Existence of tangential limits for α -harmonic functions on half spaces

Yoshihiro Mizuta

Abstract

Our aim in this paper is to prove the existence of tangential limits for Poisson integrals of the fractional order of functions in the L^p Hölder space on half spaces.

1 Introduction

For $0 < \alpha < 2$, Riesz [6] defined the notion of α -harmonic functions on a domain Ω in the *n*-dimensional Euclidean space \mathbb{R}^n , as solutions of the fractional Laplace operators (see also Itô [3] and the book by Landkof [4]).

In the half space $H = \{x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : x_n > 0\}$, consider

$$P_{\alpha}f(x) = c_{\alpha} \int_{\mathbf{R}^n \setminus \overline{H}} \left(\frac{x_n}{|y_n|}\right)^{\alpha/2} |x - y|^{-n} f(y) dy$$

for a measurable function f on \mathbb{R}^n , where $c_{\alpha} = \Gamma(n/2)\pi^{-n/2-1}\sin(\pi\alpha/2)$. Here f satisfies

$$\int_{\mathbf{R}^n \setminus \overline{H}} |y_n|^{-\alpha/2} (|y|+1)^{-n} |f(y)| dy < \infty, \tag{1}$$

which is equivalent to

$$P_{\alpha}|f| \not\equiv \infty.$$

If this is the case, then we see from Remarks 4 and 5 below that $P_{\alpha}f$ is α -harmonic in H.

Let $1 and <math>\beta > 1/p$. Recently, Bass and You [1] have shown the existence of nontangential limits for $P_{\alpha}f$ with $f \in \Lambda_{\beta}^{p,\infty}(\mathbf{R}^n)$, which is the space of L^p Hölder continuous functions of order β ; more precisely, $f \in L^p(\mathbf{R}^n)$ and it

²⁰⁰⁰ Mathematics Subject Classification : Primary 31B25, 31B05

Key words and phrases : α -harmonic functions, (non)tangential limits, L^p Hölder space

satisfies L^p Hölder continuity of order β , that is, there exists a positive constant C such that

$$\left(\int |f(y+h) - f(y)|^p dy\right)^{1/p} \le C|h|^\beta \quad \text{for all } h \in \mathbf{R}^n .$$
(2)

Our aim in this note is to extend their result on the existence of nontangential limits for $P_{\alpha}f$. For $\gamma > 0$ and $\xi \in \partial H$, our approach region is defined by

$$T_{\gamma}(\xi) = \{ x \in H : |x - \xi|^{1 + \gamma/(n - \alpha/2)} < x_n \},\$$

which is tangential to the boundary ∂H at ξ .

THEOREM. Let $0 < \alpha < 2(1-1/p)$ and $0 < \gamma < \beta - 1/p$. If f is a measurable function in $\Lambda_{\beta}^{p,\infty}(\mathbf{R}^n)$ satisfying (1), then there exists $E \subset \partial H$ of (n-1)-dimensional measure zero such that $P_{\alpha}f$ has a finite limit along $T_{\gamma}(\xi)$ for every $\xi \in \partial H \setminus E$.

REMARK 1. Note that $|y_n|^{-\alpha/2}$ is locally $L^{p'}$ integrable on \mathbb{R}^n where p' = p/(p-1) if and only if $0 < \alpha < 2(1-1/p)$. But, in case $2(1-1/p) \le \alpha < 2$, we do not know whether $P_{\alpha}f$ has a tangential limit at almost every boundary point or not.

REMARK 2. Bass and You [2] have also obtained nontangential limit result for α -harmonic functions in Lipschitz domains. It will be expected that tangential convergence holds in a way similar to the proof of the theorem given later, because they have shown a good estimate for Poisson kernel near the boundary; but the discussions are left to be open.

Our method of proof is carried out directly, as in the discussions of harmonic case (see Landkof [4], Stein [7] and the author [5]).

2 Proof of the Theorem

Throughout this note, let C denote various constants independent of the variables in question. For a locally integrable function g on \mathbb{R}^n , we define its integral mean over the ball B(x, r) centered at ξ of radius r > 0 by

$$\int_{B(x,r)} g(y) dy = \frac{1}{\sigma_n r^n} \int_{B(x,r)} g(y) dy,$$

where σ_n denotes the *n*-dimensional Lebesgue measure of the unit ball.

Let f be a measurable function on \mathbb{R}^n as in the theorem. First note that

$$\begin{aligned} & \int_{B(\xi,r)} |y_n|^{-\alpha/2} \left| f(y) - \int_{B(\xi,r)} f(z) dz \right| dy \\ & \leq Cr^{-2n} \int_{B(0,r)} \int_{B(0,r)} |y_n|^{-\alpha/2} \left| f(\xi+y) - f(\xi+z) \right| dy dz \end{aligned}$$

for $\xi \in \partial H$. Further, for $E \subset \partial H$, denote by |E| the (n-1)-dimensional measure of E.

To complete a proof of the theorem, we first prepare two lemmas.

LEMMA 1. Let $0 \leq \alpha < 2(1-1/p)$ and $0 < \gamma < \beta - 1/p$. For $f \in \Lambda_{\beta}^{p,\infty}(\mathbf{R}^n)$, set

$$E(\gamma) = \{\xi \in \partial H : \limsup_{r \to 0+} r^{\alpha/2 - \gamma - 2n} \\ \times \int_{B(0,r)} \int_{B(0,r)} |y_n|^{-\alpha/2} |f(\xi + y) - f(\xi + z)| \, dy \, dz > 0 \}.$$

Then $|E(\gamma)| = 0.$

PROOF. For M > 0 and a positive integer j, set

$$E(\gamma, M, j) = \{\xi \in \partial H : 2^{j(\gamma+2n-\alpha/2)} \\ \times \int_{B(0,2^{-j})} \int_{B(0,2^{-j})} |y_n|^{-\alpha/2} |f(\xi+y) - f(\xi+z)| \, dy \, dz > 1/M \}.$$

Let a > 0. Then we have

$$|E(\gamma, M, j) \cap B(0, a)| \le M 2^{j(\gamma + 2n - \alpha/2)} \\ \times \int_{B(0, a) \cap \partial H} \left(\int_{B(0, 2^{-j})} \int_{B(0, 2^{-j})} |y_n|^{-\alpha/2} |f(\xi + y) - f(\xi + z)| \, dy \, dz \right) d\xi.$$

Letting $w = \xi + y = \xi + (y', y_n)$, we see from Hölder's inequality and (2) that

$$\int_{\{y_n:|y_n|<2^{-j}\}} \left(\int_{B(0,a)\cap\partial H} |y_n|^{-\alpha/2} |f(\xi+y) - f(\xi+y+(0,z_n))| \, d\xi \right) dy_n \\
\leq \int_{\{w\in B(0,a+1):|w_n|<2^{-j}\}} |w_n|^{-\alpha/2} |f(w) - f(w+(0,z_n))| \, dw \\
\leq C(2^{-j})^{-\alpha/2+1-1/p+\beta}$$

for $y, z \in B(0, 2^{-j})$. Similarly, letting $w = \xi + z = \xi + (z', z_n)$, we obtain

$$\int_{\{z_n:|z_n|<2^{-j}\}} \left(\int_{B(0,a)\cap\partial H} |f(\xi+y+(0,z_n))-f(\xi+z)| \, d\xi \right) dz_n \\
\leq \int_{\{w\in B(0,a+1):|w_n|<2^{-j}\}} |f(w+(y'-z',y_n))-f(w)| \, dw \\
\leq C(2^{-j})^{1-1/p+\beta}$$

for $y, z \in B(0, 2^{-j})$. Hence it follows that

$$|E(\gamma, M, j) \cap B(0, a)|$$

$$\leq CM2^{j(\gamma+2n-\alpha/2)}(2^{-j})^{-\alpha/2+1-1/p+\beta}2^{-j(n-1)}2^{-jn}$$

$$+ CM2^{j(\gamma+2n-\alpha/2)}(2^{-j})^{1-1/p+\beta}(2^{-j})^{-\alpha/2+n}2^{-j(n-1)}$$

$$\leq CM2^{-j(\beta-1/p-\gamma)}.$$

Define $E(\gamma, M) = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E(\gamma, M, j)$. Then, since $\beta - 1/p - \gamma > 0$, we find $|E(\gamma, M) \cap B(0, a)| = 0$

for all a > 0, which implies that $|E(\gamma, M)| = 0$. Noting that $E(\gamma) = \bigcup_{M=1}^{\infty} E(\gamma, M)$, we see that $|E(\gamma)| = 0$ and

$$\lim_{j \to \infty} 2^{j(\gamma+2n-\alpha/2)} \int_{B(0,2^{-j})} \int_{B(0,2^{-j})} |y_n|^{-\alpha/2} |f(\xi+y) - f(\xi+z)| \, dy \, dz = 0$$

for every $\xi \in \partial H \setminus E(\gamma)$

LEMMA 2. Let f be a function in $L^p(\mathbf{R}^n)$ satisfying (2). If $0 < \gamma < \beta - 1/p$, then

$$A(\xi) = \lim_{r \to 0+} \int_{B(\xi,r)} f(y) dy$$

exists and is finite for almost every $\xi \in \partial H$. Further,

$$\lim_{r \to 0+} r^{\alpha/2 - \gamma - n} \int_{B(\xi, r)} |y_n|^{-\alpha/2} |f(y) - A(\xi)| dy = 0$$

for almost every $\xi \in \partial H$.

It is well known that if $f \in L^p(\mathbf{R}^n)$, then A(x) exists and is finite for almost every $x \in \mathbf{R}^n$. Since ∂H is of *n*-dimensional measure zero, we need an additional condition like L^p Hölder continuity for f in the present lemma.

PROOF OF LEMMA 2. For simplicity, set $A(\xi, r) = \oint_{B(\xi, r)} f(y) dy$. Then, for $r \leq t \leq 2r$, note that

$$|A(\xi,t) - A(\xi,r)| \leq Cr^{-2n} \int_{B(0,2r)} \int_{B(0,2r)} |f(\xi+y) - f(\xi+z)| \, dy dz,$$

so that Lemma 1 (with $\alpha = 0$) yields

$$\lim_{r \to 0+} r^{-\gamma} |A(\xi, 2r) - A(\xi, r)| = 0$$

for almost every $\xi \in \partial H$. In this case,

$$\lim_{k \to \infty} 2^{k\gamma} \sum_{j=k}^{\infty} |A(\xi, 2^{-j+1}) - A(\xi, 2^{-j})| = 0,$$

which implies that $A(\xi)$ exists and

$$\lim_{r \to 0+} r^{-\gamma} |A(\xi) - A(\xi, r)| = 0.$$

This proves the first part of the result.

Similarly, we see from Lemma 1 that

$$\lim_{r \to 0+} r^{\alpha/2 - \gamma - n} \int_{B(\xi, r)} |y_n|^{-\alpha/2} |f(y) - A(\xi, 2r)| dy = 0$$

for almost every $\xi \in \partial H$. Note here that

$$\int_{B(\xi,r)} |y_n|^{-\alpha/2} |f(y) - A(\xi)| dy$$

$$\leq \int_{B(\xi,r)} |y_n|^{-\alpha/2} |f(y) - A(\xi,2r)| dy + Cr^{n-\alpha/2} |A(\xi) - A(\xi,2r)|.$$

This yields the second result.

PROOF OF THE THEOREM. Let f be as in the theorem. Then Lemma 2 implies that

$$A(\xi) = \lim_{r \to 0+} \oint_{B(\xi,r)} f(y) dy$$

exists and is finite for almost every $\xi \in \partial H$. Moreover we see from Remark 4 below that

$$P_{\alpha}f(x) - A(\xi) = c_{\alpha} \int_{\mathbf{R}^n \setminus \overline{H}} \left(\frac{x_n}{|y_n|}\right)^{\alpha/2} |x - y|^{-n} \{f(y) - A(\xi)\} dy.$$

In view of Lemma 2 we see that

$$\lim_{r \to 0+} r^{\alpha/2 - \gamma - n} \int_{B(\xi, r)} |y_n|^{-\alpha/2} |f(y) - A(\xi)| dy = 0$$

holds for almost every $\xi \in \partial H$. Hence, for given $\varepsilon > 0$ and $\xi \in \partial H$, we assume that

$$r^{\alpha/2-\gamma-n} \int_{B(\xi,r)} |y_n|^{-\alpha/2} |f(y) - A(\xi)| dy < \varepsilon$$
(3)

whenever $0 < r < r_0$. Since $0 < \alpha/2 < 1 - 1/p$, we see that

$$\lim_{x \to \xi} \int_{\mathbf{R}^n \setminus \{\overline{H} \cup B(\xi, r_0)\}} \left(\frac{x_n}{|y_n|}\right)^{\alpha/2} |x - y|^{-n} |f(y) - A(\xi)| dy = 0.$$

$$\tag{4}$$

Letting $r = 2|x - \xi| < r_0$, we obtain by (3)

$$\int_{B(\xi,r)\setminus\overline{H}} \left(\frac{x_n}{|y_n|}\right)^{\alpha/2} |x-y|^{-n} |f(y) - A(\xi)| dy$$

$$\leq C x_n^{\alpha/2-n} \int_{B(\xi,r)\setminus\overline{H}} |y_n|^{-\alpha/2} |f(y) - A(\xi)| dy$$

$$\leq C \varepsilon x_n^{\alpha/2-n} r^{\gamma-\alpha/2+n}$$

and

$$\int_{B(\xi,r_0)\setminus\{\overline{H}\cup B(\xi,r)\}} \left(\frac{x_n}{|y_n|}\right)^{\alpha/2} |x-y|^{-n}|f(y) - A(\xi)|dy$$

$$\leq C \int_{B(\xi,r_0)\setminus\{\overline{H}\cup B(\xi,r)\}} \left(\frac{x_n}{|y_n|}\right)^{\alpha/2} |\xi-y|^{-n}|f(y) - A(\xi)|dy$$

$$\leq C x_n^{\alpha/2} \int_r^{r_0} \left(\int_{B(\xi,t)\setminus\overline{H}} |y_n|^{-\alpha/2}|f(y) - A(\xi)|dy\right) t^{-n-1} dt.$$

If $\gamma - \alpha/2 < 0$, then

$$\int_{B(\xi,r_0)\setminus\{\overline{H}\cup B(\xi,r)\}} \left(\frac{x_n}{|y_n|}\right)^{\alpha/2} |x-y|^{-n} |f(y) - A(\xi)| dy \le C\varepsilon x_n^{\alpha/2} r^{\gamma-\alpha/2},$$

which together with (4) implies that

$$\limsup_{x \to \xi, x \in T_{\gamma}(\xi)} |P_{\alpha}f(x) - A(\xi)| \le C\varepsilon.$$

If $\gamma - \alpha/2 \ge 0$, then

$$\int_{B(\xi,r_0)\setminus\{\overline{H}\cup B(\xi,r)\}} \left(\frac{x_n}{|y_n|}\right)^{\alpha/2} |x-y|^{-n} |f(y) - A(\xi)| dy \le C\varepsilon x_n^{\alpha/2} \log(r_0/r),$$

so that

$$\limsup_{x \to \xi, x \in T_{\gamma}(\xi)} |P_{\alpha}f(x) - A(\xi)| \le C\varepsilon.$$

Hence it follows that

$$\lim_{x \to \xi, x \in T_{\gamma}(\xi)} |P_{\alpha}f(x) - A(\xi)| = 0,$$

as required.

3 Further remarks

REMARK 3. Let us consider the Riesz potential

$$U_{\alpha}\mu(x) = \int |x-y|^{\alpha-n} d\mu(y)$$

for a nonnegative measure μ on \mathbb{R}^n , where $0 < \alpha \leq 2$ and $U_{\alpha}\mu \neq \infty$. Then it is known that $U_{\alpha}\mu$ is α -superharmonic in \mathbb{R}^n and α -harmonic outside the support of μ ; for this, see Riesz [6] and Landkof [4].

Remark 4. Let

$$P_{\alpha}(x,y) = c_{\alpha} \left(\frac{x_n}{|y_n|}\right)^{\alpha/2} |x-y|^{-n}$$

for $x \in H$ and $y \in \mathbb{R}^n \setminus \overline{H}$. For $x_0 \in H$, we consider the inversion with respect to the ball $B_0 = B(x_0, R)$ with $R = (x_0)_n$. For $x \in \mathbb{R}^n$, write

$$x^* = x_0 + R^2 \frac{x - x_0}{|x - x_0|^2}.$$

Set $\tilde{x}_0 = (x'_0, R/2)$ and $\tilde{B}(x_0) = B(\tilde{x}_0, R/2)$. Then, for $x \in B(x_0, R)$ and $y \in \mathbb{R}^n \setminus \overline{H}$, we have

$$P_{\alpha}(x,y) = c_{\alpha}R^{-2n}|x_0 - x^*|^{n-\alpha} \left(\frac{|x^* - \tilde{x}_0|^2 - (R/2)^2}{(R/2)^2 - |y^* - \tilde{x}_0|^2}\right)^{\alpha/2} \times |x^* - y^*|^{-n}|x_0 - y^*|^{n+\alpha},$$

so that (A.1) of [4, Appendix] gives

$$\int_{\mathbf{R}^n \setminus \overline{H}} P_\alpha(x, y) dy = 1$$

REMARK 5. In the same way as above, we find

$$\int_{\mathbf{R}^n \setminus \overline{H}} P_\alpha(x, y) |x_0 - y|^{\alpha - n} dy = |x - x_0|^{\alpha - n}$$

for $x_0 \in H$. This is the key result to discuss the α -harmonicity of $P_{\alpha}f$; see Itô [3, Lemma 1] and Landkof [4, Lemma 1.13 in Chap.1].

REMARK 6. Let $0 < \alpha < 2(1 - 1/p)$ and $\beta p > 1$. Suppose f is a measurable function in $\Lambda_{\beta}^{p,\infty}(\mathbf{R}^n)$. Then we can find a set $E \subset \partial H$ of measure zero such that $P_{\alpha}f$ has a finite limit along $T_{\gamma}(\xi)$ for every $\xi \in \partial H \setminus E$ and γ with $0 < \gamma < \beta - 1/p$.

References

- R. F. Bass and D. You, A Fatou theorem for α-harmonic functions, Bull. Sci. Math. 127 (2003), 635–648.
- [2] R. F. Bass and D. You, A Fatou theorem for α-harmonic functions in Lipschitz domains, Prob. Th. rel. Fields 133 (2005), 391-408.
- [3] M. Itô, On α -harmonic functions, Nagoya Math. J. **26** (1966), 205–221.
- [4] N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, 1972.
- [5] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
- [6] M. Riesz, Intégrales de Riemann-Liouville et potentiels, Acta Szeged 9 (1938), 1–42.

[7] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.

> The Division of Mathematical and Information Sciences Faculty of Integrated Arts and Sciences Hiroshima University Higashi-Hiroshima 739-8521, Japan E-mail : mizuta@mis.hiroshima-u.ac.jp