CRYPTOGRAPHIC MERSENNE TWISTER AND FUBUKI
STREAM/BLOCK CIPHER

MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA,
AND MUTSUO SAITO

ABSTRACT. We propose two stream ciphers based on a non-secure pseudoran-
dom number generator (called the mother generator). The mother generator
is here chosen to be the Mersenne Twister (MT), a widely used 32-bit integer
generator having 19937 bits of internal state and period 219937 — 1.

One proposal is CryptMT, which computes the accumulative product of
the output of MT, and use the most significant 8 bits as a secure random
numbers. Its period is proved to be 219937 — 1 and it is 1.5-2.0 times faster
than the most optimized AES in counter-mode.

The other proposal, named Fubuki, is designed to be usable also as a block
cipher. It prepares nine different kinds of encryption functions (bijections
from blocks to blocks), each of which takes a parameter. Fubuki encrypts a
sequence of blocks (= a plain message) by applying these encryption functions
iteratedly to each of the blocks. Both the combination of the functions and
their parameters are pseudorandomly chosen by using its mother generator
MT. The key and the initial value are passed to the initialization scheme of
MT.

1. INTRODUCTION

In this paper, we consider cryptographic systems implemented in software. We
assume a 32-bit CPU machine with fast multiplication of words, and a moderate
size of working area (about 4K bytes).

In a narrow sense, a stream cipher system is to generate cryptographically secure
pseudorandom numbers (PN) from a shared key, and take exclusive-or with the
plain message to obtain ciphered message. One way to generate such PN is to use
a non-secure generator like LFSR, (which we call the mother generator), initialize it
by using the key, and then filter its outputs, i.e., apply some complicated functions
to obtain a secure sequence.

Along this line, we propose to use a GF(2)-linear generator whose internal state
consists of 19937 bits, Mersenne Twister (MT) (see §3 for the detail). MT is
invented by two of the authors [4]. It has period 2!9937 — 1 and uniform equidis-
tribution property upto 623 dimension. Its initialization scheme is improved to
accept an array of any length as an initial seed in 2002. MT is widely accepted in

Date: June 1, 2005.

Key words and phrases. Mersenne Twister, non-secure random number generator, stream ci-
pher, CryptMT, Fubuki, AES.

The cipher systems CryptMT and Fubuki in this paper are proposed to ECRYPT Stream
Cipher Proposal http://wuw.ecrypt.eu.org/stream/. The reference codes and a prototype of
this paper are available there. The first author was supported in part by JSPS Grant-In-Aid
#14654021 and #16204002, and Hiroshima University President’s Discretion Fund ’05.

1

2 MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

make
M

multi-
plication

Secure Pseudorandom
[8-bit integers

8 bitsl accum

FIGURE 1. CryptMT: period 2'%937 — 1, and twice faster than the
optimized AES (Pentium-M, gcc -O3)

the society of MonteCarlo simulations, and implementations in C and many other
languages are available from the homepage [5].

As described in this homepage, a way to generate a cryptographically secure PN
sequence is to use MT, and compress its outputs by using, say, MD5 or SHAT.

2. CRYPTMT

The first proposal in this paper is even simpler. MT generates a sequence of
unsigned 32 bit integers (which from now on we shall call words). The given key
and initial value are concatenated and passed to the initialization scheme (§3) of
MT. We prepare a variable accum of word size, which is set to 1 at the beginning
(this may be any odd integer).

Then, we iterate the following process to obtain (probably) a cryptographically
secure PN sequence of 8-bit integers (= byte):

(1) Generate one pseudorandom word gen_rand by MT.
(2) Multiply it to accum:

accum < accum X (gen_rand | 1).

(3) Output the most significant 8 bits of accum. Go to Step 1.

To raise the security, the first 64 bytes of the outputs are discarded.

Here the C-language-like notation “|” denotes bitwise-OR operation. This op-
eration is to make the multiplier odd (otherwise, after several iterations, accum
would be zero). Multiplication is considered modulo 232.

This method generates a PN sequence of bytes, which fits to the usual require-
ments for a stream cipher. We call this stream cipher CryptMT, meaning Crypto-
graphic Mersenne Twister.

Our experiment shows that CryptMT is faster by a factor of 1.5-2.0 than the well-
optimized counter-mode AES (see §6.1), widely known as rijndael-alg-fst.c.
The size of the internal state of MT seems to be enough to make any kind of
time-memory-trade-off attacks infeasible.

If all bits of accum were used (differently from the 8 bits as in CryptMT) then
the sequence would not be cryptographically secure, since from the change of the

CRYPTOGRAPHIC MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CIPHER 3

accum we could recover the output of MT (except for the least significant bit), then
by linear algebra one can decide the internal state after observing 19937 bits of
the output. However, if only the most significant 8 bits after multiplication are
observed, then we can not imagine how to obtain the internal state of MT.

It is important to use the most significant bits: the least significant bit is always
1, and the second bit of accum coincides with the summation (modulo 2) of the
second bit of the outputs of MT so far, from which one could compute MT’s internal
state. The most significant bits seem to be safe, since the bit-diffusion pattern of
the multiplication is from right to left, and most significant bits gather information
of all the less significant bits of the two operands: accum and the output of MT.

The above gave a complete description of CryptMT, except for the description
of the mother generator MT (§3). Security of CryptMT is largely depending on the
mother generator MT and its initialization. The facts that (1) the size of internal
state of MT is huge, (2) 3/4 of the output bits of MT are discarded, (3) MSBs
after multiplication gather information of all bits, and (4) initialization is highly
nonlinear, seem to imply high security, but we need more detailed study. The
period of each of 8 bits of the output of CryptMT is 219937 — 1 (see Appendix A).

Design rationales of CryptMT are

(1) use a fast linear generator, which has a huge state (e.g. thousands of bits),
and

(2) filter its output by a finite state non-linear automaton which has a relatively
small state (e.g. one word),

(3) Only a small fraction of the information of the state is output (e.g. 8 bits
among 32 bits).

as seen in Figure 1. The former ensures the long period, and the latter ensures
complicated bit-diffusion, under a compromise with the speed in software imple-
mentation.

3. MERSENNE TWISTER

MT generates a PN word sequence by the GF(2)-linear recursion
We24+i = W39744 D ((wi&OXSOOOOOOO)|(w1+i&0x7fffffff))A (7, =0,1,2,..)

Here w; (i = 0,1,2,...) are 32-bit integers, each of which is considered as a 32-
dimensional row vector over the two element field GF(2). The binary operator @
denotes bitwise exclusive-or, i.e., addition as a vector.

The C-like hexadecimal notation 0x80000000 denotes the vector whose compo-
nents are all zero except for the left most 1. Thus, ((w;&0x80000000)|(w4+;&0xTEfEEEET))
is the row vector obtained by concatenating the MSB of w; and all bits but the
MSB of wi4;. To this vector a constant 32 x 32 matrix A is multiplied from the
right. This matrix A is of the form

1

4 MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

and so the multiplication is computed by

e shiftright(x) (if the LSB of x is 0)
xA= shiftright(x) @ a (if the LSB of x is 1),

where a is a constant vector
a = (as1,aso,.-.,ap) = 0x9908BODF in the hexadecimal notation.

These constants are chosen so that the period of the sequence is 219937 — 1. The
number of nonzero terms in the characteristic polynomial of the state transition
function is 153.

Figure 2 illustrates the state transition of MT. The state consists of 623 words
+ 1 bit. The next state is obtained by shifting one words to the above, and insert
a new word linearly computed from the discarded part and a middle term. In a
software implementation, instead of shifting, we use round robin technique (i.e. to
use a pointer) for the efficiency of the generation.

Advantages of this configuration over usual LFSR with coefficients, say, in GF(232),
are (1) No need of costive operations like “multiplication modulo polynomials,” (2)
There is a fast algorithm to check the maximality of the period by paring and
Galois theory [4], (3) The generation speed is independent of a, which makes the
parameter-search easier. This is different from LFSR, where the generation speed
depends on a particular choice of the coefficients.

Remark 3.1. In the original MT, the output is transformed by a linear trans-
formation to attain nearly optimally high-dimensional equidistribution at MSBs.
This is called Tempering. We removed this transformation, since we think it non-
necessary because of the application of complicated functions to the outputs of MT
in the encryption process.

For initialization, we need to specify wp, w1, ..., ws23 as the initial state (to be
precise, all the 31 bits of wy but the most significant bit are neglected in generating
the next word, so the state space has 624 x 32 — 31 = 19937 bits). The output
sequence of MT is wgos, wgas, - - ., i.e., MT skips the contents of the initial state.

The initialization is particularly important for MT. Because of the linearity and
the sparseness of the recursion of MT, if the initial state has too many zeroes, then
the output sequence has same tendency for more than 10000 outputs. The 2002
version of MT [5] has an initialization function init_by_array(u32 init key[],
int key_length), whose first argument is an array of 32-bit words with length
given by the second argument, which is described as follows.

First, wo, ..., wse3 are set to a fixed nontrivial value by a recursion

W wy — 19650218,
w; — (i1 @ (wi_ >> 30)) + 1) x 1812433253

(1 <4 < 623), where w; are considered as 32-bit unsigned integer variables, and
every arithmetic operation is modulo 232. The notation >> 30 means the shift to
the right by 30 bits. (The constant 19650218 is the birthday of one of the authors,
chosen without reason. The other constant 1812433253 is a multiplier for a linear
congruential generator [3, P.106], here chosen without reason.)

This recursion is chosen to have a good bit-diffusion property. The multiplication
with constant has a good bit-mixing property, except for that the diffusion of the

CRYPTOGRAPHIC MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CIPHER 5

FIGURE 2. State transition of Mersenne Twister

bit information is always from right to left. The most significant two bits (which
gather the information of all bits after multiplication) are sent to the least significant
two bits of w; by exclusive-or, to complement the multiplication. The assignment
w;—1 +— w; is bijective.

Addition with 4 is to avoid the following phenomenon. Suppose that 4 is not
added in the recursion (1). Suppose that an initial value wq is chosen (although it
is fixed to 19650218 in the above implementation) and let wog, w1, ..., we23 be the
generated sequence. Suppose that in another initialization another initial value wy
is chosen, which generates a sequence wj, wj, ..., wg,;. What we worry is that it
may happen that w{ = w; by accident (or w{ = wq, or alike), and then, w}, = w;;+1
for i = 0,1,...,622. Such similarity of the initial states yields correlated outputs
for 10000 outputs or so according to the experiments. The addition with ¢ avoids
these phenomena.

The initial seed is given as an array init_key[length] of an arbitrary length
length upto 64. The initialization scheme init_by_array rewrites the above
w1, ..., ws3 by the following recursive substitution:

w; — (w; @ ((wi—1 ® (wi—1 >> 30)) x 1664525))

(2) +init key[i mod length| + (i mod length)
for ¢« = 1,2,...,623. Note that every multiplication or addition is done modulo
232, This recursion is chosen in the same spirit as (1), with adding init _key[]

meanwhile. The reason why taking “/ modulo length” at the last of the recur-
sion is as follows. Suppose that we don’t take modulo length. Suppose that one
initialization is given by an array init key[], and another initialization is given
another array of the twice length with the content being the two repetitions of the

6 MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

original array. Then the two initializations yield the same state. Such phenomenon
is avoided by taking modulo length.
Then, we substitute the first word

Wo < W23,
and again apply a similar recursive substitution
(3) w; — (w; ® (((wi—1 & (wj—1 >> 30)) x 1566083941)) — ¢

fori =1,2,3,...,623.

Finally, the most significant bit of wq is set to one, to avoid the zero initial state.

According to the experiments, this initialization has a good bit-distribution prop-
erty. Any one bit of the change in the initial seed array init_key[] dramatically
changes the initial state. The worst related keys seem to be those having difference
only at the last word of init key[]. However, the output of MT starts from wgay,
which depends on wsg7, which seem to be difficult to control because of at least
397 — (64 4 64) times application of (2) at the last word of init key[]. (This
64 + 64 is because the size of the key and the size of the initial value are upto 64
words). In addition, each word of the internal state is transformed by the nonlinear
bit-mixing recurrence (3) on the key. It seems very difficult to utilize the technique
of differential cryptanalysis with respect to the key.

Remark 3.2. The above initialization scheme was incorporated in 2002, and it
actually admits an array of arbitrary length as the initial seeding vector [5]. This
feature is to answer to the requests of financial engineers, who want to use the ascii
code of the name of each companies in the stock markets, as the initial-seed array.

This initialization is not designed for cryptographic purpose, but it seems to have
enough resistance, so we keep it as is. However, from the viewpoint of efficiency,
this is redundant. A quicker initialization is possible. For example, we do not need
the first round (setting constants to the state array) in the initialization.

4. FUBUKI

The other proposal in this paper is Fubuki cipher system. The basic idea is:
“software is soft, so we can make the choice of encryption functions as flexible as
possible.” This may be contrasted to Rijndael block cipher, where in each round the
encryption function is fixed: just the key (to be exor-ed) is changed. The proposal
of Fubuki is to change the parameters of each functions.

To fix the situation, we assume that a block consists of 4 words (i.e. 4 of 32-bit
integers), but the reference implementation of Fubuki allows 4, 8 or 16 words as
one block. We use the notations

W := the set of 32 bit words, B := W* = the set of blocks.

A plain message is a finite sequence of blocks, i.e. an element of BY, where L € N
is the length of the message.

This paper considers a stream cipher in a more general sense than taking exclusive-
or with PN. Let I be the key space. In a typical case,

IC = W* = the set of 128 bits.
Definition 4.1. A stream cipher is a sequence of functions called encoding func-

tions
E,:B—-B, i=12,...,

CRYPTOGRAPHIC MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CIPHER 7

and another sequence of functions called decoding functions
D;:B—B, i=1,2,...

such that D; o E; = id (the identity function).
A plain message By, B, ... is encoded into E1(By), E3(B3), . . ., and then decoded
by D1(E1(By1)), D2(E3(B2)), Each of E;, D; depends on both the key K and i.

Remark 4.2. If F; and D; are identical for any 4, then the system is called a block
cipher.

Remark 4.3. A stream cipher in Definition 4.1 can be used to generate a (possibly
cryptographically secure) PN, by merely encoding a message consisting of, say, all
Zero.

The basic strategy of Fubuki is to compose several simple encryption functions,
i.e., Shannon’s “product” in his 1949 paper.

We use the following definition, which is nothing but a usual block cipher system
(if we consider the parameter set as the set of keys).

Definition 4.4. A primitive encryption family PF with a parameter set P is a
mapping

PF:PxB—B
with its inverse family PF”

PF' :PxB—B

such that for all P € P and B € B
PF'(P,(PF(P,B))) = B
holds.

The size of P may vary among different PEF's.
Let us denote by

PF(P,—):B— B, B PF(P,B)

the bijection associated to the PF with parameter P.

Fubuki prepares nine different primitive encryption families. Four of them are
designed to diffuse the bit-information mainly inside each word in the block (word-
wise PEF), four of them are designed to mix the information of words (inter-word
PEF), and the last one is designed to cut off the incidence relation of bits in each
word (vertical rotate, denoted by PFV-TO),

The given key and the given initial value are passed to the initialization of
the mother generator MT. Using the non-secure PN sequence generated by MT,

Flword :

Fubuki pseudorandomly selects one of the four wordwise PEFs, say P and

its parameter P} ord7 and apply PFWV ord(leord7 —) to By. Then similarly select
one of the four inter-word PEFs, say PF, linter7 and its parameter Plinter7 and apply
it to the result. Then apply PFVIOU with pseudorandomly selected parameter
Plv-rot_

This is one round of Fubuki encryption, and it is repeated several times. The
choice in the reference code is four times iteration for each block. Thus, the block

B; is encoded by applying

E; := Roundy ; o Rounds ; o Rounds ; o Round; ;

8 MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

where each round is given by

Round;; =
PFV'IOt(P]Y;rOt, “)o PF}Eter(P}Eter» ~)o PF]Y\lzord(P}z\gord7 —) (j=1,2,3,4),

where PEFs and their parameters are pseudorandomly chosen by MT. (The PF f}ter
is uniformly pseudorandomly chosen from four inter-word PEFs and its parameter
is uniformly chosen from its parameter space. Similarly for PF j\zord_)
The decoding function D; is its inverse, given by

E; := Round ; o Round'zi o Roundg)i o Roundﬁl)i
where each round is given by
Round}ﬁi =
P Fword’ Pword Vo P Finter’ Pinter Vo P Fv—rot' py-rot i —1.2.3.4
3y (j,i ;=)o Gy (ﬂ ;=)o (j,i =) (1=1,2,3,4),

where ’ denotes inverse PEFs.
The design rationale of Fubuki is as follows.

(1) An idea is to choose simplest operations (i.e. those in the instruction set of
typical CPU, such as exor or multiplication) as the building blocks of PEF.

Any complicated operation is made from simple operations, so freely
composing simple ones seems better than fixing one way.

(2) However, if it is too free, then (with very small probability) it may happen
that one same PEF is selected all the time. So, there should be a trade-off
between freedom to choose a combination of PEFs and restriction to assure
good bit-information diffusion.

Fubuki did this by making each PEF a combination of a few simple
operations.

(3) Fubuki has no S-boxes. In some sense, the integer multiplication replaces
the S-boxes. The integer multiplication has a good and fast bit-diffusion
property. It has two weakness: (1) the bit-diffusion is only from the right
bits to the left ones, (2) it is (bi)-linear, so differential cryptanalysis is
valid. However, Fubuki compensates these by (1) suitable bit-operations
with left-to-right diffusion property and (2) combining exclusive-or to make
it non-linear.

A recent study warns that any cryptographic system in a fast implemen-
tation using a large lookup table for S-box is vulnerable by cache-timing
attack [6] [2]. This method breaks AES. (Fubuki has two tables of 32 words,
which may leak some information. We need further study).

(4) Fubuki consumes far (e.g. 13 times) more PNs (from its mother generator)
than the size of the plain message: since the parameter space of each PEF is
large (actually we arranged the size to be nearly the same with one block),
every round consumes three times block-size of PNs.

This redundancy makes it difficult to guess the internal state of the
mother generator, even by chosen-plain text attack with chosen initial val-
ues.

Actually, Fubuki has an aspect of block cipher. Suppose that the key and the
initial value are fixed, and these are repeatedly used in a stream cipher for different
texts (which is prohibited usually for stream cipher; it is the context for block
ciphers). Then, a stream cipher in a narrower sense (i.e. exor with PN) is easily

CRYPTOGRAPHIC MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CIPHER 9

broken by known-plain text attack, since the PN sequence is recovered by taking
exor. In a block cipher, it is required that F; (and D;) are difficult to guess from an
(even huge) number of pairs (B, E;(B)) where B can be chosen (i.e. chosen plain
text attack). Fubuki is designed to have this type of resistance.

5. DESCRIPTION OF FUBUKI

5.1. Overview. Fubuki prepares four wordwize PEF's
empr, emer, emps, emes

and four inter-word PEF's
ma, mem, ome, eme

and one PEF vert_rotate.

One round of Fubuki consists of three stages: choose one of the four wordwise
PEFs and apply it to the plain block, then choose one of the four inter-word PEFs,
then apply vert_rotate. In C-like notation, it is described as

¢ = pseudorandom_two_bits();
switch (c) {

case 0: crypt_empr(msgbuf); break;
case 1: crypt_emer(msgbuf); break;
case 2: crypt_emps(msgbuf); break;
case 3: crypt_emes(msgbuf); break;

}

¢ = pseudorandom_two_bits();
switch (c) {
case 0: crypt_ma(msgbuf); break;

case 1: crypt_mem(msgbuf); break;
case 2: crypt_ome(msgbuf); break;
case 3: crypt_eme(msgbuf); break;
}

crypt_vert_rotate(msgbuf) ;

Here, msgbuf is an array of block size, and each PEF rewrites this array. The
parameters are generated in each of PEF by calling MT, so not visible in this
description. This round is iterated for Iteration times (which is 4 in default case,
for 128 bit blocks).

The two-bits pseudorandom integers are generated as follows. We use C-language-
like notation.
genrand_tuple_int32(func_choice, 4);
func_choice[2] *= (func_choice[0] | 1);
func_choice[3] *= (func_choice[1] | 1);
func_choice[0] ~= (func_choice[3] >> 5);
func_choice[1] "= (func_choice[2] >> 5);
Here, the first function fills four PNs into the array func_choice. The next four
transformations mix these four words. The notation *= is to multiply the right
hand side to the left and write to the left, “= is similar operation with exclusive-or,
| is bitwise OR operation, >> 5 is bit-shift-to-right by 5 bits.

Fubuki uses the 128 bits in this array for function choice: first use the most
significant two bits of func_choice[0], then next two bits of func_choice[0], and

10 MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

so on. Thus, if Iteration=4, then most significant 16 bits of func_choice[0] are
used to choose PEFs 2 x 4 times.

5.2. Primitive encryption families. To make the explanation and the imple-
mentation simpler, we choose one uniform parameter space P for all PEFs. Let ¢
be the number of words in the block (typically four, and assumed to be a power of
2). Then, B := W, and we set

P=W'x{1,2,...,t—1}.
We denote an element of P € P and B € B by
P = (p()»pl»' .. aptflvjmnp), B - (b07b17~ . ‘abtfl)-

Each of b; is considered as a variable of wordsize.

5.3. Wordwise PEFs. Each of wordwise PEFs is described as follows. Again, ¢
is the number of the words in a block.
The block B is transformed as follows. Let 7 = 0. The first operation is

bj — bj @D Dj-
Note that its inverse is itself.
Then, multiply a constant

bj — bj X ¢4 mod 232.

The constant ¢; should be (multiplicatively) invertible modulo 232, i.e., should be
odd. Their inverses are necessary in decoding, and would be time-consuming if
they were computed during the decoding process. So, before starting encryption,

Fubuki prepares 32 pseudo-randomly chosen 32-bit integers mg, m1, ..., ms1, using
MT, and store them in an array mult_table. Before decoding, Fubuki computes
their inverses my, mj,...,m4;, and store them in an array inv_table.

These multipliers my (k = 0,...,31) are the first 32 outputs of the initialized
MT, but by bit-operations we set the least significant four bits of my to 1011 for
k even, and to 0111 for k odd. Moreover, the ((k mod 8) + 1)-st bit and ((k
mod 8) + 2)-nd bit of my are set to 1 and 0, respectively. This is to avoid too
trivial multipliers like 1 or 232 — 1.

The constant c; is chosen from these multipliers by putting

Cj = mkj,kj = (ijr[mod t >> (32 — 5))
Here, ¢ is a constant and >> (32 — 5) means right-shift by 32 — 5 bits. For empr,
emer, emps, emes, the constant ¢ is 1, 2, 2, 3, respectively.

Such a multiplication diffuses information of bits in b; from right to left. To force
the diffusion in the inverse direction, Fubuki prepares 32 pseudorandomly chosen
32-bit constants ag, a1, . ..,as; using MT, stored in an array add_table of 32 words.
This array is filled with the next 32 outputs of MT after setting my’s. To avoid
trivial constants, apply the following operation:

for (i=0; i< 32; i++) {

u32 s;
s = (i * 1103515245 + 12345) & 31;
s "= (s > 2);

add_table[i] <<= 5;
add_table[i] |= s;

CRYPTOGRAPHIC MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CIPHER 11

That is, the content of add_table[i] is shifted to left by five bits (the notation <<=
5), and the least five bits are set to be s; which is given by

s; < (11035152457 + 12345) mod 32,
S; <— 8; D (S, >> 2),

for i =0,...,31. (The notation & denotes bitwise-AND, so & 31 is taking modulo
32.) This is just to make the correspondence i — s; a complicated permutation on
{0,1,...,31}. Then, apply the operation

(4) b(j+jump) mod t < b(j+jump) mod # O (add_table[bj >> (32 — 5)]),

where [J is plus (modulo 23?) for empr and emps, and exclusive-or for emer and
emes. Here, jump is a component of the parameter. Each PEF is designed to
rewrite b; depending on the information in b;_jump mod ¢-

The parameter jump is not randomly chosen: jump is set to 1 before encoding
each block, and after executing each PEF, it is rewritten by

jump < jump X 2;
if jump > ¢ then jump « 1.

Thus, jump moves 1, 2, 4, 8,..., and if it becomes more than or equal to ¢, it is
set to 1. This is to scatter the information of one word to the other words in the
block as quick as possible. Partial sum of 1, 2, 4,...represents any integer, so after
log, (t) times iteration of PEFSs, the information of one word tends to be passed to
all the other words in the block.

A shortcoming of a feedback (4) is that there are only 32 different patterns may
occur. However, the most significant bits of b; gather the information of all the
lower bits by multiplying c;, so a change of one bit in b; tends to be reflected in the
choice of an element in the array add_table, so having good bit-diffusion property.

The final operation of wordwise PEF is “rotation” or “shift”. Using p;, obtain
pseudorandom integer between 16 and 23 by the following bit-operation

(5) sj « ((p; >> (32 — 4))|0x10)&0x17,

where 0x denotes that the following number is hexadecimal. Then, the “rotation”
operation

bj = ((~b;) << (32— 85))[(b; >> s;);

is computed. This is rotate to the right by s bits, but the rotated s bits are reversed.
The unary operator ~ means the bit reverse.
The “shift” operation is

(6) bj — bj ® ((~ b)) >> s;).

Since s; is not less than 16 and a word is 32-bit, the inverse of this operation is
itself.

The “rotate” is chosen for empr and emer, and the “shift” is chosen for emps and
emes.

The above operations (i.e. the operations stated in this subsection) are applied
for 7 =0,1,...,t — 1 in this order. This is the description of four wordwise PEFs.

12 MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

5.4. Inter-word PEFs. Wordwize PEFs are mainly to mix the information of
each word, except for the operation involving jump, which passes (only) 5-bit of
information to another word.

Inter-word PEFs ma, mem, ome, eme are designed to pass more information of
each word to the other words.

First we describe ma. Let j = 0. Put &k := (§ — jump) mod ¢. Then, we apply the
Feistel-network-type operation

bj — bj + (bk X pj)-

Compute a pseudorandom integer s; by (5), and apply the “shift” operation (6).
Iterate this for j = 0,1,...,¢t — 1, in this order. This describes the PEF ma. The
other three PEFs are as follows.

Let j = 0. Put k := (j — jump) mod ¢t. Generate a pseudorandom integer s
between 0 and ¢ — 1 such that s # j, by

(7) S pj >> (32 — log,(t));
if s =j then s« ((s — 1) mod t).

Then, in the case of mem, apply the operation

bj — (b; @ (b, X bs)) — p;
bj — bj b (bj >>].6)

In the case of ome or eme, apply

bj « (b; @ (br. x (bs0pj))
bj — bj S (bj >> C),

where [0 =bitwise-OR and ¢ = 16 for ome and [J = & and ¢ = 17 for eme. Iterate
this for j = 0,1,...,t—1, in this order. This completes the description of inter-word
PEFs.

5.5. crypt_vert_rotate. This PEF is to cut off the incidence relation among bits
in each word. Put k := 2% (pg + p;—1) + 1 (modulo 23%). Put

jump_odd := (jump — 1)|1,

which is the largest odd integer not exceeding jump. We consider B to be t x 32
matrix with components 0-1, and permute each row vector of B selected by the bit
mask k (i.e., if n-th bit of k is 1, then the n-th row is selected). The permutation
of a row vector is rotation with lag jump_odd. Namely, a ¢-dimensional row vector
t(xo,21,...,74_1) is mapped to *(T_o,T1_0,...T4_1_0), Where 0 = jump_odd and
the subscripts are considered modulo t. The jump_odd is forced to be odd, since it
is faster to compute a cyclic permutation.

5.6. Security of Fubuki. Heuristically, one round of Fubuki has much better bit-
diffusion property than one round of AES. Each of steps in one round in AES has
some corresponding steps in Fubuki: ByteSub and ShiftRow in AES are replaced by
wordwise PEFs (multiplication plus feedback from right-to-left (4)), MixColumn is
included in inter-word PEFs and AddRoundKey appears in every PEFs where the
parameters p; are added, exor-ed, or subtracted. The 19937 bits of internal state
of MT seems to make time-memory-trade-off attacks infeasible. Although, we have
to say that we need to study more on the security, such as difference propagation
property. Experimental results are shown in §6.2 and Appendix B.

CRYPTOGRAPHIC MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CIPHER 13

algorithm initial | encrypt | decrypt
PowerPC | crypt-mt 256601 29 30
1.33GHz fubuki 414029 204 407
rijndael-alg-fst 2793 41 38
rijndael-alg-ref | 33117 1068 1063
PentiumM | crypt-mt 279123 20 19
1.4GHz fubuki 489662 133 256
rijndael-alg-fst 3192 40 41
rijndael-alg-ref | 85253 916 916

TABLE 1. execution time (number of cycles per byte)

Afubuki,l A1rij1r1dael,l
00100010111011011111001100110011 00111110000000000000000000000000
11101111001111111100110100011100 00000000000000000000000001010011
00101101111110010000000100100010 00000000000000001111000100000000
10100001000101110110011111100101 00000000010100000000000000000000

TABLE 2. Differential of one-round Fubuki and two-round AES

6. COMPARISON WITH AES

6.1. Speed and memory. Table 1 lists the approximate number of CPU cycles
consumed to (1) setup keys, (2) encrypt one byte, (3) decrypt one byte, for four
stream ciphers CryptMT, Fubuki, optimized AES (rijndael-alg-fst.c) and reference
AES (rijndael-alg-ref.c) [1]. Rough estimate of the size of the working area is 2.5K
bytes, 3K bytes, 10.5K bytes, and 1.4K bytes, respectively.

6.2. Bit-diffusion. Let Ey : B — B be one round of Fubuki encryption, with
both the key and the initial value are 128 bits of zeroes. To grasp the bit-diffusion
property of Ey, we compute

Atubuki,i = Eo(€;) ® Eo(0),

where ¢; is a 128-bit vector with all zero components except for the i-th bit being
1. For comparison, we compute

Avijndael,i == Ao(€;) ® Ap(0),

where Ag is the 2-round AES with randomly chosen key.

The result for ¢ = 1 is described in Table 2. The bit patterns suggest that one
round of Fubuki seems to have quicker bit-diffusion property than two rounds of
rijndael. Similar results are observed for all 1 <14 < 128.

APPENDIX A. PERIOD OF CRYPTMT
In this appendix, we shall prove the following.

Theorem A.l. The period of the output sequence of CryptMT is P := 219937 — 1.

Moreover, every bit of the sequence has period P.

This may seem to be obvious, but we think not so.

14 MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

Let xqg,%X1,X2,... be the output of MT. MT has the following 623-dimensional
equidistribution property.

Lemma A.2. Any bit pattern of (32 x 623) bits occurs the same (actually two)
times in the form of the tuple

(Xia Xi+17 cee ;Xi+622)
when we move ¢ = 0,1,..., P—1. There is an exception: the all-zero pattern occurs

only once.

In the following proof, we use only this property and the fact that P is a prime.

Let us define x} to be x; with the least significant bit set to 1. We denote by
7/2% the residue ring modulo 232 identified with 32-bit integers, and by (Z/23?)*
its multiplicative group, identified with 32-bit odd integers. In the following, mul-
tiplication of 32-bit integers are taken in this group, i.e. modulo 232.

Let us define 32-bit word sequence a; by

aiy1 = a;x;, (ap =some odd integer).

The output sequence of CryptMT is the sequence of the most significant 8 bits of
a;.

Corollary A.3. Any element of ((Z/232)*)523 occurs the same times in the form

of the tuple (xj,X},;,...,Xj,620) When we move i = 0,1,..., P — 1, except for
(1,1,...,1) which occurs once less often.
Any element of (Z/23%)* occurs same times in the form of x; fori = 0,1,..., P—
1.
Corollary A.4.
P-1
H x; = 1.
i=0

Proof. By cancellation of z and !, for any abelian group G' we have

[[z=]I =

zeG r2=1

In the case of G = (Z/232)* the elements of order two are exactly z = 1, —1,23271—
1,232=1 + 1, and their product is 1. The conclusion is deduced from the above
corollary. O

Lemma A.5. The period of a; divides P.

Proof. This is because
P-1
Ai+p = (H Xi)ai,
=0
which is a; by the above corollary. O

Since P is a (Mersenne) prime, in particular, every bit of a; has period 1 or P.
Thus, to show the theorem, we only need to show that its period is not 1.

Lemma A.6. Define a function
Q: ((Z/232)><)624 N ((Z/232)><)623

CRYPTOGRAPHIC MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CIPHER 15

by
(bo, ..., be23) — (b1/bo, b2 /b1, ..., be23/b22)-
Define sets A and X by

A= {(ai, Aig 1y ai+623)|2’ = 07 17 2, .. .}7

X = {(s, Tit1,-- - Tire22)|[t = 0,1,2,. ..}
Then, the restriction ¢|4 : A — X is surjective.

Proof. Because (a;,a;t1,.-.,0;t+623) is mapped to (;, Tiy1,. .., Tite22)- O

Now we prove the theorem. Suppose that ¢-th bit of a; has period 1. Then, each
a; is contained in the subset of (Z/232)* whose /-th bit coincides with that of a;.
There are 23° such odd integers, so we have

#(A) < 230><624.
On the other hand, by Corollary A.3, we have
#(X) — 231><623

which is larger than #(A), contradicting to the existence of a surjection A — X.
This shows that /-th bit has period > 1, but it divides the prime P, hence = P.

Remark A.7. The lemma A.6 claims that #(A) > 231623 where A C ((Z/23')*)%24.
This suggests that a; would be fairy well equi-distributed in a high-dimensional
cube, and so would the output of CryptMT.

Remark A.8. The above remark is valid for

(1) any mother generator with high-dimensional equidistribution property, and
(2) any binary operation o
a :=aox
which is invertible, i.e. +— a o x is bijective. In our case, o is the multipli-
cation.

APPENDIX B. EXPERIMENTAL COMPARISON OF FUBUKI AND AES

We tested the bit-diffusion property of Fubuki and AES with small number of
rounds, as follows. This is a typical differential attack to block ciphers.

Let E : B — B be an encryption function. Let B’ C B. We uniformly randomly
generate B € B’, and compute the difference Ag(B) := E(B ® €1) ® E(B) (€1 is
a block whose bits are all zero except for the first bit). The resulting 128 bits = 4
words are considered to be 4 x 4 matrix of 8-bit integers. Then the (i, j)-component
AE(B) of Ag(B) is a random variable with values in 0,1,...,255, which should
ideally be uniform.

We generate B randomly N times. Then we count the number of occurrence of
an integer k (0 < k < 255) as Af(B), denoted by F[(N)[k] (F for frequency).
If FZI;J(N)U{:] = 0 then k did not appear in the (i,5) component of AF(B) for N
times. Ideally the expectation of F}} (IN)[k] should be N/256. We take the following
normalization:

Z(N)[k] == F5 (N)[k] x 256/N.
We compute these statistics, and lists the minimum and the maximum of 5 (N)[k]
for k =0,...,255.

16 MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

3-round AES

0.73700, 1.20090
0.66180, 1.23490
0.77420, 1.28260
0.75130, 1.23510

0.68740, 1.21830
0.78750, 1.28410
0.74730, 1.23530
0.73240, 1.19540

0.78480,1.26710
0.75200, 1.24890
0.73150, 1.21340
0.68640, 1.21500

0.73810, 1.24930
0.73110,1.20510
0.67320,1.21810
0.77710,1.29130

4-round AES

0.97610, 1.02900
0.96750,1.03410
0.97660, 1.02330
0.97290, 1.03590

0.97460, 1.02790
0.96760, 1.02740
0.97060, 1.03260
0.96650, 1.03000

0.97670, 1.02280
0.97730, 1.03680
0.97070, 1.02670
0.97220, 1.02920

0.96700, 1.02820
0.97410,1.02370
0.96830, 1.03220
0.97600, 1.02280

1-round Fubuki

0.51770,1.66800
0.01450, 4.30050
0.04200, 1.96300
0.97650, 1.02430

0.69160, 1.54620
0.88450, 1.10840
0.00000, 3.98790
0.97670,1.02490

0.24140, 3.50450
0.43290, 1.44460
0.00000, 3.14730
0.97740,1.02910

0.38440, 1.59600
0.43300, 2.35560
0.12590, 2.16670
0.97120,1.03330

2-round Fubuki

0.97480,1.02720
0.97000, 1.03010
0.97600, 1.02530
0.97480, 1.02900

0.97790, 1.02440
0.96790, 1.02700
0.97650, 1.03050
0.96770,1.02820

0.97250, 1.02920
0.97450, 1.02540
0.97360, 1.02970
0.96690, 1.02770

0.97340,1.02710
0.97270,1.02880
0.96860, 1.03170
0.97260, 1.03390

TABLE 3. Differentials of 3-round AES, 4-round AES, 1-round
Fubuki and 2-round Fubuki. Lists of the normalized frequency
(minimum, maximum) for N = 2,560,000 times sampling

Table 3 shows the result of the tests. We selected 3-round AES, 4-round AES, 1-
round Fubuki and 2-round Fubuki as ciphers. We choose B’ to be the blocks whose
first word is arbitrary and the rest three words are zero. We take N = 2560000 such
sample blocks, and compute the difference caused by adding €; as above. The table
lists the minimum and and the maximum normalized frequencies. For example, the
first pair (0.73700,1.20090) in the table of 3-round AES shows that there is some
k,k=0,1,2,...,255, for which (1,1)-coordinate byte of the block-difference takes
value k for 0.73700 x 2560000/256 times. This is the least frequency among 256
possible values as for the (1,1)-coordinate.

The table shows that 3-round AES is still weak, since for 4-round AES, the
frequencies are much different. Although not listed, 2-round AES has many (0,
256). For 1-round Fubuki, there are several zeroes as minimum-frequencies. This
implies that there are some impossible 8-bit patterns for that coordinate. Such bias
seems to be eliminated in 2-round Fubuki.

Although the result is omitted, experimental results for larger rounds are similar
to that for 4-round AES (and 2-round Fubuki).

REFERENCES

[1] AES lounge: http://www.iaik.tu-graz.ac.at/research/krypto/AES/
[2] Bernstein, D. J. Cache-timing attack on AES
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

(3]

(4]

[5

[6]

CRYPTOGRAPHIC MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CIPHER 17

Knuth, D. E. The Art of Computer Programming. Vol. 2. Seminumerical Algorithms 3rd Ed.
Addison-Wesley, Reading, Mass., (1997).

Matsumoto, M. and Nishimura, T. Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator, ACM Transactions on Modeling and Computer
Simulation, 8 (1998) 3-30.

Matsumoto, M. and Nishimura, T. Mersenne Twister Homepage.
http://www.math.sci.hiroshima-u.ac.jp/ m-mat/emt.html

Tusnoo, Y., Saito, T., Suzaki, T., Shigeri, M., and Miyauchi, H. Cryptanalysis of DES imple-
mented on computers with cache, in Cryptographic hardware and embedded systems—CHES
2003, Springer-Verlag, Berlin (2003), 62-76.

DEPARTMENT OF MATHEMATICS, HIROSHIMA UNIVERSITY, HIROSHIMA 739-8526, JAPAN
E-mail address: m-mat@math.sci.hiroshima-u.ac.jp

DEPARTMENT OF MATHEMATICS, YAMAGATA UNIVERSITY, YAMAGATA JAPAN
E-mail address: nisimura@sci.kj.yamagata-u.ac.jp

DEPARTMENT OF INFORMATION SCIENCE, OCHANOMIZU UNIVERSITY, TOKYO JAPAN
E-mail address: hagita@is.ocha.ac. jp

DEPARTMENT OF MATHEMATICS, HIROSHIMA UNIVERSITY, HIROSHIMA 739-8526, JAPAN
E-mail address: saito@math.sci.hiroshima-u.ac.jp

