m∗

f (i) compromisingly occurs, it is neces-
sarily satisfied that m∗

f (j) ≥ i. From Proposition 4, related to the existence
of m∗

f (i), some mathematical characteristics of m∗
f (i) can be obtained as

shown in Appendix F. Moreover, the following corollary of Proposition 4
can be obtained (Appendix G):

Corollary 2. As kji gets larger for any j, m∗
f (i) becomes larger for i < nc,

and smaller for i > nc.

This corollary indicates that, as the total cost paid by the larger group
for the conflict gets larger, the compromised fusion becomes more feasible,
because m∗

f ({the larger group}) gets smaller.
Correspondingly to the specific group size Mf defined by (6), we can

define
M∗

f := min
{
j| m∗

f (j) = 0
}

, (14)

which corresponds to n∗ in [16]. Making use of the mathematical character-
istics of m∗

f (i) in Appendix F, the non-increasing monotonicity of mf (i) and
ni in terms of i, the definition of Mf given by (6), nnS−1 = 1 and nnS = 0,
we can easily find that Mf ≤ M∗

f ≤ nS. Group of size beyond or equal to
M∗

f never wants its fusion consentingly or compromisingly with any other
group, while the group of size below M∗

f wants its fusion consentingly or
compromisingly with some group.

We could obtain nothing general about the maximal group size composed
by a fusion, that is, about the nature of i + m∗

f (i). In this paper, it will be
shown later by a numerical example that the size i + m∗

f (i) can take its
maximum for some i > 1: With a fusion, the group size can become larger
than n∗

S = 1 + m∗
f (1), that is, than the upper bound size determined by a

series of solitary outsider’s immigrations.

4. FISSION

In this section, we consider the fission of a group G(n) of size n into two
subgroups g(i) and g(n − i) of size i and n − i respectively. As a specific
case, we may consider a fission into g(1) and g(n − 1), which can be called
the ostracism for a member g(1).

According to the fission of a group G(n) into subgroups g(i) and g(n−i),
the relative IF value per member in the subgroup g(i) can be given by

Θn(i) := ∆w(i, n) + r(i − 1)∆w(i, n) + r(n − i)∆w(n − i, n)
= −Φi(i + [n − i]), (15)

where the function Φ is defined by (6). Only when both Θn(i) and Θn(n− i)
are non-negative, the fission into subgroups g(i) and g(n−i) occurs without
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conflict between them. In contrast, if Θn(i) < 0 ≤ Θn(n − i) or if Θn(i) ≥
0 > Θn(n− i), a conflict about the fission occurs since one subgroup wants
the fission and the other does not.

Making use of the characteristics of the IF function Φ analyzed in the
previous section, from Proposition 3 and Corollary 1, we can obtain the
followings:

Proposition 5. If the relatedness among members in the group of size n
is 1, the fission into two subgroups occurs whenever one of two subgroups
wants the fission, while it never occurs whenever one does not want. If the
relatedness is not 1, there could occur such a conflict about the fission that
the smaller subgroup less than nc does not want the fission while the larger
than nc wants.

Corollary 3. Group fission into two subgroups of size beyond nc always
occurs, while that into two subgroups of size below nc never occurs.

Thus, for any group of size not beyond nc, any fission never occurs.
From the relation between Φ and Θ in (15), we remark that, according

to the group fission, the maximal fusion-acceptable group size mf (i) + 1
gives the minimal size of the counter subgroup against the subgroup of size
i. In other words, the fission into two subgroups of size i and n − i never
occurs if n < mf (i)+1. Moreover, the specific group size Mf defined by (6)
gives the lower bound for the group size with which a fission could occur:
Any fission into two subgroups never occurs for the group of size not beyond
Mf .

As for the resolution of the conflict about a fission, we can obtain the
following result corresponding to Proposition 4:

Proposition 6. For the conflict resolution about a fission into subgroups
g(i) and g(n − i), the fission compromisingly occurs if and only if the fol-
lowing Γ (i;n) is non-negative:

Γ (i;n) := [{1 + r(n − i − 1)}κi;n + r(n − i)] iΘn(i)
+ [1 + r(i − 1) + riκi;n] (n − i)Θn(n − i), (16)

where κi;n is a positive constant which denotes the ratio of the total cost
paid by g(n − i) to that by g(i) at the moment of conflict resolution:

κi;n :=
(n − i)Cn−i;n

iCi;n
. (17)

From (15), we used the following relation to derive this proposition:

Γ (i;n) = − F (i, n − i)|kn−i,i=κi;n
. (18)

As a counterpart of m∗
f (i), we can define the specific group size m∗

d(n)
that gives the maximal size of the larger subgroup fissioned from G(n). It
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Fig. 2. Dependence of the critical sizes on the relatedness r, obtained numerically
for the fitness function w(n) given in Fig. 1 with kji = 1 for any i and j.

is satisfied that Γ (k;n) ≥ 0 for all k with 1 ≤ k ≤ m∗
d(n) and Γ (m∗

d(n) +
1;n) < 0. From Proposition 5, we find that m∗

d(n) ≥ nc.
In our considerations about the fission, we have not mentioned how the

size of subgroup may be determined in the fission, or how each member
belongs to one of subgroups. Our model is to consider theoretically the con-
tribution of the group size to the change of the inclusive fitness of member,
and hence we do not take into account the process of fusion or fission. It
may be another theoretical problem to be considered.

5. NUMERICAL EXAMPLE

In this section, making use of the fitness function w(n) numerically given in
Fig. 1, some properties of the group size determined especially by the group
fusion are shown by numerical calculations.

For the numerical example of the fitness function w(n) in Fig. 1, we
have nG = 20, nS = 90, and nc = 13. Critical sizes Mf , n∗

S = mf (1) + 1,
and M∗

f depend on the relatedness r and the parameter kji. As indicated in
Fig. 1, Mf = 34, n∗

S = mf (1) + 1 = 69, and M∗
f = 50 are for the case when

r = 0·2 with kji = 1 for any i and j. Indeed, for the case with kji = 1 for
any i and j, we get the result about the r-dependence of critical sizes Mf ,
n∗

S = mf (1) + 1, and M∗
f as shown in Fig. 2. Fig. 2 shows that M∗

f takes
its unique maximum at a specific range of relatedness r around 0·07. The
terminal group size M∗

f is larger for an intermediate range of relatedness
than for the other, so that the higher relatedness does not necessarily result
in the larger group size. A similar result has been obtained by [16] according
to the group size determined by a series of solitary outsider’s immigrations.
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Fig. 3. Occurrence of the conflict about the fusion in case of kji = 1 for any i and
j. (a) r = 0; (b) r = 0·2. (a1) and (b1) are about sizes of encountered groups. (a2)
and (b2) are about the group size composed by the fusion, so the hatched region
is nonsense. The gray region is of the conflict to result in the compromised fusion,
and the black region is of the conflict to result in the rejection of the fusion. For
the pair of group sizes below the gray and the black regions, the fusion occurs
without conflict, while, beyond them, no group wants the fusion.

5.1. Conflict about the fusion with no cost deviation

In this section, we consider the case when kji = 1 for any i and j. Total
costs paid by encountered groups in any conflict about the fusion are equal
to each other. Conflict about the fusion occurs between encountered two
groups of the gray and the black regions in Fig. 3. Groups of the gray
region in Fig. 3 result in the compromised fusion, while those of the black
region result in the rejection of the fusion. It can be seen from Figs. 3(a1, b1)
that m∗

f (i) located on the boundary between the gray and the black regions
is non-increasing in terms of i. Moreover, from Figs. 3(a2, b2), the group
size composed by the fusion takes its minimum at i = nc, and its maximum
at i = 1 or i = M∗

f − 1. This holds for any relatedness r, as confirmed by
some numerical calculations. Hence, we conclude that the maximal group
size composed by the fusion is M∗

f . Further, we numerically find that m∗
f (i)

is larger for an intermediate value of the relatedness r as well as M∗
f .

By comparing (a) with (b) of Fig. 3, it is impied that the number of pairs
of group sizes to cause the conflict about fusion is non-increasing in terms
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Fig. 4. (a) Dependence of the total number of pairs of group sizes to cause
the conflict about the fusion, and that to cause the compromised fusion on the
relatedness r. (b) Dependence of the percentage of the compromised fusion to the
total conflict on the relatedness r. Numerical results with kji = 1 for any i and j.

of the relatedness, and must be zero for r = 1. Indeed, this is numerically
shown in case of kji = 1 for any i and j as indicated in Fig. 4(a). However,
Fig. 4(a) shows also that the number of conflicts resulting in the compro-
mised fusion is not necessarily non-increasing but increasing for a sufficiently
small relatedness. In contrast, the percentage of the compromised fusions
to the total conflicts appears to have a non-monotone variation in terms of
the relatedness as shown in Fig. 4(b), although its overall tendency may be
regarded as roughly increasing.

5.2. Conflict about the fusion with a cost deviation

Next, let us consider a case when kji 6= 1 and the total cost paid for the
conflict depends on whether the group wants the fusion or not. We assume
the following specific form of kji:

kji = hλ(i, j) :=


λ when i > j;

1 when i = j;

1/λ when i < j,

(19)

where the parameter λ denotes the degree of the advantage of the larger
group with regard to the total cost paid for the conflict about the fusion.
The case when kji = 1 corresponds to that when λ = 1. Since we have shown
in the previous section that the larger group does not want the fusion in the
conflict, λ can be regarded as the degree of the advantage of the group which
does not want the fusion in the conflict. As λ gets larger, the advantage of
the larger group becomes greater. If λ < 1, then the smaller group in the
conflict about the fusion has an advantage over the larger counter group
with regard to the total cost paid for the conflict.
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Fig. 5. Occurrence of the conflict about the fusion. In the case when kji = hλ(i, j)
given by (19). Relatedness r = 0. (a) λ = 2; (b) λ = 10. Meanings of regions in
these figures are the same as for Fig. 3.

In Fig. 5, conflicting pairs of group sizes are indicated by the gray and
the black regions for λ = 2 and λ = 10 respectively in case of r = 0. Since
the occurrence of the conflict does not depend on kji but on the relatedness
r, the total area of the gray and the black regions in Fig. 5(a) coincides
with that in case of λ = 1 in Fig. 3(a). However, the gray region for the
compromised fusion significantly depends on the value of λ.

As seen from Figs. 5(a1, b1), m∗
f (i) located on the boundary between

the gray and the black regions is non-increasing in terms of i as in Fig. 3 for
λ = 1, . In contrast, Figs. 5(a2, b2) indicates that the maximal group size
composed by the fusion is not necessarily monotone in terms of i. Further,
it is not necessarily equal to M∗

f . These results are different from those in
case of λ = 1. Indeed, numerical results shown in Fig. 6 clearly indicate
that the maximal size is 2nc for a sufficiently small relatedness r and a
sufficiently large λ. Especially in case of r = 0, Fig. 6(b) shows the case
when the maximal size composed by the fusion becomes 2nc larger than
M∗

f for sufficiently large λ. For r smaller than about 0·01 and λ larger than
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Fig. 6. Maximal group size composed by the fusion. (a) (r, λ)-dependence; (b)
λ-dependence of the maximal size in case of the relatedness r = 0.

Fig. 7. (r, λ)-dependence of (a) the total number of pairs of group sizes which
result in the compromised fusion; (b) the percentage of the compromised fusions
to the total conflicts.

about 2, M∗
f can become smaller than 2nc as indicated by the darkest region

in Fig. 6(a).
Moreover, Fig. 6(a) shows that the maximal size composed by the fusion

is not necessarily monotone in terms of the relatedness r, and takes its
maximum for some r around 0·1. This is the same tendency as already
mentioned for M∗

f in Fig. 2. Only for λ ¿ 1 when the smaller group has
a sufficiently great advantage over the larger counter group with regard to
the total cost for the conflict about the fusion, the maximal size composed
by the fusion is monotonically non-increasing in terms of the relatedness
r, as indicated in Fig. 6(a). As for the λ-dependence, the maximal size
composed by the fusion is non-increasing in terms of λ as seen in Fig. 6(a).
Moreover, numerical calculations imply that m∗

f (i) for each group size i is
non-increasing in terms of λ, too.
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On the other hand, as shown in Fig. 7(a), the number of pairs of group
sizes which result in the compromised fusion appears monotonically non-
increasing in terms of the relatedness r for λ ≤ 1, while it takes its max-
imum with an intermediate value of the relatedness r for λ > 1. As for
the percentage of the compromised fusions to the total conflicts, the de-
pendence on the relatedness r appears more complicated. Roughly saying
from Fig. 7(b), it appears non-increasing in terms of r for λ < 1, while non-
decreasing for λ > 1. This tendency clearly appears for some sufficiently
small or sufficiently large λ, whereas it is ambiguous for some λ around 1.

6. CONCLUSION

We considered the group size determined by the intra-reactions (self-growth,
ostracism and fission) and by the inter-reactions between two groups (im-
migration and fusion). It was shown that, in group reactions, a conflict
between two groups could occur about the reaction, according to the incre-
ment of the inclusive fitness (IF) of members in each group. We discussed
the conflict resolution, too. A numerical example explicitly showed some
interesting natures of the size determined by such group reactions.

It is implied that there exists a certain critical group size, nc in our
model, at which the behavioral choice taken by the group in the conflict
changes. The existence and the qualitative natures of the critical size nc are
determined by the qualitative characteristics of the direct fitness function
w(n). Since we assumed only the general qualitative characteristics of w(n)
in our mathematical model, those results in this paper would be applicable
also for more concrete biological arguments.

The group size composed by the fusion may exceed the critical size nc.
When both of encountered groups have a size smaller than or larger than
nc, the conflict about the group reaction cannot occur. If every group in
a community grows up its size and simultaneously comes to exceed the
critical size, then any group does not want the fusion. Eventually, within
such a community, the conflict about the fusion never occurs. However, even
in such a case, the intra-group reactions, ostracism and fission, may occur,
and the peace could not be necessarily maintained.

Our numerical example indicated that, in the case when the cost paid
for the conflict significantly depends on whether the group wants the group
reaction or not, the conflict would a consequence with some non-trivial
features. The consequent group size can become larger by a group fusion
than by a sequence of solitary’s immigrations. This result implies that the
group size dynamics could not be decomposed into only some reactions
between a group and an individual. The group fusion (or fission) could
not be necessarily treated as a series of solitary outsider’s immigrations (or
member’s ostracisms).

Further, it was shown that the maximal group size composed by some
group fusions takes its maximum for a relatively small positive relatedness.
The larger relatedness does not necessarily result in the greater group size.
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Even though it might significantly depend on the characteristics of the direct
fitness function, this result about the relatedness dependence of the maximal
group size would hold for a wide family of direct fitness functions which
satisfy the general assumptions in our modelling.

From Propositions 4 and 6, and from the kji-dependence of m∗
f (i) in

Corollary 2, we can prove that, for κi;n 6= kn−i,i, it is likely that the fusion
could occur between subgroups fissioned from a group: Even if the fission
into g(i) and g(n − i) occurs, it is likely that the fusion between g(i) and
g(n−i) could occur if the total cost paid by the larger group for the fusion is
larger than that for the fission, relative to the total cost paid by the smaller
group. Otherwise, the fusion between those fissioned subgroups does not
occur. We may say the former fission temporal or unstable. From Corollaries
1 and 3, since the group fusion never occurs between two groups of size
beyond nc and so never does the group fission into two subgroups of size
below nc, such a temporal fission is likely to occur only into one subgroup
of size not beyond nc and the other of size not below nc. However, we may
consider that the actual fission would be never followed by such a fusion
between two subgroups just after their fission. Indeed, the fusion between
just fissioned two subgroups would be consumptive to lose some energy due
to the conflict about the fission. It does not seem optimal as a behavioral
choice, either.

It would be a natural extension of our modelling to consider the optimal
behavioral choice taking into account future possible fusions and fissions.
Such an optimal theory could be used to consider the maximization of the
long term payoff. One way to incorporate such a structure to maximize the
long term payoff with a sequence of behavioral choices would be a dynamic
programming modelling [17,21,22]. It may be one of the next steps of our
study for the theory of group size determination. In such a dynamic pro-
gramming modelling, a criterion to estimate each single choice of behavior
is necessary, so that we expect that the modelling and the results in this
paper could contribute to such an advanced modelling.

Some statistical natures of group sizes within a community, for exam-
ple, the frequency distribution or the rank-size relation, may be discussed
through the theory of the optimal size with group reactions. It is expected
that theoretical results including those in this paper will contribute to some
understanding about the group size dynamics in nature.
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Appendix

A. Existence of mf(i)

In this appendix, we prove the existence of mf (i). If it exists, the uniqueness
is trivial from the definition in the main text. Since Φi(i) = 0, we find that
mf (i) = 0 if and only if Φi(i + 1) < 0. Otherwise, mf (i) ≥ 1. Now, let us
consider only the case when Φi(i + 1) ≥ 0.

At first, let us consider

Φi(i + i) = {1 + r(i + i − 1)}∆w(2i, i). (20)

We see that Φi(i+i) ≥ 0 only when the difference ∆w(2i, i) = w(2i)−w(i) >
0. From the characteristics of w and the definition of nc, w(2i) < w(i) for
any i > nc, while w(2i) ≥ w(i) for any i ≤ nc. Thus, if i ≤ nc, then
Φi(i + i) ≥ 0, and otherwise Φi(i + i) < 0. This means that there exists a
value defined as mf (i) less than i if i > nc. Next, let us focus the case when
i ≤ nc.

For i ≤ nc and j = Ni + k − i with k ≥ 1,

Φi(i + [Ni + k − i]) = {1 + r(i − 1)}∆w(Ni + k, i)
+r(Ni + k − i)∆w(Ni + k,Ni + k − i). (21)

Since i ≤ nc and Nnc = 2nc ≤ Ni, we find that i ≤ Ni − i. From the
definition of Ni, w(Ni + k) < w(i) ≤ w(Ni). Therefore, ∆w(Ni + k, i) < 0.
If Ni +k−i ≤ Ni, then also ∆w(Ni +k,Ni +k−i) < 0, because i ≤ Ni−i <
Ni + k − i and w(Ni + k − i) ≥ w(i) > w(Ni + 1) > w(Ni + k) from the
definition of Ni and the decreasing monotonicity of w(n) for n ≥ nG. On
the other hand, if Ni +k− i > Ni, then w(Ni +k− i) > w(Ni +k) from the
decreasing monotonicity of w(n) for n ≥ nG and the feature that Ni > nG.
This shows that ∆w(Ni + k,Ni + k − i) is negative again. Hence, the right
side of (21) is negative for any k ≥ 1. This means that Φi(i + j) < 0 for
any j > Ni − i (≥ i). Consequently there exists a value defined as mf (i)
less than Ni − i (≥ i) when i ≤ nc. These arguments prove the existence of
mf (i). ut

B. Mathematical characteristics of mf(i)

In this appendix, we prove some mathematical characteristics of mf (i),
which appear useful for our mathematical considerations. At first, from
definitions of Ni and ni by (4) and (5), the following lemma can be easily
obtained:

Lemma 1. nc ≤ ni for i < nc, while ni ≤ nc for i > nc.

Now we prove the following lemma about mathematical characteristics of
mf (i):

Lemma 2. mf (i) satisfies the following conditions:
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i) ni ≤ mf (i) < Ni − i for i ≤ nc;
ii) Ni − i ≤ mf (i) ≤ ni for i > nc and i < nG;
iii) mf (i) ≤ ni for i ≥ nG;
iv) mf (i)|r=1 ≤ mf (i) ≤ mf (i)|r=0 for i ≤ nc;
v) mf (i)|r=0 ≤ mf (i) ≤ mf (i)|r=1 for i > nc;
vi) mf (nc) = nc independently of r.

Proof of i). The upper bound for mf (i), that is, mf (i) ≤ Ni − i can be
proved directly from the proof for the (unique) existence of mf (i), given in
Appendix A. So let us focus the lower bound for mf (i). When i ≤ nc ≤ ni

from Lemma 1, we find that Φi(i + j) ≥ 0 for any j ≤ ni. This is because,
from the definition of ni and the increasing monotonicity of w, w(i + j) ≥
w(j) ≥ w(i) when i ≤ j ≤ ni, and w(i + j) ≥ w(i) ≥ w(j) when j < i ≤ ni.
As a result, mf (i) ≥ ni. ut

Proof of ii) and iii). When i > nc and j = ni + k with k ≥ 1,

Φi(i + [ni + k]) = {1 + r(i − 1)}∆w(i + [ni + k], i)
+r(ni + k)∆w(i + [ni + k], ni + k). (22)

From the definition of ni, we can find that w(i+ni+1) < w(ni) ≤ w(i+ni).
Since i + ni > nG, w(i + ni + k) ≤ w(i + ni + 1) for k ≥ 1. In addition,
for i < nG, from Lemma 1, ni ≤ nc when i > nc, and i + ni = Nni ≥
Ni > nG from the non-increasing nature of Ni in terms of i. Hence we
find that w(ni + i) < w(i). For i ≥ nG, the decreasing monotonicity of w
leads to the inequality w(i + ni + k) < w(i). This argument shows that
∆w(i + [ni + k], i) < 0, subsequently the first term of the right side of (22)
is negative.

In the same way, from the piecewise monotonicity of w, if ni + k > nG,
then w(i + ni + k) ≤ w(ni + k). If ni ≤ ni + k ≤ nG, then w(ni) ≤
w(ni + k). Since w(i + ni + k) ≤ w(ni) for k ≥ 1, we lastly find that
∆w(i + [ni + k], ni + k) < 0. Thus, the right side of (22) is negative for any
k ≥ 1. Therefore, mf (i) ≤ ni.

Next, when nc < i < nG and j = Ni − i − k + 1 (1 ≤ k ≤ Ni − i),

Φi(i + [Ni − i + k + 1]) =
{1 + r(i − 1)}∆w(Ni − k + 1, i)

+r(Ni − k − i + 1)∆w(Ni − k + 1, Ni − i − k + 1). (23)

Since 1 ≤ k ≤ Ni − i, we find that i + 1 ≤ Ni − k + 1 ≤ Ni. Thus, from
the definition of Ni, w(Ni − k + 1) ≥ w(i). Since i > nc and Nnc = 2nc,
and since Ni is non-increasing in terms of i, we find that 2i ≥ Ni, that is,
Ni−i ≤ i. Besides, from the previous arguments, 1 ≤ Ni−k−i+1 ≤ Ni−i.
Hence, from the increasing monotonicity of w, w(Ni − i − k + 1) ≤ w(i).
Therefore, the right side of (23) is non-negative for any k. This means that
mf (i) ≥ Ni − i. ut
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Proof of iv) and v). From (1), we can obtain the following equation:

Φi(i + j) = (1 − r) [Φi(i + j)]r=0 + r [Φi(i + j)]r=1 . (24)

Since 0 ≤ r ≤ 1, this means that

[Φi(i + j)]r=0 ≤ Φi(i + j) ≤ [Φi(i + j)]r=1

or
[Φi(i + j)]r=0 ≥ Φi(i + j) ≥ [Φi(i + j)]r=1 .

Thus, from the definition, mf (i) exists between mf (i)|r=1 and mf (i)|r=0.
Next, since

[Φi(i + j)]r=0 = w(i + j) − w(i), (25)

it is easily found from the definition of Ni that mf (i)|r=0 = Ni−i for i < nG.
Besides, from the characteristics of w, [Φi(i + j)]r=0 < 0 for any i ≥ nG.
From i) and ii), this argument proves iv) and v). ut

Proof of vi). Since Nnc − nc = nc and nnc = nc, from i), we find that
mf (i) → nc as i → nc. From the definition, nc is determined only by the
nature of w, independently of r. ut

C. r-dependence of mf(i)

Relations iv) and v) of Lemma 2 in Appendix B mean that, for mf (i) with
0 < r < 1,

[Φi(i + mf (i))]r=1 < [Φi(i + mf (i))]r=0 for i ≤ nc;
[Φi(i + mf (i))]r=0 < [Φi(i + mf (i))]r=1 for i > nc.

Thus, from (24) in Appendix B, as r becomes larger, Φi(i + j) gets smaller
for i ≤ nc and larger for i > nc. This means that, in terms of r, mf (i) is
non-increasing for i ≤ nc and non-decreasing for i > nc. ut

D. i-dependence of mf(i)

At first, as mentioned for (25) in Appendix B, mf (i)|r=0 = Ni−i for i < nG.
Since Ni is non-increasing in terms of i, mf (i)|r=0 is decreasing for i < nG.
Moreover, from (25), mf (i)|r=0 = 0 for i ≥ nG. This argument shows that
mf (i)|r=0 is non-increasing in terms of i.

On the other hand, in order to consider the i-dependence of mf (i)|r=1
for any fixed relatedness r, let us see the following relation:

Φi(i + j) − Φj(i + j) = −(1 − r){w(i) − w(j)} (26)

as easily obtained from the definition of Φ. In case of r = 1, the above
relation leads to the equation

[Φi(i + j)]r=1 = [Φj(i + j)]r=1 . (27)
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The relation (27) especially indicates that the signs of both sides of (27)
coincides with each other: When the sign is negative, it means that, if
mf (i)|r=1 < j, then mf (i)|r=1 < i and vice versa for two groups of size i and
j. In contrast, when the sign is non-negative, it means that, if mf (i)|r=1 ≥ j,
then mf (j)|r=1 ≥ i and vice versa.

Now, suppose that there exists some group size i such that mf (i)|r=1 <
mf (i + 1)|r=1. Then, there must exist a group size j such that mf (i)|r=1 <
j ≤ mf (i + 1)|r=1. The first inequality gives the relation mf (j)|r=1 < i,
while the second does mf (j)|r=1 ≥ i + 1. This is contradictory. Conse-
quently, there cannot exist any group size i such that mf (i)|r=1 < mf (i + 1)|r=1.
This proves that mf (i)|r=1 is non-increasing in terms of i.

Since both mf (i)|r=0 and mf (i)|r=1 are non-increasing in terms of i,
and since mf (i) corresponds to the sign change of the function Φ, if the
right side of (24) in Appendix B for i = p with a fixed r changes its sign
at j = q, then that for i = p + 1 changes its sign at j not beyond q. This
means that mf (i) is non-increasing in terms of i with any fixed relatedness
r. ut

E. Proof of Proposition 3 and Corollary 1

To prove Proposition 3 and Corollary 1, we use the following lemmas:

Lemma 3. If w(i) ≤ w(j), then Φi(i + j) ≥ Φj(i + j). The equality holds
only when r = 1 or w(i) = w(j).

Lemma 4. w(mf (i)) ≥ w(i) for i ≤ nc, and w(mf (i)) < w(i) for i > nc.

From the relation (26) in Appendix D, the proof of Lemma 3 is clear. So we
give here only the proof of Lemma 4. From Lemmas 1 and 2 in Appendix
B, when i < nc, it is satisfied that i < nc ≤ ni ≤ mf (i) < Ni. From the
definition (4) of Ni, w(j) ≥ w(i) for any j ≤ Ni. Thus, w(mf (i)) ≥ w(i).
When i > nc, it is satisfied that mf (i) ≤ ni ≤ nc < i. Hence, from the
increasing monotonicity of w, w(mf (i)) ≤ w(ni). The definition of ni gives
the following inequality: w(ni) ≤ w(i + ni). If i ≤ nG, then, from the
increasing monotonicity of w, w(ni) < w(i). If i > nG, then, from the
decreasing monotonicity of w, w(i) > w(i + ni). Lastly, w(ni) < w(i) for
i > ni. Therefore, w(mf (i)) < w(i). ut

Proof of Proposition 3 and Corollary 1. Lemmas 3 and 4 show that, if
r 6= 1,

Φi(i + mf (i)) ≥ Φmf (i)(mf (i) + i) for any i < nc;
0 ≤ Φi(i + mf (i)) < Φmf (i)(mf (i) + i) for any i > nc.

Therefore, mf (mf (i)) < i for some i < nc ≤ mf (i), while mf (mf (i)) ≥ i for
any i > nc ≥ mf (i). This means the following: Between two groups of size
i and j such that i < nc < j, if the larger group of size j wants the fusion,
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the smaller of size i does. In the conflict about the fusion, the smaller of
size i wants the fusion and the larger of size j does not.

Let us consider the fusion between two groups of size i and j such that
i ≤ j < nc. From Lemmas 1 and 2 in Appendix B, since nc ≤ mf (i) and
nc ≤ mf (j) so that j < mf (i) and i < mf (j), the fusion occurs without
any conflict. On the other hand, in case of two groups of size i and j such
that nc < i ≤ j, from Lemmas 3 and 4, since nc ≥ mf (i) and nc ≥ mf (j) so
that j > mf (i) and i > mf (j), both two groups do not want the fusion. In
the case when i < j ≤ nc or nc ≤ i < j, the same argument can be applied.
Therefore, taking into account viii) of Lemma 2 in Appendix B, it is lastly
proved that the conflict could occur only between two groups of size i and
j such that i < nc < j.

If the relatedness r = 1, Lemma 3 indicates that Φi(i+j) = Φj(i+j) for
any i and j, so that Φi(i+mf (i)) = Φmf (i)(mf (i)+ i) for any i. This means
that mf (mf (i)) = i for any i. Hence, whenever one group wants the fusion,
so does the other. Consequently, when r = 1, the conflict about the fusion
never occurs. When w(i) = w(j), Φi(i + j) = Φj(i + j). Thus, the conflict
cannot occur, either. These arguments prove Proposition 3 and Corollary
1. ut

F. Mathematical characteristics of m∗
f(i)

In this appendix, we prove the following lemma related to the existence of
m∗

f (i):

Lemma 5.

ni ≤ m∗
f (i) ≤ mf (i) for i < nc;

mf (i) ≤ m∗
f (i) ≤ ni for i > nc;

m∗
f (nc) = nc.

Let us begin with the conflict about the fusion between two groups of size
i and j such that i < nc < j. From Proposition 3, since the smaller group
wants the fusion while the larger does not, the compromised fusion can
be realized by the larger group’s yielding to the smaller and accepting the
fusion. Otherwise, the smaller group yields to the larger and gives up the
fusion. The former resolution of conflict means that the maximal group size
compromisingly acceptable for the larger group is greater than the selfishly
acceptable size: m∗

f (j) ≥ mf (j). On the other hand, the latter means that
the maximal group size compromisingly acceptable for the smaller group
is less than the selfishly acceptable one: m∗

f (i) ≤ mf (i). In the case when
i = nc, since mf (nc) = nc (Lemma 2 in Appendix B), we find that m∗

f (nc) =
mf (nc) = nc.

Next, we prove that ni ≤ m∗
f (i) for i < nc and that m∗

f (i) ≤ ni for
i ≥ nc. For a group of size i < nc, we find that i < nc ≤ ni ≤ mf (i) from
Lemmas 1 and 2 in Appendix B. Thus, Φi(i + n) ≥ 0 for any n ≤ ni. Now,
consider the relative IF value Φn(i + n) for n ≤ ni. From the definition of
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ni, we find that ∆w(i + n, n) is non-negative for any n ≤ ni. From i) of
Lemma 2 in Appendix B, we find that i < i + n ≤ i + ni ≤ Ni. Hence,
w(i + n) ≥ w(i) from the definition of Ni. Lastly, Φn(n + i) ≥ 0 for any
n ≤ ni. Since both Φi(i+n) and Φn(n+ i) are non-negative for any n ≤ ni,
we find that F (i, j) ≥ 0 for any j ≤ ni, so that nc ≤ ni ≤ m∗

f (i).
In case of i ≥ nc, from the definition of ni and the characteristics of w, we

find that w(i+n) < w(n) for any n ≥ ni +1. Since i ≥ ni from Lemma 1 in
Appendix B, i+n > i+ni = Nni ≥ Ni for i < nG. Thus, from the definition
of ni, w(i+n) < w(i) for i ≤ nG. For i > nG, the decreasing monotonicity of
w leads to the inequality w(i + n) < w(i). Therefore, Φn(i + n) is negative
for any n ≥ ni + 1, and simultaneously Φi(i + n) < 0. This means that
F (i, j) < 0 for any j > ni, so that m∗

f (i) ≤ ni ≤ nc.
Since nnc = nc and mf (nc) = nc (Lemma 2 in Appendix B), we can find

that m∗
f (nc) = nc. ut

G. Proof of Corollary 2

Let define the following function Ξ(i, j) independent of both kij and kji:

Ξ(i, j) := rj [Φi(i + j) + Φj(i + j)] + (1 − r)Φi(i + j) (28)

Then, F (i, j) defined by (13) can be expressed as

F (i, j) = iΞ(i, j)kji + jΞ(j, i). (29)

When j ≤ m∗
f (i), we have F (i, j) ≥ 0 from Proposition 4. At first, in the

case when i < nc < j ≤ m∗
f (i), we know that m∗

f (i) ≤ mf (i) from Lemma
1 in Appendix B and Lemma 5 in Appendix F. Hence, j ≤ mf (i) and thus
Φi(i + j) ≥ 0. Now, if Φj(i + j) ≥ 0, then Ξ(i, j) ≥ 0. In contrast, when
Φj(i + j) < 0, consider the following inequality:

Ξ(i, j) ≥ rj [Φi(i + j) + Φj(i + j)] . (30)

If Ξ(i, j) < 0, the right side of (30) is negative, so eventually Ξ(j, i) < 0.
This implies that F (i, j) < 0. Since this is contradictory to F (i, j) ≥ 0, it
is concluded that Ξ(i, j) ≥ 0. Hence, in the case when i < nc < j ≤ m∗

f (i),
F (i, j) is non-decreasing as kji gets larger. This means that m∗

f (i) in this
case is non-decreasing as kji gets larger.

Next, let us consider the case when m∗
f (i) < nc < i. In this case, from

Lemma 1 in Appendix B and Lemma 5 in Appendix F, it is assured that
mf (i) ≤ m∗

f (i) < nc < i. Since we are interested in the case of the conflict
about the fusion, let us consider only the case when mf (i) < j, so that
mf (i) < j ≤ m∗

f (i) < nc < i. In this case, we have Φi(i+j) < 0. If Φj(i+j) ≤
0 in this case, we obtain a contradictory result such that F (i, j) < 0. Hence,
Φj(i + j) > 0. Let us now turn to F (j, i). Along the same line of argument,
it can be shown that Ξ(j, i) ≥ 0, so that F (j, i) is non-decreasing as kij

gets larger. Since kij = 1/kji, F (j, i) is non-increasing as kji gets larger.
Since F (j, i) has the same sign as F (i, j), this result shows that m∗

f (i) is
non-increasing as kji gets larger when mf (i) < j ≤ m∗

f (i) < nc < i. ut
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