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Abstract

Our aim in this paper is to prove the existence of tangential limits for
Poisson integrals of the fractional order of functions in the Lp Hölder space
on half spaces.

1 Introduction

For 0 < α < 2, Riesz [6] defined the notion of α-harmonic functions on a domain
Ω in the n-dimensional Euclidean space Rn, as solutions of the fractional Laplace
operators (see also Itô [3] and the book by Landkof [4]).

In the half space H = {x = (x′, xn) ∈ Rn−1 ×R : xn > 0}, consider

Pαf(x) = cα

∫
Rn\H

(
xn

|yn|
)α/2

|x − y|−nf(y)dy

for a measurable function f on Rn, where cα = Γ(n/2)π−n/2−1 sin(πα/2). Here f
satisfies ∫

Rn\H
|yn|−α/2(|y|+ 1)−n|f(y)|dy < ∞, (1)

which is equivalent to
Pα|f | �≡ ∞.

If this is the case, then we see from Remarks 4 and 5 below that Pαf is α-harmonic
in H .

Let 1 < p < ∞ and β > 1/p. Recently, Bass and You [1] have shown the
existence of nontangential limits for Pαf with f ∈ Λp,∞

β (Rn), which is the space
of Lp Hölder continuous functions of order β; more precisely, f ∈ Lp(Rn) and it
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satisfies Lp Hölder continuity of order β, that is, there exists a positive constant C
such that (∫

|f(y + h) − f(y)|pdy

)1/p

≤ C|h|β for all h ∈ Rn . (2)

Our aim in this note is to extend their result on the existence of nontangential
limits for Pαf . For γ > 0 and ξ ∈ ∂H , our approach region is defined by

Tγ(ξ) = {x ∈ H : |x − ξ|1+γ/(n−α/2) < xn},
which is tangential to the boundary ∂H at ξ .

Theorem. Let 0 < α < 2(1 − 1/p) and 0 < γ < β − 1/p. If f is a measurable
function in Λp,∞

β (Rn) satisfying (1), then there exists E ⊂ ∂H of (n−1)-dimensional
measure zero such that Pαf has a finite limit along Tγ(ξ) for every ξ ∈ ∂H \ E.

Remark 1. Note that |yn|−α/2 is locally Lp′ integrable on Rn where p′ =
p/(p − 1) if and only if 0 < α < 2(1 − 1/p). But, in case 2(1 − 1/p) ≤ α < 2, we
do not know whether Pαf has a tangential limit at almost every boundary point
or not.

Remark 2. Bass and You [2] have also obtained nontangential limit result
for α-harmonic functions in Lipschitz domains. It will be expected that tangential
convergence holds in a way similar to the proof of the theorem given later, because
they have shown a good estimate for Poisson kernel near the boundary; but the
discussions are left to be open.

Our method of proof is carried out directly, as in the discussions of harmonic
case (see Landkof [4], Stein [7] and the author [5]).

2 Proof of the Theorem

Throughout this note, let C denote various constants independent of the variables
in question. For a locally integrable function g on Rn, we define its integral mean
over the ball B(x, r) centered at ξ of radius r > 0 by

−
∫

B(x,r)

g(y)dy =
1

σnrn

∫
B(x,r)

g(y)dy,

where σn denotes the n-dimensional Lebesgue measure of the unit ball.
Let f be a measurable function on Rn as in the theorem. First note that

−
∫

B(ξ,r)

|yn|−α/2

∣∣∣∣f(y) −−
∫

B(ξ,r)

f(z)dz

∣∣∣∣ dy

≤ Cr−2n

∫
B(0,r)

∫
B(0,r)

|yn|−α/2 |f(ξ + y) − f(ξ + z)| dydz
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for ξ ∈ ∂H . Further, for E ⊂ ∂H , denote by |E| the (n − 1)-dimensional measure
of E.

To complete a proof of the theorem, we first prepare two lemmas.

Lemma 1. Let 0 ≤ α < 2(1 − 1/p) and 0 < γ < β − 1/p. For f ∈ Λp,∞
β (Rn),

set

E(γ) = {ξ ∈ ∂H : lim sup
r→0+

rα/2−γ−2n

×
∫

B(0,r)

∫
B(0,r)

|yn|−α/2 |f(ξ + y) − f(ξ + z)| dydz > 0}.

Then |E(γ)| = 0.

Proof. For M > 0 and a positive integer j, set

E(γ, M, j) = {ξ ∈ ∂H : 2j(γ+2n−α/2)

×
∫

B(0,2−j)

∫
B(0,2−j)

|yn|−α/2 |f(ξ + y) − f(ξ + z)| dydz > 1/M}.

Let a > 0. Then we have

|E(γ, M, j) ∩ B(0, a)| ≤ M2j(γ+2n−α/2)

×
∫

B(0,a)∩∂H

(∫
B(0,2−j)

∫
B(0,2−j )

|yn|−α/2 |f(ξ + y) − f(ξ + z)| dydz

)
dξ.

Letting w = ξ + y = ξ + (y′, yn), we see from Hölder’s inequality and (2) that∫
{yn:|yn|<2−j}

(∫
B(0,a)∩∂H

|yn|−α/2 |f(ξ + y) − f(ξ + y + (0, zn))| dξ

)
dyn

≤
∫
{w∈B(0,a+1):|wn|<2−j}

|wn|−α/2 |f(w) − f(w + (0, zn))| dw

≤ C(2−j)−α/2+1−1/p+β

for y, z ∈ B(0, 2−j). Similarly, letting w = ξ + z = ξ + (z′, zn), we obtain∫
{zn:|zn|<2−j}

(∫
B(0,a)∩∂H

|f(ξ + y + (0, zn)) − f(ξ + z)| dξ

)
dzn

≤
∫
{w∈B(0,a+1):|wn|<2−j}

|f(w + (y′ − z′, yn)) − f(w)| dw

≤ C(2−j)1−1/p+β

for y, z ∈ B(0, 2−j). Hence it follows that

|E(γ, M, j) ∩ B(0, a)|
≤ CM2j(γ+2n−α/2)(2−j)−α/2+1−1/p+β2−j(n−1)2−jn

+ CM2j(γ+2n−α/2)(2−j)1−1/p+β(2−j)−α/2+n2−j(n−1)

≤ CM2−j(β−1/p−γ).
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Define E(γ, M) =

∞⋂
k=1

∞⋃
j=k

E(γ, M, j). Then, since β − 1/p − γ > 0, we find

|E(γ, M) ∩ B(0, a)| = 0

for all a > 0, which implies that |E(γ, M)| = 0. Noting that E(γ) =
∞⋃

M=1

E(γ, M),

we see that |E(γ)| = 0 and

lim
j→∞

2j(γ+2n−α/2)

∫
B(0,2−j)

∫
B(0,2−j )

|yn|−α/2 |f(ξ + y) − f(ξ + z)| dydz = 0

for every ξ ∈ ∂H \ E(γ) �

Lemma 2. Let f be a function in Lp(Rn) satisfying (2). If 0 < γ < β − 1/p,
then

A(ξ) = lim
r→0+

−
∫

B(ξ,r)

f(y)dy

exists and is finite for almost every ξ ∈ ∂H . Further,

lim
r→0+

rα/2−γ−n

∫
B(ξ,r)

|yn|−α/2|f(y) − A(ξ)|dy = 0

for almost every ξ ∈ ∂H .

It is well known that if f ∈ Lp(Rn), then A(x) exists and is finite for almost
every x ∈ Rn. Since ∂H is of n-dimensional measure zero, we need an additional
condition like Lp Hölder continuity for f in the present lemma.

Proof of Lemma 2. For simplicity, set A(ξ, r) = −
∫

B(ξ,r)

f(y)dy. Then, for

r ≤ t ≤ 2r, note that

|A(ξ, t) − A(ξ, r)| ≤ Cr−2n

∫
B(0,2r)

∫
B(0,2r)

|f(ξ + y) − f(ξ + z)| dydz,

so that Lemma 1 (with α = 0) yields

lim
r→0+

r−γ |A(ξ, 2r) − A(ξ, r)| = 0

for almost every ξ ∈ ∂H . In this case,

lim
k→∞

2kγ
∞∑

j=k

|A(ξ, 2−j+1) − A(ξ, 2−j)| = 0,

which implies that A(ξ) exists and

lim
r→0+

r−γ |A(ξ) − A(ξ, r)| = 0.
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This proves the first part of the result.
Similarly, we see from Lemma 1 that

lim
r→0+

rα/2−γ−n

∫
B(ξ,r)

|yn|−α/2|f(y)− A(ξ, 2r)|dy = 0

for almost every ξ ∈ ∂H . Note here that

∫
B(ξ,r)

|yn|−α/2|f(y)− A(ξ)|dy

≤
∫

B(ξ,r)

|yn|−α/2|f(y)− A(ξ, 2r)|dy + Crn−α/2|A(ξ) − A(ξ, 2r)|.

This yields the second result. �

Proof of the Theorem. Let f be as in the theorem. Then Lemma 2 implies
that

A(ξ) = lim
r→0+

−
∫

B(ξ,r)

f(y)dy

exists and is finite for almost every ξ ∈ ∂H . Moreover we see from Remark 4 below
that

Pαf(x) − A(ξ) = cα

∫
Rn\H

(
xn

|yn|
)α/2

|x − y|−n{f(y) − A(ξ)}dy.

In view of Lemma 2 we see that

lim
r→0+

rα/2−γ−n

∫
B(ξ,r)

|yn|−α/2|f(y) − A(ξ)|dy = 0

holds for almost every ξ ∈ ∂H . Hence, for given ε > 0 and ξ ∈ ∂H , we assume
that

rα/2−γ−n

∫
B(ξ,r)

|yn|−α/2|f(y) − A(ξ)|dy < ε (3)

whenever 0 < r < r0. Since 0 < α/2 < 1 − 1/p, we see that

lim
x→ξ

∫
Rn\{H∪B(ξ,r0)}

(
xn

|yn|
)α/2

|x − y|−n|f(y) − A(ξ)|dy = 0. (4)

Letting r = 2|x − ξ| < r0, we obtain by (3)

∫
B(ξ,r)\H

(
xn

|yn|
)α/2

|x − y|−n|f(y) − A(ξ)|dy

≤ Cxα/2−n
n

∫
B(ξ,r)\H

|yn|−α/2|f(y) − A(ξ)|dy

≤ Cεxα/2−n
n rγ−α/2+n
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and ∫
B(ξ,r0)\{H∪B(ξ,r)}

(
xn

|yn|
)α/2

|x − y|−n|f(y)− A(ξ)|dy

≤ C

∫
B(ξ,r0)\{H∪B(ξ,r)}

(
xn

|yn|
)α/2

|ξ − y|−n|f(y) − A(ξ)|dy

≤ Cxα/2
n

∫ r0

r

(∫
B(ξ,t)\H

|yn|−α/2|f(y)− A(ξ)|dy

)
t−n−1dt.

If γ − α/2 < 0, then

∫
B(ξ,r0)\{H∪B(ξ,r)}

(
xn

|yn|
)α/2

|x − y|−n|f(y) − A(ξ)|dy ≤ Cεxα/2
n rγ−α/2,

which together with (4) implies that

lim sup
x→ξ,x∈Tγ(ξ)

|Pαf(x) − A(ξ)| ≤ Cε.

If γ − α/2 ≥ 0, then

∫
B(ξ,r0)\{H∪B(ξ,r)}

(
xn

|yn|
)α/2

|x − y|−n|f(y) − A(ξ)|dy ≤ Cεxα/2
n log(r0/r),

so that
lim sup

x→ξ,x∈Tγ(ξ)

|Pαf(x) − A(ξ)| ≤ Cε.

Hence it follows that
lim

x→ξ,x∈Tγ(ξ)
|Pαf(x) − A(ξ)| = 0,

as required. �

3 Further remarks

Remark 3. Let us consider the Riesz potential

Uαµ(x) =

∫
|x − y|α−ndµ(y)

for a nonnegative measure µ on Rn, where 0 < α ≤ 2 and Uαµ �≡ ∞. Then it is
known that Uαµ is α-superharmonic in Rn and α-harmonic outside the support of
µ; for this, see Riesz [6] and Landkof [4].

Remark 4. Let

Pα(x, y) = cα

(
xn

|yn|
)α/2

|x − y|−n
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for x ∈ H and y ∈ Rn \ H. For x0 ∈ H , we consider the inversion with respect to
the ball B0 = B(x0, R) with R = (x0)n. For x ∈ Rn, write

x∗ = x0 + R2 x − x0

|x − x0|2 .

Set x̃0 = (x′
0, R/2) and B̃(x0) = B(x̃0, R/2). Then, for x ∈ B(x0, R) and y ∈

Rn \ H, we have

Pα(x, y) = cαR−2n|x0 − x∗|n−α

( |x∗ − x̃0|2 − (R/2)2

(R/2)2 − |y∗ − x̃0|2
)α/2

× |x∗ − y∗|−n|x0 − y∗|n+α,

so that (A.1) of [4, Appendix] gives∫
Rn\H

Pα(x, y)dy = 1.

Remark 5. In the same way as above, we find∫
Rn\H

Pα(x, y)|x0 − y|α−ndy = |x − x0|α−n

for x0 ∈ H . This is the key result to discuss the α-harmonicity of Pαf ; see Itô [3,
Lemma 1] and Landkof [4, Lemma 1.13 in Chap.1].

Remark 6. Let 0 < α < 2(1 − 1/p) and βp > 1. Suppose f is a measurable
function in Λp,∞

β (Rn). Then we can find a set E ⊂ ∂H of measure zero such that
Pαf has a finite limit along Tγ(ξ) for every ξ ∈ ∂H \E and γ with 0 < γ < β−1/p.
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