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The fixed vector of any m-sequence based on a trinomial is explicitly obtained. Local nonran-
domness around the fixed vector is analyzed through model-construction and experiments. We
conclude that the initial vector near the fixed vector should be avoided.
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1. CHARACTERISTIC M-SEQUENCE

The shift-register method is widely used for generating pseudo-random numbers
for Monte-Carlo simulations. The generated sequence of 0 and 1 is called an m-
sequence. The most common way 1s to use three-term linear recursion, in other
words, to use primitive trinomials as characteristic polynomial. These primitive
trinomials are intensively searched in [4][5]. In this paper, however, we shall show up
a serious flaw of trinomial generators. That 1s, for some bad initial vectors, terrible
non-randomness continues for extraordinarily long time. We will see an example
in Section 2 for which during approximately two billions generations (521 x 222
successive values), the deviation of the number of ones from its theoretical mean
will always be more than thirty times the standard deviation.

This is a serious defect of trinomial-based m-sequences. We should comment
that another defect, the deviation of the third moment, was already discovered by
Lindholm[6] in 1968. He dealt with the whole period (for relatively short-period
sequences, from nowadays point of view), while here we concentrate on a local bad
behaviour near the initial vector (for arbitrarily long period sequences). We should
also comment that a global bad behaviour of trinomials is also warned in [2] and,
for k-nomials with small &, in [1] (see also its references), from the viewpoint of
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correlation coefficients.
For a given primitive polynomial () = " + Z?:_ol a;t’ over GF(2), an m-
sequence based on ¢ is a nonzero sequence (zx), N of GF(2) satisfying the linear

recurrence

n—1
Lhin = Z ;L g 45-
i=0
The n-tuple (®g,#1,...,2n_1) is called the initial vector of the m-sequence. There

exists a unique initial vector for which the corresponding m-sequence satisfies z; =
x9 for every integer [ [3]. This sequence is said to be characteristic, and the
initial vector is called the fired vector. A list of fixed vectors for primitive tri- or
pentanomials of degree from 2 to 168 is obtained in [11] with the aid of a computer.
It has an application to coding theory (see [10]). We shall give the explicit form
of the fixed vector for trinomials. The notation 0° indicates the sequence of 0’s of
length s.

THEOREM 1. If an m-sequence (zi), N s based on a trinomial t" +¢™ + 1 with
n > 2m, then its fired vector is determined as follows.

(1) If n and m are odd, then the fived vector is (10" ~1).

(2) If n is odd and m is even, then the fixred vector is (10" ~"=110m~1).

(3) If n is even, m must be odd and the fired vector is (0" ~™10m~1).

Thus, the fired vector contains at most two 1’s.

PrROOF. The necessary and sufficient condition for (#x,, Zko41, - - - Trotn—1) 1O
be the fixed vector is that xy,4; = 2g,+2; holds for n consecutive integers [. In fact,
if the above equality holds for [ = lp,lg + 1, ---,lp +n — 1, then (xk0+lu+j)jeN =
(xk0+210+2j)jeN holds because these two sequences have the same initial vector and
the same characteristic polynomial (note that (¢)? = ¢(¢?)). Since an m-sequence
can be extended in reverse order, the above equality implies that (xko-l-j)jeN =
(xko+21)jeN' Let us fix the initial vector to be (1,0,---,0), which is not necessarily
the fixed vector. Generate the next n bits. Since n > 2m we obtain

Lo L1 Tp—-1 Ln Tptl *° L2n—m—1 L2n—m L2n—m+1 " L2n-1

T 0. 0 1 0 - 0 1 0 - 0.
Generate the previous m bits backward and we obtain

LT_m L_m41 L1 Lo L1 *° Tp—1

1 0 -0 10 .-+ 0.

Case 1. n and m are odd.
Since both x, and #s,_,, have odd indices, we have

(anxZa .. 'axZ(n—l)) = (Loa' .. ,0) = (anxla .. 'axn—l)a
hence kg is 0 and the fixed vector is (10"71).

Case 2. n1s odd and m is even.
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In this case kg is proved to be n as follows. Set kg :=n, h:= (n —1)/2, and we
have

(ka—Zha xk‘g—Zh-I—Za ey $kg—2a$kgaxkg+2a ey $kg+2h)
= (l’l,l‘:«;, .. 'a$n—2axna$n+2a .. 'a$2n—1)

= (0,0,...,0,1,0,...,0)

= ($ku—ha Lho—h+1s-- 3y Lho—15Lkos Tho+1y-- - l‘k0+h).

This implies that ko = n and that the fixed vector is (107~™=110m~1).

Case 3. Otherwise.
By the irreducibility of the characteristic polynomial, n even implies m odd.
Since

(x—ma$—m+2a .. 'axm—Zaxmaxm-I—Za .. 'axZTl—m—Z)
= (1,0,...,0,0,0,...,0)
— (anxla o Tm=1,Tmy Tm+1y - - 'axn—l)a

ko is equal to m and the fixed vector is (0" ~™10™~1).

O

Note that if n < 2m, the reversed sequence (J:_k)kENl has the characteristic
polynomial ¢ + ¢"~™ + 1. Thus, we can obtain the fixed vector with a little
calculation, and there is no problem in assuming n > 2m as far as randomness is
concerned.

2. NONRANDOMNESS

In this section, we show terrible nonrandomness around the fixed vector, for an
m-sequence based on a trinomial. Let (xk)keN be a characteristic m-sequence.
The weight wi ar of the kth M-tuple (zg, x41,. .., Tr+ar—1) of an m-sequence is
defined as the number of 1’s appearing in this tuple. The density dj ar of the same
M-tuple is defined by di ar := wy ar/M. The normalized deviation vi ar is defined
by vg ar := (wg ar — ) /o with the mean value ¢ = M/2 and the standard deviation
o= \/M/Q
Suppose that the m-sequence is characteristic and based on a trinomial "+t +1.
We assume that n is odd since most of implementation satisfies this. We may
assume that m is even by considering the reciprocal trinomial if needed. Let py be
the density of 1’s in the tuple (xp,#1,...,2,-1); in other words, py is the number
of 1’s in this tuple divided by n. We shall predict the density of the next n bits
X = (®n,Tny1, ..., Ton—1). Since n is odd, Tpy1 = Tny1)/2, Tnisd = T(nts)/2
.., and x9,_2 = x,_1 hold, and hence these halves of x would have almost the
same density py. The remaining half n bits (#,,Z,42,...,%2,_1) of odd index
are determined by the relation zx4n, = Zg4m + ©x. By the assumption that n
is odd and m is even, each of these bits 1s the sum of previous two x;’s of even
index. Since an x; of even index will be 1 with “probability” pg, it would be
predicted that each z; of odd index contained in x would be 1 with “probability”
2po(1 — pg). Then the density p; of the vector (@, Zn41,...,%an—1) would be

I The suffix —k is considered to be modulo 27 — 1.
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po/2+2po(1—po)/2 = (3po — 2p3)/2. This argument holds without the assumption
that the starting index of the vector is the degree of the characteristic polynomial.
Let p; be the predicted density of the vector (#oi-1,,, Zot-1p, 41, ..., &1, _y) for L > 1.
Then for every integer { > 1

o= (3pi—1 — 2p}_1)/2

would hold. This is a well-known logistic recursion in Mathematical Biology. In
Section 1 we showed that py is very close to 0. Thus, it takes much time for
recovering p; near 1/2.

Figure 1. Recovery of The Ratio of 1s
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Figure 1 compares the density of an m-sequence with the one predicted by the
model. The abscissa is the logarithm of the number of generated bits, and the
ordinate is the density. Let (zx), N be the considered m-sequence. A point (a,b)
on the curve indicates that b = dj, pr with k = M =2%71.521 fora = 1,2,...,22.
For a = 0, b is the weight of the fixed vector. Thus, this figure illustrates 23 of
disjoint M-tuples with M increasing exponentially.

The curve labeled “Fixed” represents the m-sequence based on a trinomial ¢°%! +
158 +1 with initial vector (1036210'57), which is the fixed vector. The curve labeled
“Not fixed” represents the m-sequence based on the same trinomial with initial
vector (110°1%), which is not the fixed vector. The curve labeled “Predicted” is one
predicted by the model. Thus, these curves indicate the behavior of 521 - 222 bits
of the m-sequences. ;From this graph, we see that the non-fixed vector recovers far
more quickly than the fixed vector.
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Figure 2. Normalized Deviation
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Table 1.

Normalized Deviation of Subsequences of m-sequences
[ T Fixed [ Notfixed [ Pental | Penta2 |
0 || —2.27e401 | —2.27e401 | —1.86e4+01 | —2.26e+01
T || —2.27e+01 | —2.25e401 | —1.73e401 | —2.23e401
2 || —3.18e401 | —3.14e401 | —2.24e401 | —3.04e401
3 || —4.47e+01 | —4.38¢401 | —2.86e401 | —3.97e401
4 || —6.26e+01 | —6.07e+01 | —3.57e401 | —4.61e401
5 || —8.71e+01 | —8.30e401 | —4.26e4+01 | —4.50e+01
6 || —1.20e402 | —1.12e402 | —4.97e4+01 | —3.82e+01
7 || —1.64e402 | —1.47e402 | —535e4+01 | —2.94e+01
8 || —2.19e402 | —1.82e402 | —5.226401 | —2.08e401
9 || —2.84e402 | —2.18¢402 | —4.55e401 | —1.47e401
10 || —3.54e402 | —2.39e402 | —3.41e401 | —1.01e401
11 || —4.20e402 | —2.36e402 | —2.31e401 | —7.956+00
12 || —4.60e402 | —1.926402 | —1.71e401 | —6.07e+00
13 || —4.57e402 | —1.26e402 | —1.23e401 | —4.88¢+00
14 || —4.08e402 | —6.40e401 | —7.32e400 | —3.71e+00
15 || —3.33e402 | —2.36e401 | —4.61e+00 | —3.13e+00
16 || —2.50e402 | —5.456400 | —3.15e400 | —1.226+00
17 || —1.81e402 | +5.226—01 | —3.18e400 | —1.056+00
18 || —1.29e402 | +7.05e—01 | —2.37e400 | —9.10e—01
19 || —9.11e401 | —4.87e—01 | —2.30e+00 | —6.74e—01
20 || —6.47e4+01 | +2.35e400 | —2.77e+00 | +5.46e—02
21 || —4.65e4+01 | —1.4364+00 | —2.47e+00 | —3.87e—01
22 || —3.38e4+01 | —1.42e400 | —2.20e400 | —4.27e—01

Figure 2 illustrates the normalized deviation of the weight from the expectation.
The abscissa i1s the same one as in Figure 1. The ordinate is the normalized de-
viation. Let a be a positive integer. After calculating the normalized deviation
Sq = vgm with k = M = 271 . 521, we plot the point (a,s,) to obtain Fig-
ure 2. For a = 0, s, i1s the normalized deviation of the initial vector. The range
of the ordinate 1s from —500 to 0. The same data are listed in Table 1. Since s,

should approximately conform to the standard Gaussian distribution, if s, < —2,
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then the subsequence will be rejected with a 2.5% significance level. The curves
labeled “Fixed” and “Not fixed” represent the same sequences as in Figure 1. The
m-sequence “Fixed” is rejected throughout 521 - 2?2 bits, though “Not Fixed” re-
covers after 521 - 2'7 bits. The curve labeled “Penta-1” represents the m-sequence
based on a primitive pentanomial 521 4510 1 ¢169 1 $158 1 | starting with its fixed
vector ((1019)4710%). Though “Penta-1” is better than “Not fixed” for the first
521 - 215 bits, it cannot enter the 95% area throughout 521 - 222 bits (see Table 1).
This implies that pentanomials do not necessarily solve the problem completely.
The curve labeled “Penta-2” represents the m-sequence based on a primitive pen-
tanomial 521 44170 1 ¢11 142 4 1 starting with its fixed vector (103°°10*€710). It can
be seen from Table 1 that, in the long run, “Penta-2” is far better than “Penta-1”.

Figure 3. Normalized Deviation (Nonlogarithmic abscissa)
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Figure 3 illustrates the normalized deviation of disjoint M-tuples of the m-
sequence “Fixed” for fixed M = 521 -2'%. We plot (a, vapr ar) for a =0,1,...,149.
The obtained curve is not so smooth as Figure 1 or 2, and has rather “fractal”
structure. This can be explained as follows. Since z; = xy; for every [, the weight
wap, i Would be much influenced by wgar2 ar/2 rather than w,_1yarar it M is
sufficiently large. Thus, the curve obtained by plotting (a, wsar ar) is possibly not
continuous and would have self-similarity. In fact, Figure 3 shows steep valleys at
a =17,15,31,63,127. This justifies the method used in Figures 1 and 2, where the
size of the tested M-tuples 1s increased exponentially to make the curve smooth.

3. CONCLUDING DISCUSSIONS

How strong is the deviation observed in Table 17 A rough estimate of the probability
that the normalized deviation exceeds a large positive constant C' is:

t? L[t t?
— exp(——)dt

1 (o]
— B < ——
\/271'/0 exp( 2) - V2 o C 2
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= o= 5
o c?
= o exp(—T).

We consider the probability that a tuple of length M with normalized deviation
less than —C' occurs at least once in a random 0-1 sequence of length p (p > M).
There are nearly p tuples in this sequence. If 0 and 1 are randomly chosen, the
probability that at least one such tuple occurs is bounded from above by

02

1
px C—\/ﬂeXp(_ 5 ).

iFrom Table 1, we observe in “Fixed” 13 consecutive tuples (6th to 18th) with
normalized deviation smaller than —100. Since p ~ 252! ~ 107 and exp(—5000) ~
102171 such a tuple appears once (or more) with probability less than 107209, Even
for C' = —30, this probability is less than 1072, This shows that these deviations
are terribly improbable in a truly random sequence.

Thus, if trinomials are used, then one should pay special attention in choosing
an initial vector which is far from the fixed vector. For this, one can take an index
far away from the fixed vector, and then calculate the corresponding vector by a
Jjumping-ahead technique.

However, we note that there are other dangerous zones than the one around
the fixed vector. Let p = 2" —1 be the period. Then, since x(p11y/2 = Tpp1 =
T1,T(p48)/2 = Tpp3 = T3,..., those x; with index 7 near (p+ 1)/2 inherit the same
deviation as around the fixed vector. Similarly, it holds that (4 1y/4 = zp41 =
L1, L(p+5)/4 = Tp+s = L5,-- - and L(3p+3)/4 = T3p+3 — L3, L(3p47)/4 = T3p4+7 =
27,.... Thus, the vectors with indices 0 modulo 2”77 for small integer j (say,
j < 20) would have the same tendency. There are 2"~/ such indices.

We conclude that trinomials should be avoided for serious simulations, since the
generated sequence will show terrible nonrandom deviation many times in a period.
If trinomials are used, then one should make sure that the initial vector 1s far from
the fixed vector and from those vectors with index divisible by 27~/ for small j.

There are several alternatives to trinomials. Some of them are: to use pentanomi-
als [5], to combine trinomials [8][9], and to twist [7]. It seems that, also for these
generators, the behaviour around the fixed vector would be worth testing.
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