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Summary 

Some ascidians accumulate vanadium in vanadocytes, which are 

vanadium-containing blood cells, at high levels and with high selectivity.  However, 

the mechanism and physiological significance of vanadium accumulation remain 

unknown.  In this study, we isolated novel proteins with a striking homology to 

glutathione transferases (GSTs), designated AsGST-I and AsGST-II, from the digestive 

system of the vanadium-accumulating ascidian Ascidia sydneiensis samea, in which 

the digestive system is thought to be involved in vanadium uptake.  Analysis of 

recombinant AsGST-I confirmed that AsGST-I has GST activity and forms a dimer, as 

do other GSTs.  In addition, AsGST-I was revealed to have vanadium-binding activity, 

which has never been reported for GSTs isolated from other organisms.  AsGST-I 

bound about 16 vanadium atoms as either V(IV) or V(V) per dimer, and the apparent 

dissociation constants for V(IV) and V(V) were 1.8×10-4 M and 1.2×10-4 M, 

respectively.  Western blot analysis revealed that AsGSTs were expressed in the 

digestive system at exceptionally high levels, although they were localized in almost 

all organs and tissues examined.  Considering these results, we postulate that AsGSTs 

play important roles in vanadium accumulation in the ascidian digestive system. 

 

1. Introduction 

Several species of ascidians, so-called sea squirts, accumulate high levels of 

vanadium [1, 2].  In the most remarkable case, the cellular vanadium concentration 

reaches 350 mM, or roughly 107 times the concentration in seawater [3].  Through the 
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accumulation process, almost all vanadium ions, thought to be present in the +5 

oxidation state [V(V)] in seawater, are reduced to the +3 oxidation state [V(III)] via 

the +4 oxidation state [V(IV)] and are stored in the vacuole of vanadocytes, the 

vanadium-containing cells [4-6].  Several proteins that are likely involved in the 

vanadium-accumulation process have already been isolated from the blood cells of the 

vanadium-rich ascidian A. sydneiensis samea [7-15].  Of these, two similar proteins, 

Vanabin1 and Vanabin2, have attracted attention because of their binding ability and 

selectivity for vanadium [13-15].  In fact, Vanabin1 and Vanabin2 can bind 10 and 20 

V(IV) ions with dissociation constants of 2.1 × 10-5 M and 2.3 × 10-5 M, respectively, 

and the binding with V(IV) is barely inhibited in the presence of magnesium(II) or 

molybdate(V) ions [15].  Three-dimensional structural analysis using nuclear 

magnetic resonance (NMR) [16] revealed that Vanabin2 has a novel bow-shaped 

conformation consisting of four helices connected by nine disulfide bonds, which has 

no reported structural homologs.  V(IV) ions, which are exclusively localized on the 

same face of the Vanabin2 molecule, are mostly coordinated by amine nitrogens 

derived from amino acid residues, such as lysines and arginines, as suggested by 

electron paramagnetic resonance (EPR) results [17].  In addition, two Vanabin 

homologs, designated Vanabin3 and Vanabin4, were identified from the cytoplasm of 

vanadocytes in an expressed sequence tag (EST) analysis [18], and one Vanabin 

homolog, designated VanabinP, was isolated from the blood plasma (coelomic fluid) 

using V(IV)-chelating column chromatography [19].  Since all five of these Vanabins 

are rich in charged residues and have conserved motifs described as the consensus 
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sequence {C}-{X2-5}-{C}, they have been placed in the Vanabin family, and should 

provide a clue to resolving the problem of the selective accumulation of vanadium in 

ascidians [15, 18, 19]. 

The vanadium-accumulating pathway from seawater into the ascidian coelom 

has never been investigated.  Therefore, in this study, we used a V(IV)-chelating 

column to isolate vanadium-binding proteins from the digestive system, which is 

thought to be involved in vanadium uptake.  Consequently, we isolated and identified 

two similar, but slightly different, vanadium-binding proteins with striking homology 

to GSTs, designated AsGST-I and AsGST-II.  Like other GSTs, recombinant 

AsGST-I formed a dimer, and it not only showed GST activity, but also bound to both 

V(IV) and V(V).  Moreover, using immunoblotting, the expression level of these two 

AsGSTs in the digestive system was found to be exceptionally high compared to the 

major organs and tissues.  Therefore, AsGSTs may play important roles in vanadium 

accumulation in the ascidian digestive system. 

 

2. Materials and methods 

2.1. Specimens 

Specimens of the vanadium-rich ascidian A. sydneiensis samea were collected 

at the International Coastal Research Center, Ocean Research Institute, The University 

of Tokyo, Otsuchi, Iwate, Japan.  They were maintained in an aquarium that 

contained circulating natural seawater until use. 
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2.2. Screening vanadium-binding proteins from the ascidian digestive system using 

V(IV)-chelating column chromatography 

To avoid the analytical difficulty that arises from individual differences, 

especially in the analysis of amino acid sequences, we used one individual per 

preparation.  After the tunic was removed from the ascidian, the body wall was 

dissected.  The digestive system was separated and washed thoroughly with artificial 

sea water (ASW; 460 mM NaCl, 9 mM KCl, 32 mM Na2SO4, 5 mM HEPES, 6 mM 

NaHCO3, pH 7.0) to remove the contents of the digestive system.  The specimen was 

then homogenized in five volumes (ml per gram wet weight) of a homogenizing buffer 

(200 mM Tris-HCl, 150 mM NaCl, 10 mM EDTA, pH 8.0) using a Teflon 

homogenizer.  The homogenate was centrifuged at 21,600×g for 10 min, and the 

resulting supernatant was filtered through a cellulose acetate filter (0.45-μm pores) to 

remove lipidic floats, enclosed in a dialysis tube (6-8,000 Da cut-off), and dialyzed 

against 100 volumes of a chelating buffer (50 mM Tris-HCl, 500 mM NaCl, 25 mM 

EDTA, pH 7.2) to remove any metal ions that might interfere with the efficiency of 

V(IV)-chelating column chromatography.  Next, the sample was dialyzed three times 

in 100 volumes of a binding buffer (20 mM Na2HPO4, pH 7.2) to remove any EDTA, 

which might also interfere with chromatography.  The protein solution after dialysis 

was centrifuged at 21,600×g for 10 min and filtered through a cellulose acetate filter 

(0.45-μm pores) to remove the proteins insolubilized during dialysis. 

Chelating Sepharose Fast Flow (Amersham Biosciences) was packed into a 

polypropylene column (bed size, 1 cm φ × 10 cm).  V(IV) ions were chelated to the 
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Sepharose by adding twice the bed volume of 200 mM VOSO4·xH2O (Wako).  The 

Sepharose column was washed with ten bed volumes of distilled water (DW) to 

remove the unbound excess V(VI) ions, and then equilibrated to the binding buffer.  

The prepared protein solution was loaded onto the V(IV)-chelating column.  After the 

application, the Sepharose was washed thoroughly using binding buffer, and the 

absorbed proteins were eluted using an elution buffer (20 mM Na2HPO4, 500 mM 

NaCl, 50 mM EDTA, pH 7.2).  Portions of the protein samples from each 

chromatography step were analyzed using SDS-PAGE on a 12.5% gel. 

 

2.3. Determining the N-terminal partial amino acid sequence of vanadium-binding 

proteins 

The chromatography eluent was concentrated by ultrafiltration using a 

Centriplus YM-3 (Millipore), and the proteins were further separated using 

reverse-phase high performance liquid chromatography (HPLC).  HPLC was 

performed using a 5C18-AR-300 column (2.0×150 mm, Nacalai Tesque) with water 

and acetonitrile (both containing 0.1% trifluoroacetic acid). The proteins were eluted at 

a flow rate of 0.2 ml/min using a linear gradient of 10-70% acetonitrile over 60 min. 

Two major protein peaks detected 53 and 55 min after injection were collected, dried 

under vacuum in a rotatory concentrator, and dissolved in a sample buffer for 

SDS-PAGE.  The samples were subjected to SDS-PAGE on a 12.5% gel and 

electro-blotted onto polyvinylidene fluoride (PVDF) membrane.  The N-terminal 
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partial amino acid sequences of the protein bands corresponding to the two major 

protein peaks were determined using the Edman degradation method [20]. 

 

2.4. Isolation of cDNA clones for the two major vanadium-binding proteins 

A degenerate primer was designed based on the sequence common to the 

N-terminal partial amino acid sequences obtained from the two major protein peaks as 

follows: 28K/F, 5'-GTN AAR TTY TAY TTY AAY GAY-3' for 

Val-Lys-Phe-Tyr-Phe-Asn-Asp.  Using a cDNA library of vanadocytes from the 

ascidian A. sydneiensis samea constructed with UniZap XR vector [18] as the template, 

PCR was performed with the degenerate primer and primer T7 using Eazy A™ 

High-Fidelity PCR Cloning Enzyme (Stratagene).  The PCR mixture was denatured 

at 95°C for 2 min and then cycled 30 times at 95°C for 30 sec, 45°C for 30 sec, and 

72°C for 1 min, with a final 7-min extension at 72°C.  The amplified fragments were 

TA-cloned in pBluescript SK- vector (Stratagene) according to the manufacturer’s 

instructions.  The constructed plasmids were used for sequencing with 

Thermosequenase using an ALF Express II DNA sequencer (Amersham Biosciences). 

 

2.5. Expression and purification of recombinant AsGST-I 

A specific primer was designed based on the coding region for the C-terminus 

of the AsGSTs containing the termination codon and a restriction enzyme site for SalI 

as follows; AsGST/R sal, 5'-GGT CGA CTT ATT CGG TTC TC-3'.  Using primers 

AsGST/R sal and T3, PCR was performed as described above changing the DNA 
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annealing temperature from 45 to 50°C.  The PCR products were sequenced as 

described above to determine the sequence of the degenerate primer region and the 

location of the initiation methionine.  Based on the sequences, another specific primer 

was designed to amplify the coding regions of the putative mature AsGSTs, including 

the initiation methionine, using primer AsGST/R sal; this primer was AsGST/F, 

5'-ATG ACA GTC AAA TTT TAT TTC AAC G-3'.  Using primers AsGST/F and 

AsGST/R sal, PCR was performed as described above with an annealing temperature 

of 50°C.  The PCR products were TA-cloned in pETblue1 expression vector 

(Novagen).  The constructed vector containing the AsGST-I or AsGST-II gene was 

introduced into Escherichia coli Tuner™(DE3)pLacI strain (Novagen). 

The E. coli cells bearing the AsGST-I-expressing vector were cultured in LB 

medium containing 0.5% glycerol, 50 μg/ml ampicillin, and 34 μg/ml chloramphenicol 

at 37°C to an OD600 of approximately 0.6-1.0.  After storing at 4°C for 4-8 h, the 

culture was diluted approximately 30 times in fresh LB medium containing 0.5% 

glycerol, 50 μg/ml ampicillin, and 34 μg/ml chloramphenicol.  The culture was 

incubated with shaking at 25°C until the OD600 was approximately 0.5-1.0.  After 

adding isopropyl-beta-D-thiogalactopyranoside (IPTG) to a final concentration of 0.5 

mM, the cells were incubated with shaking at 25°C for 8 h.  The cells were collected 

by centrifugation at 4,000×g for 10 min, resuspended in lysis buffer (50 mM Tris-HCl, 

150 mM NaCl, 10 mM EDTA, pH 7.2), and sonicated on ice until clear.  The lysate 

was centrifuged at 10,000×g for 10 min.  The resulting supernatant was enclosed in 

dialysis tubing (6-8,000 Da cut-off) and dialyzed three times against 100 volumes of 
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the binding buffer.  The lysate after the dialysis was subjected to V(IV)-chelating 

column chromatography to purify the AsGST-I recombinant protein as described 

above.  The recombinant protein absorbed to the V(IV)-chelating column was eluted 

using binding buffer containing 100 mM NaCl.  Portions of the protein samples from 

each purification step were analyzed using SDS-PAGE on a 12.5% gel. 

Although the same experiment was performed using E. coli cells bearing the 

AsGST-II-expressing vector, little AsGST-II recombinant protein was obtained 

because of its low expression level.  Therefore, in this study, we used recombinant 

AsGST-I as AsGST in all of the following experiments. 

 

2.6 Characterization of AsGST-I as a GST enzyme 

The GST activity of AsGST-I was determined by using 

1-chloro-2,4-dinitrobenzene (CDNB) as a substrate, according to Habig et al. [21].  

The supernatant after the ultrasonication of E. coli cells expressing AsGST-I prepared 

as described above was diluted 100-fold using a reaction buffer (100 mM K2HPO4, 1 

mM reduced glutathione, 1 mM CDNB, pH 6.5) and the A340 was monitored.  The 

supernatant prepared from E. coli cells bearing the empty pETBlue1 vector after 

ultrasonication was used as a control. 

Gel filtration was used to investigate whether AsGST-I forms a dimer as do 

other GSTs.  A gel filtration column (bed size, 7 mm φ × 50 cm) filled with Biogel 

P-60 gel (Medium, Bio-Rad) was equilibrated with the buffer for the Hummel-Dreyer 

method (HD buffer; 10 mM Tris-HCl, 100 mM NaCl, pH 7.2; see below).  For 
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molecular weight calibration, one vial of protein mixture of a low-molecular-weight 

calibration kit for SDS electrophoresis (Amersham Biosciences) was diluted in 500 μl 

of HD buffer, and 100 μl of the protein mixture was loaded onto the prepared column 

and separated at a flow rate of 0.9 ml/h.  The eluted fractions were collected every 10 

min.  Each fraction was analyzed by SDS-PAGE to examine the correlation between 

molecular weight and the fraction number of eluted peaks.  The same experiment was 

performed using AsGST-I recombinant protein (≈10 μg) to confirm the dimerization of 

AsGST-I based on the determined correlation.  The protein concentration of each 

fraction was determined with Bio-Rad reagent (Bio-Rad) to detect the peak fraction. 

 

2.7. Vanadium-binding assay of AsGST-I 

The vanadium-binding activity of AsGST-I was assayed using the 

Hummel-Dreyer method [22] as described previously [15], with some modifications.  

All prepared buffers were degassed for 10 min under vacuum before use.  

VOSO4·xH2O (Wako) was dissolved in water and mixed with an equal molar ratio of 

iminodiacetic acid (IDA).  After the pH was adjusted to 7.0 by adding NaOH, the 

resulting solution was used as the V(IV) solution.  Na3VO4 (Wako) was dissolved in 

water at 10 mM, and the pH was adjusted to 7.0 by adding HCl and incubating it at 

60°C to decompose the yellow decavanadate until it became colorless; this was then 

used as the V(V) solution. 

The AsGST-I recombinant protein purified as described above was 

concentrated using Centriplus YM-3 and dialyzed once against 100 volumes of the 
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chelating buffer, and three times against 100 volumes of HD buffer.  After dialysis, 

the protein concentration was adjusted to ≈1mg/ml.  HD buffer containing twice the 

concentration of vanadium ions was added to the protein solution such that the 

vanadium concentration in the protein solution equaled the operating concentration 

(10-100 μM). 

A gel filtration column (bed size, 7mm φ × 50 cm) filled with Biogel P-6 DG 

gel (Bio-Rad) was equilibrated with HD buffer containing vanadium ions at the same 

concentration as the prepared protein solution.  The protein solution (100 μg in 200 

μl) was loaded onto the prepared column and separated at a flow rate of 0.3-0.35 

ml/min.  The eluted fractions were collected each min.  The vanadium concentration 

in each fraction was determined using atomic absorption spectrophotometry (AAS 

220Z, Varian) with the application software Spectra AA (Varian), and the protein 

concentration was determined as described above.  To determine the vanadium 

concentration using AAS, each sample diluted with HNO3 to a final concentration of 

0.1 M was placed in a graphite tube, which was heated according to the following 

program: 85°C for 5 sec, from 85 to 95°C in 40 sec, from 95 to 120°C in 10 sec, from 

120 to 1000°C in 5 sec, kept at 1000°C for 1 sec with an influx of argon (3 L/min), 

kept at 1000°C for 2 sec, from 1000 to 2700°C in 1.3 sec, kept at 2700°C for 2 sec 

with no influx of argon, and again with an influx of argon at 2700°C for 2 sec.  The 

molecular ratio of the bound vanadium per AsGST-I molecule (as the dimer) was 

calculated for the fraction with the protein peak.  The results were analyzed using a 

Scatchard plot [23]. 
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2.8. Preparation of antiserum to AsGST-I 

Purified and concentrated AsGST-I recombinant protein (≈100 μg) in 500 μl of 

phosphate buffered saline (PBS; 140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 

mM KH2PO4, pH 7.3) was mixed with an equal volume of complete Freund’s adjuvant 

and injected into a male Wistar rat (10.0 weeks old, 350 g).  Two weeks after the first 

injection, a second injection was given using incomplete Freund’s adjuvant instead of 

complete adjuvant.  Three additional injections using incomplete Freund’s adjuvant 

were given at 2-week intervals. The rat was euthanized 1 week after the last injection, 

and the blood was collected, incubated at 37°C for 1 h, and then kept at 4°C for 2 days. 

The blood was then centrifuged at 1,500×g for 5 min and the resulting supernatant was 

filtered through a cellulose acetate filter (0.45-μm pores).  The prepared serum was 

used as antiserum to AsGST-I. 

 

2.9. Localization analysis of AsGSTs using antiserum to AsGST-I 

Using antiserum to AsGST-I, an immunoblot analysis was performed to 

examine the localization of the AsGSTs.  An individual ascidian was dissected into 

four components: the digestive system, body wall, endostyle, and branchial sac.  

Blood cells were collected from several individual ascidians, as described previously 

[13].  Each specimen was homogenized as described above.  Each homogenate 

mixed with sample buffer for SDS-PAGE was fractionated using SDS-PAGE on a 

12.5% gel.  The purified AsGST-I recombinant protein was also loaded on the gel as 
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a positive control.  The separated proteins were transferred electrophoretically to a 

nitrocellulose membrane, which was then incubated with TEN buffer (20 mM 

Tris-HCl, 1 mM EDTA, 140 mM NaCl, pH 7.4).  After treating the membrane with 

TEN-BSA buffer (TEN buffer containing 1% BSA) for 1 h, the membrane was placed 

in TEN-BSA buffer containing 1:5000 antiserum to AsGST-I for 1 h.  The membrane 

was washed with TEN-Tween buffer (TEN buffer containing 0.05% Tween20), and 

then treated with TEN-Tween buffer containing 1:5000 anti-rat-IgG 

peroxidase-labeled secondary antibodies (Kirkegaard & Perry Laboratories) for 30 min.  

After washing the membrane with TEN-Tween buffer sufficiently to remove 

nonspecifically bound antibodies, the immune complexes were detected on Hyperfilm 

ECL (Amersham Bioscience) with enhanced chemiluminescence reagents (Amersham 

Bioscience). 

 

3. Results 

3.1. Isolation and identification of novel vanadium-binding proteins from the ascidian 

digestive system  

To search for factors involved in vanadium accumulation of ascidians, we 

attempted to isolate novel vanadium-binding proteins from the digestive system, which 

is thought to be involved in vanadium uptake.  Soluble proteins prepared from the 

digestive system of an individual vanadium-rich ascidian, A. sydneiensis samea, were 

separated using a V(IV)-chelating column (Fig.1).  V(IV) is one of the assumed 

chemical forms of vanadium ingested through the digestive system.  Another 
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chemical form, V(V), could not be used for a chelating column because of its low 

affinity for the column.  As a result, several proteins were identified in the 

vanadium-absorbed fraction (Fig. 1A, lane 5).  The most strongly expressed protein 

in the digestive system comprised almost the entire vanadium-absorbed fraction (Fig. 

1A, arrowhead).  For further separation, the vanadium-absorbed fraction was applied 

to reverse-phase HPLC (Fig. 1B).  After each of the two major peaks detected 53 and 

55 min after injection was confirmed to be a single band (Fig. 1B), the N-terminal 

partial amino acid sequence of each peak was determined.  The two sequences were 

almost identical, except for the ninth residue (Fig. 1C).  The leucine in the protein 

from peak 1 was replaced by methionine in peak 2 (Fig. 1C, open letters). 

Using a degenerate primer designed based on the common sequence, cDNAs 

encoding those proteins were screened from a cDNA library of A. sydneiensis samea 

vanadocytes [18].  As a result, we obtained two similar, though slightly different, 

clones predicted to encode mature proteins of 221 amino acids (Fig. 2).  The 

predicted amino acid sequences were compared with known protein sequences 

registered in public protein databases using the program BLASTP and were revealed 

to have ≈50% similarity with theta-class GSTs of insects and mammals.  Therefore, 

they were designated AsGSTs (ascidian GSTs).  The AsGST with the methionine at 

residue 9 was designated AsGST-I because the cDNAs encoding this protein 

constituted the majority of the screened cDNAs, and the AsGST with leucine at residue 

9 was designated AsGST-II (Fig. 2).  AsGST-I and AsGST-II correspond to the peak 

2 and peak 1 proteins obtained on HPLC-separation (Fig. 1B, C). 
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3.2. Purification of recombinant AsGST-I using a V(IV)-chelating column 

For a functional assay of AsGSTs, an expression system for recombinant 

AsGSTs was constructed in E. coli.  Since the level of AsGST-II expression in E. coli 

was very low, we used the AsGST-I expression system.  Recombinant AsGST-I was 

specifically absorbed to a V(IV)-chelating column, and the absorbed fraction could be 

eluted with 100 mM NaCl (Fig. 3, lane 5), indicating that AsGST-I clearly binds to 

V(IV) ions, but the affinity was weak.  When recombinant AsGST-I was subject to 

HPLC, a single peak was eluted at 55 min (data not shown).  The elution time 

corresponded to that of native AsGST-I (Fig.1B).  On SDS-PAGE, recombinant 

AsGST-I migrated with native AsGST-I (Fig. 3, lanes 5 and 7).  These results indicate 

that the recombinant AsGST-I corresponds to native AsGST-I. 

 

3.3. Characterization of AsGST-I as a GST enzyme 

First, we examined whether AsGST-I has enzymatic activity using CDNB as a 

substrate.  A significantly higher level of activity was detected in lysate prepared 

from E. coli cells expressing AsGST-I than in lysate prepared from control cells 

bearing the empty vector (Fig. 4A), indicating that AsGST-I acts as a GST enzyme. 

As GSTs are known to form dimers [24], we examined whether AsGST-I 

formed a dimer using the purified AsGST-I recombinant protein.  AsGST-I was 

subjected to gel-filtration chromatography, and the elution pattern was compared to 

that of low-molecular-weight marker proteins.  As shown in Fig. 4B, the elution peak 
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of AsGST-I was detected fraction No.29 which was immediately after the elution peak 

of a 45-kDa marker protein.  If AsGST-I was a monomer, the peak should be detected 

after fraction No. 34 because the molecular weight of the AsGST-I subunit is 25.6 kDa.  

Therefore, AsGST-I may form a dimer although the estimated size of the dimer was 

40.7kDa that is smaller than the calculated size of 51.2 kDa (Fig. 4B inset). 

 

3.4. Vanadium-binding assay of AsGST-I 

To assess the vanadium-binding ability of AsGST-I, the Hummel-Dreyer 

method was used [22].  Measurements were made using solutions of free V(IV) or 

V(V) ions ranging from 10 to 100 μM.  The recombinant AsGST-I bound with both 

oxidation states of vanadium (Fig. 5A).  Scatchard plot analysis of the data revealed 

that AsGST-I bound to about 16 vanadium atoms of either V(IV) or V(V) per dimer, 

and the apparent dissociation constants against V(IV) and V(V) were 1.8×10-4 M and 

1.2×10-4 M, respectively (Fig. 5B).  These values suggest that AsGST-I binds to both 

oxidation states of vanadium ion with weak affinity.  These results demonstrate that 

AsGST-I not only has characteristics of a GST enzyme, but also the novel property of 

vanadium-binding activity, which likely leads to the vanadium accumulation in 

ascidians. 

 

3.5. Localization analysis of AsGSTs 

To examine in which organs or tissues AsGSTs are localized, an 

immunological analysis was conducted using antiserum to AsGST-I (Fig. 6).  
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Homogenates of the digestive system, body wall, endostyle, branchial sac, and blood 

cells prepared from adult individuals of A. sydneiensis samea were used in Western 

blot analysis.  Purified AsGST-I recombinant protein was used as a positive control.  

As result, AsGSTs were detected from all of the organs and tissues examined, and very 

dense bands due to AsGSTs were detected from the digestive system (Fig. 6B, lane1, 

arrowhead), which suggests that AsGSTs play an especially important role in the 

digestive system. 

 

4. Discussion 

The study of the mechanism of vanadium accumulation by ascidians has 

attracted interdisciplinary attention over the century since its discovery [1].  However, 

the mechanism and physiological significance of vanadium accumulation in ascidians 

remain poorly understood.  In this decade, we have introduced biochemical and 

molecular biological methods to the investigation of these questions and have 

succeeded in identifying various key factors [2, 7-15, 18, 19].  For example, 

Vanabins that are expressed strongly in vanadocytes and blood plasma of 

vanadium-accumulating ascidians play important roles in vanadium accumulation 

[13-15, 18, 19]. 

In contrast, few studies have examined the pathway of vanadium accumulation 

from seawater into the ascidian coelom.  In this study, novel vanadium-binding 

proteins with striking homology to GSTs, named AsGST-I and AsGST-II, were 

isolated from the digestive system for the first time using V(IV)-chelating column 
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chromatography (Figs. 1 and 2).  GSTs are a superfamily of enzymes that utilize 

glutathione (GSH) in reactions contributing to the detoxification of a wide range of 

toxic compounds.  GSTs are found in all eukaryotes and have various functions [24].  

Notwithstanding their versatility, GSTs have never been considered to be involved in 

metal homeostasis.  Using AsGST-I recombinant protein, we have demonstrated that 

AsGST-I forms a dimer, as do other GSTs (Fig. 4B), and that it not only has GST 

activity (Fig. 4A), but it also has vanadium-binding activity (Fig. 5).  These activities 

could not be examined in AsGST-II because it was impossible to obtain sufficient 

recombinant protein due to the low expression level of AsGST-II in E. coli.  However, 

since there is only a 5% difference in the amino acid sequences of AsGST-I and 

AsGST-II (Fig. 2), we believe that these proteins have similar characteristics and 

functions.  AsGSTs were the most strongly expressed proteins in the digestive system 

(Fig. 1A), and the expression there was much higher than in the other organs and 

tissues (Fig. 6).  Therefore, it is very likely that AsGSTs play an important role in the 

digestive system of ascidians. 

We have already localized Vanabin1 and Vanabin2 to the cytoplasm of 

vanadocytes and have demonstrated that they bind to 10 and 20 V(IV) ions with 

dissociation constants of 2.1 × 10-5 M and 2.3 × 10-5 M, respectively [15].  Further, 

VanabinP, which is localized in the blood plasma, binds 13 V(IV) ions with a 

dissociation constant of 2.8 × 10-5 M [19].  These values are comparable to those of 

the nickel chaperone protein UreE (1.0 × 10-5 M for Ni2+), which assists in the 

insertion of Ni2+ in the active site of urease [25], the copper-binding site of Menkes 
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protein (4.6 × 10-5 M for Cu2+) [26], and the periplasmic molybdate-binding protein 

ModA (3 × 10-6 M for molybdate and 7 × 10-6 M for tungstate) [27].  In comparison, 

AsGST-I bound to about 16 atoms of either V(IV) or V(V) per dimer, and the apparent 

dissociation constants for V(IV) and V(V) were 1.8×10-4 M and 1.2×10-4 M, 

respectively (Fig. 5B).  AsGST-I resembles Vanabins in its binding with vanadium 

ions, although the binding affinity of AsGST-I was about ten times lower than that of 

Vanabins.  In addition, the expression of AsGSTs in the digestive system was 

considerably higher than in the other organs and tissues (Fig. 6) and was comparable to 

that of Vanabins in the blood cells (Fig. 6A, lane5, asterisk) [13-15].  Therefore, 

AsGSTs may play an alternative role as a vanadium carrier protein in the digestive 

system, although further study of its function is required. 

In seawater, vanadium is in the +5 oxidation state, while in ascidians, almost all 

the vanadium is reduced to the +3 oxidation state via the +4 oxidation state and is 

stored in the vacuoles of the vanadocytes [4-6].  During this process, NADPH 

produced by the pentose phosphate pathway localized in the vanadocyte cytoplasm is 

likely involved in the reduction of V(V) to V(IV) [7-10, 28].  However, the 

compound reducing V(IV) to V(III) has not been identified in ascidians.  

Nevertheless, there is no doubt that the accumulation of vanadium by ascidians is 

inevitably intertwined with the reduction of vanadium.  One function of GSTs is to 

promote the conjugation of GSH to the electrophilic center of toxic compounds [24], 

and GSH, the cofactor of GSTs, reduces V(V) to V(IV) and may act as a ligand for the 

generated V(IV) [29].  Recently, hGSTO1-1 (human GST Omega class) was 
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demonstrated to have activity as a reductase catalyzing the reduction of the metalloid 

compound monomethylarsonate (MMAV) to monomethylarsenous acid (MMAIII) [30].  

Further, Gtt2 (a yeast GST) [31] and hGSTP1-1 (human GST Pi class) [32] were 

suggested to participate in the conjugation of GSH to cadmium and arsenic, which 

results in the production of GSH-complexes with cadmium [Cd(GS)2] and arsenic 

[As(GS)3], respectively.  Therefore, we hypothesize that AsGSTs may directly or 

indirectly be involved in the reduction of V(V) to V(IV) and the conjugation of V(IV) 

with GSH in the digestive system and the possibility should be examined in future. 

Based on the results of our experiments, it is likely that the main function of 

AsGSTs in the vanadium-accumulating process is vanadium-carrier in the digestive 

system.  Vanadium ions taken up by ascidians via the digestive system might be 

captured by AsGSTs, vanadium-binding proteins that are locally abundant.  Since 

AsGSTs might be one of the first molecules involved in the influx of vanadium ions 

through the digestive system, these seem to be a quite important clue to elucidate the 

first step of the 10 million-fold vanadium-accumulating process in ascidians. 

 

Acknowledgments 

We thank Mr. T. Morita and the staff at the International Coastal Research 

Center, Ocean Research Institute, The University of Tokyo, at Otsuchi, Iwate, Japan, 

for their help in collecting adult ascidians.  This work was supported by the Sasakawa 

Scientific Research Grant from The Japan Science Society (17-165 to M. Y.).  This 

work was also supported in part by Grants-in-Aid from the Ministry of Education, 



21 

Culture, Sports, Science, and Technology of Japan (#14340264 and #17370026 to H. 

M. and #14596005 to T. U.) and a Grant from the Toray Science Foundation (03-4402 

to T. U.). 

 

References 

[1] M. Henze, Untersuchungen über das Blut der Ascidien. I. Mitteilung. Die 

Vanadiumverbindung der Blutkörperchen, Hoppe-Seyler’s Z. Physiol. Chem. 72 

(1911) 494-501. 

[2] H. Michibata, N. Yamaguchi, T. Uyama, T. Ueki, Molecular biological approaches 

to accumulation and reduction of vanadium by ascidians, Coord. Chem. Rev. 237 

(2003) 41-51. 

[3] H. Michibata, Y. Iwata, J. Hirata, Isolation of highly acidic and 

vanadium-containing blood cells from among several types of blood cell from 

Ascidiidae species by density-gradient centrifugation, J. Exp. Zool. 257 (1991) 

306-313. 

[4] T. Ueki, K. Takemoto, B. Fayard, M. Salmoé, A. Yamamoto, H. Kihara, J. Susini, S. 

Scippa, T. Uyama, H. Michibata, Scanning x-ray microscopy of living and 

freeze-dried blood cells in two vanadium-rich ascidian species, Phallusia 

mammillata and Ascidia sydneiensis samea, Zool. Sci. 19 (2002) 27-35. 

[5] J. Hirata, H. Michibata, Valency of vanadium in the vanadocytes of Ascidia 

gemmata separated by density-gradient centrifugation, J. Exp. Zool. 257 (1991) 

160-165. 



22 

[6] K. Kanamori, H. Michibata, Raman spectroscopic study of the vanadium and 

sulphate in blood cell homogenates of the ascidian, Ascidia gemmata, J. Mar. Biol. 

Assoc. UK 74 (1994) 279-286. 

[7] T. Uyama, T. Kinoshita, H. Takahashi, N. Satoh, K. Kanamori, H. Michibata, 

6-phosphogluconate dehydrogenase is a 45-kDa antigen recognized by S4D5, a 

monoclonal antibody specific to vanadocytes in the vanadium-rich ascidian 

Ascidia sydneiensis samea, J. Biochem. 124 (1998) 377-382. 

[8] T. Uyama, K. Yamamoto, K. Kanamori, H. Michibata, Glucose-6-phosphate 

dehydrogenase in the pentose phosphate pathway is localized in vanadocytes of 

the vanadium-rich ascidian, Ascidia sydneiensis samea, Zool. Sci. 15 (1998) 

441-446. 

[9] T. Uyama, T. Ueki, Y. Suhama, K. Kanamori, H. Michibata, A 100-kDa antigen 

recognized by a newly prepared monoclonal antibody specific to the vanadocytes 

of the vanadium-rich ascidian, Ascidia sydneiensis samea, is glycogen 

phosphorylase, Zool. Sci. 15 (1998) 815-821. 

[10] T. Ueki, T. Uyama, K. Yamamoto, K. Kanamori, H. Michibata, Exclusive 

expression of transketolase in the vanadocytes of the vanadium-rich ascidian, 

Ascidia sydneiensis samea, Biochim. Biophys. Acta 1494 (2000) 83-90. 

[11] T. Ueki, T. Uyama, K. Kanamori, H. Michibata, Subunit C of the vacuolar-type 

ATPase from the vanadium-rich ascidian Ascidia sydneiensis samea rescued the 

pH sensitivity of yeast vma5 mutants, Mar. Biotechnol. 3 (2001) 316-321. 

[12] T. Ueki, T. Uyama, K. Kanamori, H. Michibata, Isolation of cDNAs encoding 



23 

subunits A and B of the vacuolar-type ATPase from the vanadium-rich ascidian, 

Ascidia sydneiensis samea, Zool. Sci. 15 (1998) 823-829. 

[13] T. Kanda, Y. Nose, J. Wuchiyama, T. Uyama, Y. Moriyama, H. Michibata, 

Identification of a vanadium-associated protein from the vanadium-rich ascidian, 

Ascidia sydneiensis samea, Zool. Sci. 14 (1997) 37-42. 

[14] J. Wuchiyama, Y. Nose, T. Uyama, H. Michibata, Preparation and localization of a 

monoclonal antibody against a vanadium-associated protein extracted from the 

blood cells of the vanadium-rich ascidian, Ascidia sydneiensis samea, Zool. Sci. 

14 (1997) 409-414. 

[15] T. Ueki, T. Adachi, S. Kawano, M. Aoshima, N. Yamaguchi, K. Kanamori, H. 

Michibata, Vanadium-binding proteins (vanabins) from a vanadium-rich ascidian 

Ascidia sydneiensis samea, Biochim. Biophys. Acta 1626 (2003) 43-50. 

[16] T. Hamada, M. Asanuma, T. Ueki, F. Hayashi, N. Kobayashi, S. Yokoyama, H. 

Michibata, H. Hirota, Solution structure of Vanabin2, a vanadium(IV)-binding 

protein from the vanadium-rich ascidian Ascidia sydneiensis samea, J. Am. Chem. 

Soc. 127 (2005) 4216-4222. 

[17] K. Fukui, T. Ueki, H. Ohya, H. Michibata, Vanadium-binding protein in a 

vanadium-rich ascidian Ascidia sydneiensis samea: CW and Pulsed EPR studies, J. 

Am. Chem. Soc. 125 (2003) 6352-6353. 

[18] N. Yamaguchi, K. Kamino, T. Ueki, H. Michibata, Expressed sequence tag 

analysis of vanadocytes in a vanadium-rich ascidian, Ascidia sydneiensis samea, 

Mar. Biotechnol. 6 (2004) 165-174. 



24 

[19] M. Yoshihara, T. Ueki, T. Watanabe, N. Yamaguchi, K. Kamino, H. Michibata, 

VanabinP, a novel vanadium-binding protein in the blood plasma of an ascidian, 

Ascidia sydneiensis samea, Biochim. Biophys. Acta 1730 (2005) 206-214. 

[20] P. Edman, G. Begg, A protein sequenator, Eur. J. Biochem. 1 (1967) 80-91. 

[21] W.H. Habig, M.J. Pabst, W.B. Jakoby, Glutathione S-transferases, J. Biol. Chem. 

249 (1974) 7130-7139. 

[22] J.P. Hummel, W.J. Dreyer, Measurement of protein-binding phenomena by gel 

filtration, Biochim. Biophys. Acta 63 (1962) 530-532. 

[23] G. Scatchard, The attractions of proteins for small molecules and ions, Ann. NY 

Acad. Sci. 51 (1949) 660-672. 

[24] D. Sheehan, G. Meade, V.M. Foley, C.A. Dowd, Structure, function and evolution 

of glutathione transferases: implications for classification of non-mammalian 

members of an ancient enzyme superfamily, Biochem. J. 360 (2001) 1-16. 

[25] M.H. Lee, H.S. Pankratz, S. Wang, R.A. Scott, M.G. Finnegan, M.K. Johnson, J.A. 

Ippolito, D.W. Christianson, R.P. Hausinger, Purification and characterization of 

Klebsiella aerogenes UreE protein: A nickel-binding protein that functions in 

urease metallocenter assembly, Protein Sci. 2 (1993) 1042-1052. 

[26] P.Y. Jensen, N. Bonander, N. Horn, Z. Tümer, O. Farver, Expression, purification 

and copper-binding studies of the first metal-binding domain of Menkes protein, 

Eur. J. Biochem. 264 (1999) 890-896. 

[27] S. Rech, C. Wolin, R.P. Gunsalus, Properties of the periplasmic ModA 

molybdate-binding protein of Escherichia coli, J. Biol. Chem. 271 (1996) 



25 

2557-2562. 

[28] K. Kanamori, M. Sakurai, T. Kinoshita, T. Uyama, T. Ueki, H. Michibata, Direct 

reduction from vanadium(V) to vanadium(IV) by NADPH in the presence of 

EDTA. A consideration of the reduction and accumulation of vanadium in the 

ascidian blood cells, J. Inorg. Biochem. 77 (1999) 157-161. 

[29] E.J. Baran, Oxovanadium(IV) and oxovanadium(V) complexes relevant to 

biological systems, J. Inorg. Biochem. 80 (2000) 1-10. 

[30] R.A. Zakharyan, A. Sampayo-Reyes, S.M. Healy, G. Tsasprailis, P.G. Board, D.C. 

Liebler, H.V. Aposhian, Human monomethylarsonic acid (MMAV) reductase is a 

member of the glutathione-S-transferase superfamily, Chem. Res. Toxicol. 14 

(2001) 1051-1057. 

[31] P.D.B. Adamis, D.S. Gomes, M.L.C.C. Pinto, A.D. Panek, E.C.A. Eleutherio, The 

role of glutathione transferases in cadmium stress, Toxicol. Lett. 154 (2004) 

81-88. 

[32] E.M. Leslie, A. Haimeur, M.P. Waalkes, Arsenic transport by the human 

multidrug resistance protein 1 (MRP1/ABCC1), J. Biol. Chem. 279 (2004) 

32700-32708. 



26 

Figure legends 

Fig. 1. Isolation and N-terminal amino acid sequence analysis of vanadium-binding 

proteins from the digestive system of an ascidian.  (A) Screening 

vanadium-binding proteins from the digestive system of an ascidian using 

V(IV)-chelating column chromatography.  Portions of the protein samples 

from each of the chromatography steps were analyzed using SDS-PAGE.  

Lane 1, low-molecular-weight markers; lane 2, homogenate of the digestive 

system; lane 3, soluble protein from the digestive system; lane 4, flow-through 

fraction; and lane 5, eluent with EDTA.  The arrowhead indicates the most 

strongly expressed protein in the digestive system.  (B) Further separation of 

the vanadium-absorbed proteins.  The eluent with EDTA (approximately 

11.5μg of protein) was loaded onto a C18 reverse-phase HPLC column and 

eluted using a linear gradient of 10-70% acetonitrile over 60 min.  Two major 

protein peaks detected 53 (peak 1) and 55 (peak 2) min after injection were 

collected and analyzed using SDS-PAGE (lanes 1 and 2 in the inset, 

respectively).  The most strongly expressed protein in the digestive system 

actually consists of two proteins.  (C) The N-terminal partial amino acid 

sequences of the HPLC peaks.  The two N-terminal sequences were identical, 

except for the ninth (open letters), twelfth and fourteenth residues (boxed 

letters).  Boxed residues were confirmed to be identical by cDNA sequencing 

(see Fig. 2). 
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Fig. 2. Alignment of the amino acid sequences deduced from the cDNA sequences of 

the AsGSTs.  The AsGST with methionine as the ninth residue was designated 

AsGST-I; the other, which had leucine as the ninth residue, was designated 

AsGST-II.  Identical residues are boxed; “m” indicates the initiation 

methionine.  Open letters indicate the amino acid residues identical to those 

determined in the N-terminal amino acid sequence analysis.  An 

approximately 5% overall difference between their amino acid sequences is 

observed. 

 

Fig. 3. Purification of AsGST-I recombinant protein using a V(IV)-chelating column.  

Portions of protein samples from each purification step were analyzed using 

SDS-PAGE.  Native AsGSTs obtained from HPLC (Fig. 1B) were also 

analyzed to identify the expressed recombinant protein by comparing their 

migration on the gel.  Recombinant AsGST-I could be purified using a 

V(IV)-chelating column, which confirmed the vanadium-binding activity of 

AsGST-I.  Lane 1, low-molecular-weight markers; lane 2, E. coli cell lysate 

after ultrasonication; lane 3, soluble protein of the lysate; lane 4, flow-through 

fraction; lane 5, eluent with 100 mM NaCl; lane 6, native AsGST-II obtained 

from the HPLC analysis; lane 7, native AsGST-I obtained from the HPLC 

analysis. 

 

Fig. 4. Characterization of AsGST-I as a GST enzyme.  (A) The GST activity of 
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AsGST-I with CDNB was determined by monitoring the changes in A340.  The 

initial increase in A340 for 1 minute after the reaction represents GST activity 

(vertical axis).  The lysate prepared from E. coli cells expressing recombinant 

AsGST-I (AsGST-I) showed much greater GST activity than the lysate prepared 

from non-expressing cells (Control).  Bars represent the means of triplicate 

determinations (±S.D.) in a single experiment.  (B) Dimerization of AsGST-I 

was examined using gel filtration chromatography.  The elution pattern of 

AsGST-I recombinant protein (line graph) was compared to that of 

low-molecular-weight marker proteins.  The vertical axis indicates the protein 

concentration of AsGST-I.  Inverted triangles indicate the elution peaks of the 

marker proteins.  The elution peak of AsGST-I was detected immediately after 

that of a 45-kDa marker protein, suggesting that AsGST-I forms a dimer.  

Inset, The mass of AsGST-I was determined from its elution position (arrow) 

on the chromatography.  The elution positions of the marker proteins are 

indicated for albumin (a, 66kDa), ovalbumin (b, 45kDa), carbonic anhydrase (c, 

30kDa), trypsin inhibitor (d, 20.1kDa),  and α-lactalbumin (e, 14.4kDa). 

 

Fig. 5 Assay for the vanadium-binding activity of AsGST-I using the Hummel-Dreyer 

method.  (A) The relationship between the concentration of free vanadium 

ions and the ratio of bound vanadium per AsGST-I dimer.  V(IV) ions (black 

diamonds) or V(V) ions (gray triangles) were used for the assay.   The 

logarithmic fit of each dataset is indicated using black or gray solid lines, 
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respectively.  (B) Scatchard plot of the results shown in (A).  Black 

diamonds indicate the results with V(IV) and gray triangles indicate the results 

with V(V).  The linear fit for each dataset is indicated using black or gray 

dashed lines, respectively.  Kd and n are the apparent dissociation constant of 

AsGST-I against vanadium (M) and the maximum number of vanadium atoms 

bound per AsGST-I dimer (mol/mol), respectively.  These results suggest that 

AsGST-I can bind with multiple vanadium ions in both the +4 and +5 oxidation 

states. 

 

Fig. 6. Localization of AsGSTs using antiserum to AsGST-I.  Homogenates prepared 

from major organs or tissues of the ascidian A. sydneiensis samea were 

analyzed using (A) SDS-PAGE and (B) Western blotting using antiserum to 

AsGST-I.  Purified AsGST-I recombinant protein was used as a positive 

control.  Lane1, digestive system; lane 2, body wall; lane 3, endostyle; lane 4, 

branchial sac; lane 5, blood cells; lane 6, purified AsGST-I recombinant protein.  

AsGSTs were detected in all specimens (arrowhead).  The expression in the 

digestive system was exceptionally high and rivaled the level of Vanabins in 

blood cells (asterisk). 
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