
Improved Long-Period Generators Based on Linear
Recurrences Modulo 2

FRANÇOIS PANNETON and PIERRE L’ECUYER

Université de Montréal

and

MAKOTO MATSUMOTO

Hiroshima University

Fast uniform random number generators with extremely long periods have been defined and
implemented based on linear recurrences modulo 2. The twisted GFSR and the Mersenne twister

are famous recent examples. Besides the period length, the statistical quality of these generators

is usually assessed via their equidistribution properties. The huge-period generators proposed so
far are not quite optimal in that respect. In this paper, we propose new generators of that form,

with better equidistribution and “bit-mixing” properties for equivalent period length and speed.
The state of our new generators evolves in a more chaotic way than for the Mersenne twister.

We illustrate how this can reduce the impact of persistent dependencies among successive output

values, which can be observed in certain parts of the period of gigantic generators such as the
Mersenne twister.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm design and anal-
ysis; I.6 [Computing Methodologies]: Simulation and Modeling

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Random number generation, linear feedback shift register,
GFSR linear recurrence modulo 2, Mersenne twister

1. INTRODUCTION

Most uniform random number generators (RNGs) used in computational statistics
and simulation are based on linear recurrences modulo 2 or modulo a large integer.
The main advantages of these generators are that fast implementations are available
and that their mathematical properties can be studied in detail from a theoretical
perspective. In particular, large-period linear RNGs are easy to design and the
geometrical structure of the set Ψt of all vectors of t successive values produced by

Authors’ addresses: François Panneton and Pierre L’Ecuyer, Département d’Informatique et

de Recherche Opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal,

H3C 3J7, Canada, e-mail: panneton@iro.umontreal.ca, lecuyer@iro.umontreal.ca; Makoto
Matsumoto, Department of Mathematics, Graduate School of Science, Hiroshima University,
Hiroshima 739-8526, Japan.

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–16.

2 · F. Panneton, P. L’Ecuyer, and M. Matsumoto

the generator, from all its possible initial states, can be precisely assessed without
generating the points explicitly [L’Ecuyer 2004; Tezuka 1995]. In this paper, we are
concerned with RNGs based on linear recurrences in F2, the finite field with two
elements, 0 and 1, in which the arithmetic operations are equivalent to arithmetic
modulo 2. Their output sequence is designed to imitate i.i.d. random variables
uniformly distributed over the real interval [0, 1]. Such recurrences are attractive
because their implementation can exploit the binary nature of computers. The set
Ψt in this context is a finite subset of the unit hypercube [0, 1]t and it is customary
to require that Ψt covers this unit hypercube very evenly for all t up to some large
integer (as large as possible), because Ψt can be viewed as the “sample space” from
which the t-dimensional points are drawn instead of drawing them uniformly from
[0, 1]t [L’Ecuyer 2004].

A general framework for representing linear generators over F2 is given by the
matrix linear recurrence

xi = Axi−1, (1)
yi = Bxi, (2)

ui =
w∑

`=1

yi,`−12−` = .yi,0 yi,1 yi,2 · · · , (3)

where xi = (xi,0, . . . , xi,k−1)T ∈ Fk
2 and yi = (yi,0, . . . , yi,w−1)T ∈ Fw

2 are the k-bit
state and the w-bit output vector at step i, A and B are a k × k transition matrix
and a w× k output transformation matrix (both with elements in F2), k and w are
positive integers, and ui ∈ [0, 1) is the output at step i. All operations in (1) and
(2) are performed in F2 and each element of F2 is represented as one bit. In this
setup, we have

Ψt = {(u0, u1, . . . , ut−1) : x0 ∈ Fk
2}.

By appropriate choices of A and B, several well-known types of generators can
be obtained as special cases of this general class, including the Tausworthe, linear
feedback shift register (LFSR), generalized feedback shift register (GFSR), twisted
GFSR, Mersenne twister, and linear cellular automata [L’Ecuyer and Panneton
2002; Panneton 2004].

We briefly recall some (important) well-known facts about this class of RNGs.
The characteristic polynomial of the matrix A can be written as

P (z) = det(A− zI) = zk − α1z
k−1 − · · · − αk−1z − αk,

where I is the identity matrix and each αj is in F2. For each j, the sequences
{xi,j , i ≥ 0} and {yi,j , i ≥ 0} both obey the linear recurrence

xi,j = (α1xi−1,j + · · ·+ αkxi−k,j) mod 2 (4)

[Niederreiter 1992; L’Ecuyer 1994]. (The output sequence {yi,j , i ≥ 0} could also
obey a recurrence of shorter order in certain cases, depending on B.) Here we
assume that αk = 1, in which case (4) has order k and is purely periodic. The
period length of the recurrence (4) has the upper bound 2k − 1, which is achieved
if and only if P (z) is a primitive polynomial over F2 [Niederreiter 1992; Knuth
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Generators Based on Linear Recurrences Modulo 2 · 3

1998]. In this paper, we are only interested in generators having this maximal-
period property.

The general goal, when constructing this type of generator, is to find matrices
A and B such that (i) the corresponding recurrence can be implemented very
efficiently by exploiting the special structure of these matrices, (ii) the set Ψt has
excellent uniformity for all t up to some large integer, and (iii) the generator passes
reasonable empirical statistical tests. Typically, the matrix A represents simple
inexpensive operation such as shifts, rotations, masks, logical ands, and exclusive-
ors (xors) between blocks of bits in the vector xi. The fastest generators have only
a small number of these operations, which implies that there are very few changes
to the bits of the state xi from one step to the next, and this can often be detected
by statistical tests. In particular, if xi contains many more 0’s than 1’s, the same is
likely to hold for xi+1. To obtain good and robust generators, the matrices A and B
in (1) and (2) must perform enough bit transformations. Therefore, a compromise
must be made between the speed and the quality. The uniformity of Ψt is often
measured in terms of its equidistribution properties, whose definitions are recalled
in Section 2.

Our aim in this paper is to build a new class of linear generators over F2 that
reach a compromise in this sense. The proposed generators perform more bit trans-
formations and are better equidistributed than (for example) the Mersenne twister,
while having the same period length and approximately the same speed. To achieve
that, we construct a matrix A that implements bit shifts, bit masks, ands, and xors
cleverly spread out in the matrix. For B, in most cases we simply use Iw×k, the
w × w identity matrix to which we append k − w columns of zeros. We prefer to
put all (or most of) the transformations in A because these transformations carry
over to the following states, whereas those in B do not.

In the next section of the paper, we recall basic definitions related to the (stan-
dard) use of equidistribution to measure the uniformity of Ψt for linear gener-
ators over F2. We also specify the uniformity measures adopted in this paper.
In Section 3, we mention other linear generators over F2 that are already avail-
able, including combined LFSRs [L’Ecuyer 1999b], GFSRs, the Mersenne twister
[Matsumoto and Nishimura 1998; Nishimura 2000], and combined twisted GFSRs
[L’Ecuyer and Panneton 2002], and point out drawbacks of some of them. Sec-
tion 4 describes the design of our new generators. Section 5 gives specific instances
found by a computer search, using REGPOLY [L’Ecuyer and Panneton 2002], for
well-equidistributed generators having state spaces of various sizes. Section 6 deals
with implementation issues and speed. In Section 7, we compare the TT800 gener-
ator of [Matsumoto and Kurita 1994] and the Mersenne twister of [Matsumoto and
Nishimura 1998] with two of our new generators having the same period lengths
(2800 − 1 and 219937 − 1, respectively), in terms of their ability to quickly exit a
region of the state space where the fraction of zeros in the state (or in the output
vector yi) is far away from 1/2. The new generators perform much better in these
experiments. That is, their behavior is more in line with randomness and chaos.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · F. Panneton, P. L’Ecuyer, and M. Matsumoto

2. EQUIDISTRIBUTION AND MEASURES OF QUALITY

A convenient and rather standard way of measuring the uniformity of Ψt for linear
RNGs over F2 is as follows. Recall that Ψt has cardinality 2k. If we divide the
interval [0, 1) into 2` equal segments for some positive integer `, this determines
a partition of the unit hypercube [0, 1)t into 2t` cubic cells of equal size, called a
(t, `)-equidissection in base 2. The set Ψt is said to be (t, `)-equidistributed if each
cell contains exactly 2k−t` of its points. Of course, this is possible only if

` ≤ `∗t
def= min(w, bk/tc).

When the equidistribution holds for all pairs (t, `) that satisfy this condition, we
say that Ψt (and the RNG) is maximally-equidistributed (ME). ME generators have
the best possible equidistribution properties in terms of cubic equidissections. A
major motivation for using this type of uniformity measure for linear generators
over F2 is that it can be efficiently computed in that case, without generating the
points explicitly. The idea is simple: the first ` bits of ui, . . . , ui+t−1 form a t`-bit
vector that can be written as Mt,`xi for some t` × k binary matrix Mt,`, because
each output bit can be expressed as a linear combination of the bits of the current
state, and the (t, `)-equidistribution holds if and only if the matrix Mt,` has full
rank [Fushimi and Tezuka 1983; L’Ecuyer 1996]. When k is very large, this matrix
becomes expensive to handle, but in that case the equidistribution can be verified
by a more efficient method based on the computation of the shortest nonzero vector
in a lattice of formal series, as explained in Couture and L’Ecuyer [2000]. Large-
period ME (or almost ME) generators have been proposed by L’Ecuyer [1999b],
L’Ecuyer and Panneton [2002], and Panneton and L’Ecuyer [2004], for example.
The aim of this paper is to propose new ones, with very large periods, and faster
than those already available with comparable period lengths.

For non-ME generators, we denote t` as the largest dimension t for which Ψt is
(t, `)-equidistributed, and define the dimension gap for ` bits of resolution as

δ` = t∗` − t`,

where t∗` = bk/`c is an upper bound on the best possible value of t`. As measures
of uniformity, we consider the worst-case dimension gap and the sum of dimension
gaps, defined as

∆∞ = max
1≤`≤w

δ` and ∆1 =
w∑

`=1

δ`.

Aside from equidistribution, it has been strongly advocated that good linear
generators over F2 must have characteristic polynomials P (z) whose number of
nonzero coefficients is not too far from half the degree, i.e., in the vicinity of k/2
[Compagner 1991; Wang and Compagner 1993]. In particular, generators for which
P (z) is a trinomial or a pentanomial, which have been widely used in the past, do
not satisfy this condition and have been shown to fail rather simple statistical tests
[Lindholm 1968; Matsumoto and Kurita 1996]. So, as a secondary quality criterion,
we look at the number of nonzero coefficients in P (z), which we denote by N1.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Generators Based on Linear Recurrences Modulo 2 · 5

3. OTHER LINEAR GENERATORS OVER F2

LFSR generators were studied a long time ago by Tausworthe [1965]. For a trinomial-
based LFSR generator, we have w = k, B = I, and A = Ãs (in F2) for some small
positive integer s, where Ã is the matrix that implements the recurrence for which
xi,0 = xi−1,q ⊕ xi−1,k−1 and xi,` = xi−1,`−1 for 0 < ` < k, where 0 < q < k and
⊕ represents the “exclusive-or” (xor) operation. A trinomial-based GFSR gener-
ator is defined by the recurrence vi,0 = vi−1,q ⊕ vi−1,r−1 and vi,` = vi−1,`−1 for
0 < ` < r, where k = wr for some integer r, xi is decomposed into w-bit blocks
as xi = (vT

i,0, . . . ,v
T
i,r−1)

T, and B = I. Its largest possible period length is 2r − 1,
which is much smaller than 2k.

A ME trinomial-based LFSR was proposed already by Tootill et al. [1973], who
introduced the ME notion under the name of asymptotically random. Very fast algo-
rithms are available for implementing trinomial-based LFSR generators whose pa-
rameters satisfy certain conditions, as well as for trinomial-based and pentanomial-
based GFSR generators. However, these generators have much too few nonzero
coefficients in their characteristic polynomials (N1 is 3 or 5, which is too small).
One way of getting fast generators with a large value of N1, proposed by Tezuka and
L’Ecuyer [1991] and Wang and Compagner [1993] and pursued by L’Ecuyer [1996;
1999b], is to combine several trinomial-based LFSR generators of relatively prime
period lengths, by bitwise xor. This gives another LFSR whose characteristic poly-
nomial P (z) is the product of the characteristic polynomials of the components,
so it may contain many more nonzero coefficients, e.g., up to 3J if we combine
J trinomial-based LFSRs and 3J < k. The polynomial P (z) cannot be primitive
in this context, but the period length can nevertheless be very close to 2k where
k is the degree of P (z). This method is quite effective to build generators with
∆∞ = ∆1 = 0 and values of N1 up to a few hundreds on 32-bit computers, but
for values in the thousands or tens of thousands, one needs a large number J of
components and this makes the implementation slower.

The twisted GFSR and Mersenne twister [Matsumoto and Kurita 1994; Mat-
sumoto and Nishimura 1998; Nishimura 2000] provide very efficient implementa-
tions of linear generators over F2 with primitive characteristic polynomials of very
large degree k. They are based on a recurrence similar to that of the GFSR but
slightly more complicated, and a matrix B 6= I. However, their values of N1 are
typically much smaller than k/2 and they often have a large value of ∆1, due to
the fact that their equidistribution is far from optimal in large dimensions. For
example, MT19937 has k = 19937, N1 = 135, and ∆1 = 6750. This can be im-
proved by combining several twisted GFSRs or Mersenne twisters as in L’Ecuyer
and Panneton [2002], but at the expense of getting a slower generator.

Our goal in this paper was to build F2-linear generators with primitive char-
acteristic polynomials, with speed and period length comparable to the Mersenne
twister, and for which N1 ≈ k/2 and ∆1 = 0 (or nearly). We attach the acronym
WELL, for “Well Equidistributed Long-period Linear”, to these new generators.

4. STRUCTURE OF THE NEW PROPOSED GENERATORS

The general recurrence for the WELL generators is defined by the algorithm
given in Figure 1, with the following notation. We decompose k as k = rw − p

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · F. Panneton, P. L’Ecuyer, and M. Matsumoto

z0 ← (mp & vi,r−1) ⊕ (m̃p & vi,r−2);
z1 ← T0vi,0 ⊕ T1vi,m1 ;
z2 ← T2vi,m2 ⊕ T3vi,m3 ;
z3 ← z1 ⊕ z2;
z4 ← T4z0 ⊕ T5z1 ⊕ T6z2 ⊕ T7z3;
vi+1,r−1 ← vi,r−2 & mp;
for j = r − 2, . . . , 2, do vi+1,j ← vi,j−1;
vi+1,1 ← z3;
vi+1,0 ← z4;
return yi = vi,0.

Fig. 1. The WELL algorithm

where r and p are the unique integers such that r > 0 and 0 ≤ p < w. The state
vector xi is decomposed into w-bit blocks as xi = (vT

i,0, . . . ,v
T
i,r−1)

T where the last
p bits of vi,r−1 are always zero, and T0, . . . ,T7 are w × w binary matrices that
apply linear transformations to these w-bit blocks. The integers k, p, m1, m2, m3,
where 0 < m1,m2,m3 < r, and the matrices T0, . . . ,T7, are chosen so that P (z),
the characteristic polynomial of A, with degree k = rw − p, is primitive over F2.
Here, mp is a bit mask that keeps the first w − p bits and sets all p other bits to
zero, whereas m̃p denotes its bitwise complement, that sets the first p bits to zero.
The operators “⊕”, “&”, and “←” are the bitwise xor, the bitwise and, and the
assignment statement, respectively. The temporary variables z0, . . . , z4 are w-bit
vectors.

Let Ti,j,k = TiTk ⊕TjTk,

Up =
(

0 0
0 Ip

)
and Lw−p =

(
Iw−p 0

0 0

)
be matrices of sizes w×w, where Ip and Iw−p are the the identity matrices of size
p and w− p, respectively. The matrix A that corresponds to the WELL algorithm
has the following block structure, with six w × w nonzero submatrices on the first
line and four on the second line:

A =



T5,7,0 0 0 . . . T5,7,1 0 . . . T6,7,2 0 . . . T6,7,3 . . . T4Up T4Lw−p

T0 0 0 . . . T1 0 . . . T2 0 . . . T3 . . . 0 0
0 I 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 0
0 0 I . . . 0 0 . . . 0 0 . . . 0 . . . 0 0

. . .
0 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . LT

w−p 0


.

As can be deduced from Figure 1, the submatrices T5,7,1, T6,7,2, and T6,7,3 are the
(m1 + 1)th, (m2 + 1)th, and (m3 + 1)th w × w blocks of the first line in the block
decomposition of A. If both T0 and T4 have full rank, then A has rank wr − p.

We take yi = vi,0 as the output vector at step i. Another possibility would
be to take yi = vi,1, but in our empirical investigations, we generally obtained
better equidistribution by taking yi = vi,0. Taking yi = vi,j for j > 1 would be
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Generators Based on Linear Recurrences Modulo 2 · 7

equivalent to taking yi = vi,1, because vi,j = vi−1,j−1 for j = 2, . . . , r − 1 whereas
vi,r is vi−1,r−1 truncated to its first w − p bits.

The transformations (matrices) Tj are selected among the possibilities enumer-
ated in Table I. In this table, the bit vector ds has its (s + 1)-th bit set to zero
and all other bits set to one, while “x � t” and “x � t” denote a left shift and a
right shift by t bits, respectively. These transformations can be implemented very
efficiently by just a few operations on a w-bit block.

Table I. Possibilities for the transformations Tj

Transformation matrix M Implementation of y = Mx = M(x0, . . . , xk−1)T

M0 y = 0

M1 y = x

M2(t)

−w ≤ t ≤ w
y =


(x� t) if t ≥ 0

(x� −t) otherwise

M3(t)

−w ≤ t ≤ w
y =


x⊕ (x� t) if t ≥ 0

x⊕ (x� −t) otherwise

M4(a)

a ∈ Fw
2

y =


(x� 1)⊕ a if xw−1 = 1

(x� 1) otherwise

M5(t,b)
−w ≤ t ≤ w

b ∈ Fw
2

y =


x⊕ ((x� t)&b) if t ≥ 0

x⊕ ((x� −t)&b) otherwise

M6(q, s, t,a)

0 ≤ q, s, t < w
a ∈ Fw

2

y =


(((x� q)⊕ (x� (w − q)))&ds)⊕ a if xt = 1
(((x� q)⊕ (x� (w − q)))&ds) otherwise

This particular form of A can be motivated intuitively by the following argu-
ments. First, for reasons of efficiency, we want to tap only a small number of blocks
vi−1,j and modify only a small number of blocks vi,j at each iteration. This is why
the majority of rows and columns in the block structure of A are zero, except for
identity matrices in the block subdiagonals, whose role is to shift the unmodified
w-bit blocks by one position. At each step, we use six blocks to modify the first
two, vi,0 and vi,1. These two blocks will go down the vector and will be retapped
several times in future steps, so their modification has more repercussion than if we
would modify some other vi,j for j near r. This gives room for better bit mixing
which, according to our empirical observations, increases the chances of having a
good equidistribution. We use the same blocks to modify both vi,0 and vi,1, and
even use them in the same way to a certain extent, again for efficiency reasons.
That is, the algorithm first computes z0, z1, and z2 and then recycles them to
obtain z3 and z4. We tried several other variants of this general approach, with a
constraint on the weighted number of operations required at each step (giving an
appropriate weight to each type of operation), and the algorithm retained is the
one that gave the best results in terms of equidistribution.

The Mersenne twister (MT) generator of Matsumoto and Nishimura [1998] turns
out to be essentially a simplified version of the WELL algorithm, where T1 = T2 =
T3 = T6,7,2 = T6,7,3 = 0, T0 = T5,7,1 = I, and T4 is a companion matrix whose
only nonzero elements are on the first line and on the first subdiagonal (which
contains all 1’s). The proposed method is thus a substantial generalization of MT.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · F. Panneton, P. L’Ecuyer, and M. Matsumoto

5. SPECIFIC PARAMETERS

Table II lists specific parameters for generators of period length ranging from 2512−1
to 244497−1. The values of the vectors ai are a1 = da442d24, a2 = d3e43ffd, a3 =
8bdcb91e, a4 = 86a9d87e, a5 = a8c296d1, a6 = 5d6b45cc and a7 = b729fcec.
Several of the proposed generators are ME (they have ∆∞ = ∆1 = 0). For example,
all the generators listed with k = 512, 521, 607, 1024 have this property. We did
not find ME generators with B = Iw×k for k = 800, 19937, 21701, 23209, 44497, but
all those given in Table II have ∆∞ = 1, a very small value of ∆1 (from 1 to 7),
and values of N1 not far from k/2. For comparison, the TT800 generator proposed
by Matsumoto and Kurita [1994], with period length 2800 − 1, has ∆1 = 261 and
N1 = 93, whereas the Mersenne twister MT19937 of Matsumoto and Nishimura
[1998] has ∆1 = 6750 and N1 = 135. Table III complements Table II by giving, for
each generator, the values of ` for which δ` > 0.

For the generators that are not ME, it is easy to make them ME by adding
a Matsumoto-Kurita tempering to the output. This is done with the following
operations:

z ← truncw(xi)
z ← z⊕ ((z� 7) & b)

yi ← z⊕ ((z� 15) & c)

where b and c are carefully selected w-bit vectors and “truncw” means truncation
to the first w bits. The output value ui is generated via equation (3) with this
yi. Adding this tempering to WELL44497a with b = 93dd1400 and c = fa118000
provides the largest ME generator with 32 bits of accuracy known so far. Adding
this tempering to WELL19937a with b = e46e1700 and c = 9b868000 transforms
it into the ME generator WELL19937c.

To find the generators listed in Table II, we did a random search using REG-
POLY [L’Ecuyer and Panneton 2002]. It was designed to look for full period gen-
erators that use a small number of binary operations. For example, it would not
consider the case where T0 = . . . = T7 = M6 because M6 is the most expensive of
the matrices of Table I. Once a full-period generator is found, its equidistribution
properties are verified.

To find a full period generator, we must find a transition matrix having a primitive
characteristic polynomial. To do this, we find the minimal polynomial over F2 of
the sequence {yn,0}n≥0 generated by the first bit of the yi’s. If this polynomial is of
degree k, then it is the characteristic polynomial of the transition matrix, otherwise
it is a divisor of it. In the former case, we test this polynomial for primitivity using
an algorithm proposed by Rieke et al. [1998] if 2k − 1 is not prime. If 2k − 1 is
a Mersenne prime, then we can switch to an irreducibility test which is simpler
and equivalent. For this purpose, we used a combination of the sieving algorithm
described by Brent et al. [2003] and the Berlekamp [1970] algorithm implemented
in the software package ZEN [Chabaud and Lercier 2000]. The method used to
compute the equidistribution is the one introduced by Couture and L’Ecuyer [2000].
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Generators Based on Linear Recurrences Modulo 2 · 9

Table II. Specific well-equidistributed generators

T0 T1 T2 T3 ∆1

m1 m2 m3 T4 T5 T6 T7 N1

k = 512, w = 32, r = 16, p = 0

WELL512a M3(−16) M3(−15) M3(11) M0 0

13 9 5 M3(−2) M3(−18) M3(−28) M5(−5,a1) 225

k = 521, w = 32, r = 17, p = 23

WELL521a M3(−13) M3(−15) M1 M2(−21) 0
13 11 10 M3(−13) M2(1) M0 M3(11) 265

WELL521b M3(−21) M3(6) M0 M3(−13) 0

11 10 7 M3(13) M2(−10) M2(−5) M3(13) 245

k = 607, w = 32, r = 19, p = 1

WELL607a M3(19) M3(11) M3(−14) M1 0

16 15 14 M3(18) M1 M0 M3(−5) 295

WELL607b M3(−18) M3(−14) M0 M3(18) 0
16 8 13 M3(−24) M3(5) M3(−1) M0 313

k = 800, w = 32, r = 25, p = 0

WELL800a M1 M3(−15) M3(10) M3(−11) 3

14 18 17 M3(16) M2(20) M1 M3(−28) 303

WELL800b M3(−29) M2(−14) M1 M2(19) 3

9 4 22 M1 M3(10) M4(a2) M3(−25) 409

k = 1024, w = 32, r = 32, p = 0

WELL1024a M1 M3(8) M3(−19) M3(−14) 0

3 24 10 M3(−11) M3(−7) M3(−13) M0 407

WELL1024b M3(−21) M3(17) M4(a3) M3(15) 0

22 25 26 M3(−14) M3(−21) M1 M0 475

k = 19937, w = 32, r = 624, p = 31

WELL19937a M3(−25) M3(27) M2(9) M3(1) 4

70 179 449 M1 M3(−9) M3(−21) M3(21) 8585

WELL19937b M3(7) M1 M3(12) M3(−10) 5

203 613 123 M3(−19) M2(−11) M3(4) M3(−10) 9679

WELL19937c WELL19937a with M-K tempering 0

b=e46e1700, c=9b868000 8585

k = 21701, w = 32, r = 679, p = 27

WELL21701a M1 M3(−26) M3(19) M0 1

151 327 84 M3(27) M3(−11) M6(15, 10, 27,a4) M3(−16) 7609

k = 23209, w = 32, r = 726, p = 23

WELL23209a M3(28) M1 M3(18) M3(3) 3

667 43 462 M3(21) M3(−17) M3(−28) M3(−1) 10871

WELL23209b M4(a5) M1 M6(15, 30, 15,a6) M3(−24) 3
610 175 662 M3(−26) M1 M0 M3(16) 10651

k = 44497, w = 32, r = 1391, p = 15

WELL44497a M3(−24) M3(30) M3(−10) M2(−26) 7
23 481 229 M1 M3(20) M6(9, 14, 5,a7) M1 16883

WELL44497b WELL44497a with M-K tempering 0
b=93dd1400, c=fa118000 16883

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · F. Panneton, P. L’Ecuyer, and M. Matsumoto

Table III. Nonzero dimension gaps for the proposed WELL’s

WELL ∆∞ ∆1 {` : δ` = 1}
800a 1 3 {20, 25, 32}
800b 1 3 {5, 17, 25}
19937a 1 4 {2, 7, 15, 28}
19937b 1 5 {3, 9, 14, 16, 32}
21701a 1 1 {20}
23209a 1 3 {6, 23, 24}
23209b 1 3 {3, 4, 12}
44497a 1 7 {2, 3, 4, 8, 16, 24, 27}

6. IMPLEMENTATION AND PERFORMANCE

Figure 2 gives an implementation in C of WELL1024a, whose parameters are given
in Table II. This implementation uses an array of r = 32 unsigned int’s to
store the vi,j vectors. The integer state i is equal to i mod r. Since r is a
power of 2 in this particular case, the operation “modulo 2r” can be implemented
efficiently using a bit mask, namely 0x0000001f. The vector vi,j is stored in
STATE[(r − i + j) mod r]. By decrementing state i at each function call, we
automatically perform the “for” loop of the generator algorithm, saving costly as-
signment operations.

Implementations of WELL512a, WELL19937a, WELL19937c, WELL44497a, and
WELL44497b are available on the web pages of the first two authors. The C code
of the last four generators is significantly longer and more complicated than that
of WELL512a and WELL1024a, because the order k is no longer a power of 2, and
we are using special tricks to avoid performing several costly “mod r” operations.

Table IV. Time to generate and sum 109 random numbers

Generator Time (s)

WELL512a 35.8
WELL1024a 35.7

WELL19937a 37.1

WELL19937c 37.2
WELL44497a 40.9

WELL44497b 38.8

F2wLFSR2 31 800 39.6
F2wLFSR3 7 800 35.2

TT800 42.7
MT19937 30.9

MRG32k3a 97.0

In table IV, we give the CPU time taken by a program that produces 109 ran-
dom numbers and sums them, using different WELL generators from Table II, the
Mersenne Twister [Matsumoto and Nishimura 1998], TT800 [Matsumoto and Ku-
rita 1994] F2wLFSR3 7 800, and F2wLFSR2 31 800 [Panneton and L’Ecuyer 2004],
which are all fast generators based on linear recurrences modulo 2. For comparison,
we also include the widely used MRG32k3a [L’Ecuyer 1999a]. For the last five gen-
erators, we used the implementations published in the original papers. The test was
performed on a computer equipped with a 2.8Ghz Intel Pentium 4 processor and
a Linux operating system, and the program was compiled using gcc with the -O2
optimization flag. We repeated the timing experiments five times and the results
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Generators Based on Linear Recurrences Modulo 2 · 11

#define R 32
#define M1 3
#define M2 24
#define M3 10
#define MAT3POS(t,v) (v^(v>>t))
#define MAT3NEG(t,v) (v^(v<<(-t)))
#define Identity(v) (v)
#define V0 STATE[state_i]
#define VM1 STATE[(state_i+M1) & 0x0000001fUL]
#define VM2 STATE[(state_i+M2) & 0x0000001fUL]
#define VM3 STATE[(state_i+M3) & 0x0000001fUL]
#define VRm1 STATE[(state_i+31) & 0x0000001fUL]
#define newV0 STATE[(state_i+31) & 0x0000001fUL]
#define newV1 STATE[state_i]
static unsigned int z0, z1, z2, state_i;
static unsigned int STATE[R];

void InitWELL1024a (unsigned int *init){
int j;
state_i = 0;
for (j = 0; j < R; j++) STATE[j] = init[j];

}
double WELL1024a (void){

z0 = VRm1;
z1 = Identity(V0) ^ MAT3POS (8, VM1);
z2 = MAT3NEG (-19, VM2) ^ MAT3NEG(-14,VM3);
newV1 = z1 ^ z2;
newV0 = MAT3NEG (-11,z0) ^ MAT3NEG(-7,z1) ^ MAT3NEG(-13,z2) ;
state_i = (state_i + 31) & 0x0000001fUL;
return ((double) STATE[state_i] * 2.32830643653869628906e-10);

}

Fig. 2. An implementation of WELL1024a in C

agreed to within 0.5 seconds of accuracy. The numbers are rounded to the near-
est integer. Interestingly, the WELL44497b generator (with tempering) is slightly
faster than its basic version WELL44497a (without tempering). This strange be-
havior is probably an artefact of the compiler optimization methods, which operate
differently in the two cases. The biggest WELL generators are almost as fast as the
smaller ones. On the other hand, they use a larger amount of memory. So it is not
necessarily true that WELL44497b should always be preferred over WELL1024, for
example, even if it has a much longer period.

The WELL generators mentioned in Table IV successfully passed all the statisti-
cal tests included in the batteries Smallcrush, Crush and Bigcrush of TestU01 [L’Ecuyer
and Simard 2002], except those that look for linear dependencies in a long sequence
of bits, such as the matrix-rank test [Marsaglia 1985] for very large binary matrices
and the linear complexity tests [Erdmann 1992]. This is in fact a limitation of all
F2-linear generators, including the Mersenne twister, the TT800, etc. Because of
their linear nature, the sequences produced by these generators just cannot have
the linear complexity of a truly random sequence. This is definitely unacceptable in
cryptology, for example, but is quite acceptable for the vast majority of simulation
applications if the linear dependencies are of long range and high order.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · F. Panneton, P. L’Ecuyer, and M. Matsumoto

7. ESCAPING ZEROLAND

In this section, we examine how quickly the WELL generators can escape from a
bad initialization, e.g., one that contains only a few bits set to 1. We compare them
with other generators, for which the initialization often has a long-lasting impact in
the sense that the fraction of bits set to 1 in both the state and the output remains
small for a large number of steps if the initial number is very small.

Our experiments are based on the following framework. Let S1 = {ej : 1 ≤ j ≤
k}, where ej denotes the j-th unit vector. This is the set of states for which a single
bit is set to 1. Let y(j)

i be the output vector yi at step i when the initial state is
x0 = ej , and let u

(j)
i be the corresponding output value ui. We denote by H(x)

the Hamming weight of a bit vector x, i.e., the number of its bits that are set to 1,
and define

γn,p =
1

pkw

n+p−1∑
i=n

k∑
j=1

H(y(j)
i). (5)

This moving average represents the fraction of bits that are 1 in the p successive
output vectors yn, . . . ,yn+p−1, averaged over all initial seeds in S1. Under the null
hypothesis that the yi’s are independent bit vectors uniformly distributed over Fw

2 ,
γn,p should be approximately normally distributed with mean 1/2 and variance
1/(4pkw).

Figure 3 illustrates the behavior of γn,100 for n = 100, . . . , 105, for the WELL800a
and TT800 generators. We see that WELL800a reaches the neighborhood of 0.5
much faster than TT800. For the latter, γn,100 is often below 0.49 for n up to more
than 60000. Here, the standard deviation of γn,100 should be 1/3200, so 0.49 is 32
standard deviations away from the mean.

In Figure 4, we see a similar comparison between WELL19937a and MT19937,
with γn,1000 and n up to one million. Again, the WELL generator is much better
behaved. With MT19937, γn,1000 has an easily visible negative bias for up to at
least n = 700000 steps.

Although not visible in the scale of these two figures, the WELL generators also
need a certain number of steps to bring their states close to the “center” of the
state space, where roughly half of the bits are 1’s. To show that, Figure 5 gives a
close-up view of the early behavior of γn,5 for WELL800a and WELL19937a. There
is still a visible (and significant) amount of dependence from the initial state, but
the number of steps required to clear up the effect is approximately 1000 times
smaller than for TT800 and MT19937.

We also computed similar figures but with u
(j)
i instead of H(y(j)

i)/w in (5),
i.e., the average output value instead of the overall fraction of bits set to 1, and
the results were almost identical. That alternative gives more weight to the more
significant bits.

The behavior of the Hamming weight that we just examined is closely related to
the diffusion capacity of generators. Crudely speaking, a generator is said to have
good diffusion capacity if it produces two sequences that are very different from
each other when started from two seeds that are very close to each other [Shannon
1949]. A precise definition depends on how we measure the closeness of seeds and
the differences of sequences.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Generators Based on Linear Recurrences Modulo 2 · 13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

WELL800a
TT800

Fig. 3. γn,100 for the WELL800a (top line) and TT800 (lower line)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

WELL19937a
MT19937

Fig. 4. γn,1000 for the WELL19937a (top line) and MT19937 (lower line)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600 700 800 900 1000

WELL800a
WELL19937a

Fig. 5. γn,5 for the WELL800a (top line) and WELL19937a (lower line)

For the generators considered in this paper, we may define the distance between
two seeds or two output vectors as the number of bits that differ between them.
This is the Hamming distance. If two seeds x′0 and x′′0 are at distance 1, then
x′0⊕x′′0 = ej for some j. If y′i and y′′i are the corresponding output vectors at step
i, then because of the linearity, we have y′i ⊕ y′′i = BAi(x′0 ⊕ x′′0) = BAiej = y(j)

i ,
so the distance between y′i and y′′i is the Hamming weight of y(j)

i . In this sense,
the average Hamming weight defined in (5) also measures the diffusion capacity of

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · F. Panneton, P. L’Ecuyer, and M. Matsumoto

the generator.
What is the potential impact of this weakness of MT and TT generators on

simulation results for practical applications? If the generator’s state is initialized
with k independent uniform (truly) random bits, the probability of hitting a bad
state is probably quite small (a more precise statement would require a formal
definition of “bad state” and further analysis). But the chances are still there that
the generator eventually hits a bad state during a simulation. Moreover, such huge
generators are rarely seeded by k truly random bits in practice, and seeds that
contain many zeros are perhaps more likely to be used because they are easier
to write down. This could lead to totally wrong simulation results. The WELL
generators provide a substantial improvement on this aspect.

8. CONCLUSION

Random number generators based on linear recurrences modulo 2 are popular and
very convenient for simulation, mainly because of their high speed and because
the quality of specific instances can be studied in detail from the mathematical
viewpoint. Other generators from this family have been proposed in the past, for
instance the Mersenne twister and the combined LFSRs. Some of them have huge
period lengths, so their states must be represented over a large number of bits,
and require only a few operations on 32-bit (or 64-bit) words to go from one state
to the next. This means that only a small fraction of the bits in the state are
modified at each step. In this paper, we have proposed a class of generators that
do better than the previous ones on this aspect, without compromising the period
length and speed. The improvement was assessed by a measure of equidistribution,
by counting the fraction of nonzero coefficients in the characteristic polynomial of
the recurrence, and by an empirical comparison of the diffusion capacity of the old
and new generators. Of course, like all linear generators over F2, these generators
cannot pass a statistical test that measures the linear complexity of a long sequence
of bits that they produce. But they are nevertheless very useful and safe for the
vast majority of simulation applications, especially when the generator’s speed is
important.

ACKNOWLEDGMENTS

This work has been supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) Grant No. ODGP0110050, NATEQ-Québec grant No.
02ER3218, and a Canada Research Chair to the second author, as well as JSPS
Grant-In-Aid No. 14654021 to the third author. The first author benefited from
NSERC and NATEQ scholarships. We thank Takuji Nishimura, who gave us useful
ideas to improve the performance of our algorithms for checking primitivity and
equidistribution, Étienne Marcotte, who produced the figures, Hiroshi Haramoto,
who found some mistakes in an earlier version, and the anonymous reviewers whose
comments helped improve the paper.

REFERENCES

Berlekamp, E. R. 1970. Factoring polynomials over large finite fields. Math. Comp. 24, 713–735.

Brent, R. P., Larvala, S., and Zimmermann, P. 2003. A fast algorithm for testing reducibility

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Generators Based on Linear Recurrences Modulo 2 · 15

of trinomials mod 2 and some new primitive trinomials of degree 3021377. Math. Comp. 72, 243,

1443–1452.

Chabaud, F. and Lercier, R. 2000. A toolbox for fast computation in finite extension over finite

rings. Software user’s guide. See http://zenfact.sourceforge.net/.

Compagner, A. 1991. The hierarchy of correlations in random binary sequences. Journal of

Statistical Physics 63, 883–896.

Couture, R. and L’Ecuyer, P. 2000. Lattice computations for random numbers. Mathematics
of Computation 69, 230, 757–765.

Erdmann, E. D. 1992. Empirical tests of binary keystreams. M.S. thesis, Department of Mathe-

matics, Royal Holloway and Bedford New College, University of London.

Fushimi, M. and Tezuka, S. 1983. The k-distribution of generalized feedback shift register

pseudorandom numbers. Communications of the ACM 26, 7, 516–523.

Knuth, D. E. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algorithms,

Third ed. Addison-Wesley, Reading, Mass.

L’Ecuyer, P. 1994. Uniform random number generation. Annals of Operations Research 53,
77–120.

L’Ecuyer, P. 1996. Maximally equidistributed combined Tausworthe generators. Mathematics
of Computation 65, 213, 203–213.

L’Ecuyer, P. 1999a. Good parameters and implementations for combined multiple recursive

random number generators. Operations Research 47, 1, 159–164.

L’Ecuyer, P. 1999b. Tables of maximally equidistributed combined LFSR generators. Mathe-

matics of Computation 68, 225, 261–269.

L’Ecuyer, P. 2004. Random number generation. In Handbook of Computational Statistics, J. E.

Gentle, W. Haerdle, and Y. Mori, Eds. Springer-Verlag, Berlin, 35–70. Chapter II.2.

L’Ecuyer, P. and Panneton, F. 2002. Construction of equidistributed generators based on
linear recurrences modulo 2. In Monte Carlo and Quasi-Monte Carlo Methods 2000, K.-T.

Fang, F. J. Hickernell, and H. Niederreiter, Eds. Springer-Verlag, Berlin, 318–330.

L’Ecuyer, P. and Simard, R. 2002. TestU01: A Software Library in ANSI C for Empirical

Testing of Random Number Generators. Software user’s guide. Available at http://www.iro.

umontreal.ca/~lecuyer.

Lindholm, J. H. 1968. An analysis of the pseudo-randomness properties of subsequences of long

m-sequences. IEEE Transactions on Information Theory IT-14, 4, 569–576.

Marsaglia, G. 1985. A current view of random number generators. In Computer Science and

Statistics, Sixteenth Symposium on the Interface. Elsevier Science Publishers, North-Holland,

Amsterdam, 3–10.

Matsumoto, M. and Kurita, Y. 1994. Twisted GFSR generators II. ACM Transactions on

Modeling and Computer Simulation 4, 3, 254–266.

Matsumoto, M. and Kurita, Y. 1996. Strong deviations from randomness in m-sequences based
on trinomials. ACM Transactions on Modeling and Computer Simulation 6, 2, 99–106.

Matsumoto, M. and Nishimura, T. 1998. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Computer

Simulation 8, 1, 3–30.

Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM
CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia.

Nishimura, T. 2000. Tables of 64-bit Mersenne twisters. ACM Transactions on Modeling and
Computer Simulation 10, 4, 348–357.

Panneton, F. 2004. Construction d’ensembles de points basée sur des récurrences linéaires dans

un corps fini de caractéristique 2 pour la simulation Monte Carlo et l’intégration quasi-Monte
Carlo. Ph.D. thesis, Département d’informatique et de recherche opérationnelle, Université de

Montréal, Canada.

Panneton, F. and L’Ecuyer, P. 2004. Random number generators based on linear recurrences
in F2w . In Monte Carlo and Quasi-Monte Carlo Methods 2002, H. Niederreiter, Ed. Springer-

Verlag, Berlin, 367–378.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · F. Panneton, P. L’Ecuyer, and M. Matsumoto

Rieke, A., Sadeghi, A.-R., and Poguntke, W. 1998. On primitivity tests for polynomials. In

Proceedings of the 1998 IEEE International Symposium on Information Theory. Cambridge,
MA.

Shannon, C. E. 1949. Communication theory of secrecy systems. Bell System Technical Jour-

nal 28, 656–715.

Tausworthe, R. C. 1965. Random numbers generated by linear recurrence modulo two. Math-
ematics of Computation 19, 201–209.

Tezuka, S. 1995. Uniform Random Numbers: Theory and Practice. Kluwer Academic Publishers,

Norwell, Mass.

Tezuka, S. and L’Ecuyer, P. 1991. Efficient and portable combined Tausworthe random number
generators. ACM Transactions on Modeling and Computer Simulation 1, 2, 99–112.

Tootill, J. P. R., Robinson, W. D., and Eagle, D. J. 1973. An asymptotically random

Tausworthe sequence. Journal of the ACM 20, 469–481.

Wang, D. and Compagner, A. 1993. On the use of reducible polynomials as random number

generators. Mathematics of Computation 60, 363–374.

Not received yet

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

