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An LMI Approach to Guaranteed Cost Control for
Uncertain Delay Systems

Hiroaki Mukaidani

Abstract—The guaranteed cost-control problem for uncertain linear sys-
tems which have delay in both state and control input is considered. Suffi-
cient conditions for the existence of guaranteed cost controllers are given in
terms of linear matrix inequality (LMI). It is shown that the state feedback
controllers can be obtained by solving the LMI.

Index Terms—Delay, guaranteed cost control, linear matrix inequality
(LMI), uncertain linear systems.

I. INTRODUCTION

Delay systems generally occur in modern society in the form of com-
munication systems, transmission systems, chemical processing sys-
tems, power systems, and so on. If the presence of delays, is not con-
sidered in the controller design, it may cause instability or serious de-
terioration in the performance of the resulting control systems [1]. The
study of time-delay systems has received ever greater attention in the
past few decades.

In recent years, the problem of robust control of delay systems
with parameter uncertainties has been widely studied in the literature
[2]–[4]. Although there have been numerous results on robust control
of uncertain delay systems, much effort has been made toward
finding a controller which guarantees robust stability. However, when
controlling such systems, it is also desirable to design the control
systems which is not only robustly stable, but also guarantees an
adequate level of performance. One approach to this problem is the
so-called guaranteed cost-control approach [5]–[11]. This approach
has the advantage of providing an upperbound on a given performance
index. Recent advances in the theory of linear matrix inequality (LMI)
have allowed a revisiting of the guaranteed cost-control approach
[6], [7]. The LMI design method is a very well-known and powerful
tool. Not only can it efficiently find feasible and global solutions,
but also easily handle various kinds of additional linear constraints.
The guaranteed cost-control problem for a class of linear uncertain
delay systems which is based on the LMI design approach was solved
[8]–[11]. However, in [8]–[11], delay of the control input has not
been considered. Furthermore, it should be pointed out that although
the robust-control design methods for parameter uncertain systems
that have delay in both state and control input have been considered
(see for example [3], [4]), the guaranteed cost control for such delay
systems has not been discussed so far.

In this brief, the guaranteed cost-control problem of the robust con-
trol for uncertain system that has delay in both state and control input is
considered. A sufficient condition for the existence of the robust feed-
back controllers is derived in terms of the LMI. The main result of
this brief shows that guaranteed cost controllers can be constructed by
solving the LMI. The crucial difference between the existing results
[8]–[11] and our new one is that the controller which guarantees the
stability and adequate level of performance for the time delay in both
state and control input is given. Thus, the resulting controllers can be
easily implemented for more practical delay system.
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The notations used in this brief are fairly standard. The superscript
T denotes matrix transpose,In 2 Rn�n denote the identity matrices,
block-diag denotes the block diagonal matrix,k � k denotes the Eu-
clidean norm, andk � k2 denotes the largest singular value.

II. PRELIMINARY

We consider the autonomous uncertain delay system of the form

_x(t) = [A+�A(t)]x(t)+

N

i=1

[A�
i +�A�

i (t)]x(t� �i)

+ [Hh +�Hh(t)]x(t� h)

x(t)= �(t); t 2 [�d; 0]; d=maxf�1; . . . ; �N ; hg

(1)

wherex(t) 2 Rn is the state,�i > 0 are the delay constants, and
�(t) is the given continuous vector valued initial function.A, A�

i , and
Hh are the constant matrices of appropriate dimensions. The parameter
uncertainties considered here are assumed to be of the following form:

[ �A(t) �Hh(t) ] =DF (t) [E1 E h
2 ] (2a)

�A�
i (t) =D

�
i F

�
i (t)E

�
i ; i = 1; . . . ; N (2b)

whereD, E1, E h
2 , D�

i , andE�
i are known constant real matrices of

appropriate dimensions.F (t) 2 Rp�q andF �
i (t) 2 R

r �s are un-
known matrix functions with Lebesgue measurable elements and sat-
isfying

F
T (t)F (t) � Iq and F

�T
i (t)F �

i (t) � Is : (3)

Associated with (1) is the cost function

J =
1

0

x
T (t)Qx(t)dt (4)

whereQ is the given positive definite symmetric matrices.
Definition 1: The matrixP > 0 is said to be the quadratic cost

matrix for the uncertain delay systems (1) if the following inequality
holds:

d

dt
x
T (t)Px(t) + x

T (t)Qx(t) < 0 (5)

for all nonzerox(t) 2 Rn and all uncertainties (2).
Theorem 1: Suppose there exist the symmetric positive definite ma-

tricesP > 0; Si > 0; i = 1; . . . ; N; U > 0 2 Rn�n such that for
all uncertain matrices (2) the following matrix inequality (6) holds:

� =

� P ~A�

1 � � � P ~A�

N P ~Hh

~A�T

1 P �S1 � � � 0 0

...
...

. . .
...

...

~A�T

N P 0 � � � �SN 0

~HhTP 0 � � � 0 �U

< 0 (6)

where� 2 R
N�N , N = n � (N + 2), and

� := ~AT
P + P ~A +Q+

N

i=1

Si + U

~A :=A+�A(t)

~A�

i :=A
�

i +�A�

i (t)

~Hh :=H
h +�Hh(t):
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Then, the autonomous uncertain delay system (1) is quadratically stable
and the corresponding value of the cost function (4) satisfies the fol-
lowing inequality (7):

J<�
T(0)P�(0)+

N

i=1

0

��

�
T(s)Si�(s)ds+

0

�h

�
T(s)U�(s)ds:

(7)
The proof is given in Appendix I.

III. PROBLEM FORMULATION

In this section, we consider the problem of optimal guaranteed cost
control via the state feedback for a class of the delay system. The uncer-
tain delay system under consideration are described by the following
state equation:

_x(t) = [A+�A(t)]x(t)+[B+�B(t)]u(t)

+

N

i=1

[A�
i +�A�

i (t)]x(t� �i)+[Bh+�Bh(t)]u(t� h);

x(t)=�(t); t 2 [�d; 0]; d=maxf�1; . . . ; �N ; hg

(8)

whereu(t) 2 Rm is the control. The parameter uncertainties satisfy

[ �B(t) �Bh(t) ] = DF (t) [E2 Eh
2 ] : (9)

B, Bh, E2, andEh
2 are the constant matrices of appropriate dimen-

sions. The remainder constant real matrices and parameter uncertain-
ties are the same as the delay systems (1). Associated with (8) is the
cost function

J =
1

0

[xT (t)Qx(t) + u
T (t)Ru(t)]dt (10)

whereQ andR are the given positive definite symmetric matrices.
Definition 2: A control lawu(t) = Kx(t) is said to be a quadratic

guaranteed cost control with associated cost matrixP > 0 for the
delay system (8) and cost function (10) if the closed-loop system is
quadratically stable and the closed-loop value of the cost function (10)
satisfies the boundJ � J � for all admissible uncertainties, that is

d

dt
x
T (t)Px(t) + x

T (t)[Q+K
T
RK]x(t) < 0 (11)

for all nonzerox 2 Rn.

The objective of this brief is to design a linear time-invariant feed-
back guaranteed cost-control lawu(t) = Kx(t) for the delay system
(8) with uncertainties.

IV. M AIN RESULTS

We now give the LMI design approach to the construction of a guar-
anteed cost controller.

Theorem 2: Suppose there exist the constant parameters� > 0 and
" > 0 such that the LMI shown in (12) at the bottom of the page,
have the symmetric positive definite matricesX > 0; Si > 0; i =
1; . . . ; N; Z > 0 2 Rn�n and a matrixY 2 Rm�n, where� :=
AX+BY +(AX+BY )T+Z+�DDT+H ,H := N

i=1
"D�

iD
�T
i .

If such conditions are met, the linear-state feedback-control law

u(t) = Kx(t) = Y X
�1
x(t) (13)

is the guaranteed cost controller and

J < �
T (0)X�1�(0)+

N

i=1

0

��

�
T (s)S �1i �(s)ds

+
0

�h

�
T (s)X�1ZX�1�(s)ds (14)

is the guaranteed cost for the closed-loop uncertain delay systems.
The proof is given in Appendix II.
Since the LMI (12) consists of a convex solution set of

(�; "X; Y; Si; Z), various efficient convex-optimization algo-
rithms can be applied. Moreover, its solutions represent the set of the
guaranteed cost controllers. This parameterized representation can be
exploited to design the guaranteed cost controllers which minimizes
the value of the guaranteed cost for the closed-loop uncertain delay
systems. Consequently, solving the following optimization problem
allows us to determine the optimal bound:

min
X

J =min
X

�+

N

i=1

Trace[Mi]+c
2kNNT k2 � Trace[Z] =J �;

X 2 (�; "X; Y; Si; Z; �; Mi) (15)

� BhY (E1X + E2Y )T X Y T A�
1S1 0 � � � A�

NSN 0 X � � � X

Y TBhT �Z Y TEhT
2 0 0 0 0 � � � 0 0 0 � � � 0

E1X + E2Y Eh
2 Y ��Iq 0 0 0 0 � � � 0 0 0 � � � 0

X 0 0 �Q�1 0 0 0 � � � 0 0 0 � � � 0

Y 0 0 0 �R�1 0 0 � � � 0 0 0 � � � 0

S1A
�T
1 0 0 0 0 �S1 S1E

�T
1 � � � 0 0 0 � � � 0

0 0 0 0 0 E�
1S1 �"Is � � � 0 0 0 � � � 0

...
...

...
...

...
...

...
. . .

...
...

...
. . .

...

SNA
�T
N 0 0 0 0 0 0 � � � �SN SNE

�T
N 0 � � � 0

0 0 0 0 0 0 0 � � � E�
NSN �"Is 0 � � � 0

X 0 0 0 0 0 0 � � � 0 0 �S1 � � � 0

...
...

...
...

...
...

...
. . .

...
...

...
. . .

...

X 0 0 0 0 0 0 � � � 0 0 0 � � � �SN

< 0 (12)
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such that (12) and

�� �T (0)

�(0) �X
< 0 (16a)

�Mi MT

i

Mi �Si
< 0; i = 1; . . . ; N (16b)

�cIn In

In �X
< 0 (16c)

wherec is a given positive constant,MiM
T

i :=
0

��
�(s)�T (s)ds,

NNT :=
0

�h
�(s)�T (s)ds.

That is, the problem addressed in this brief is as follows. “FindK =
Y X�1 such that LMI (12) and (16) are satisfied and the costJ be-
comes as small as possible.”

Finally, we are in a position to establish the main result of this sec-
tion.

Theorem 3: If the above optimization problem has the solution�,
", X, Y , Si, Z, �, andMi, then, the control law of the form (13) is
the linear-state feedback-control law which ensures the minimization
of the guaranteed cost (14) for the uncertain delay systems.

Proof: By Theorem 2, the control law (13) constructed from the
feasible solutions�, ", X, Y , Si, Z, �, andMi is the guaranteed
cost controllers of the uncertain delay systems (8). Applying the Schur
complement to the LMI (16) and using the following inequality [12]:

Trace[XY] � kXk2Trace[Y]; Y = YT � 0; X = X T

we have

(16a),�
T (0)X�1�(0)< �

(16b))
0

��

�
T (s)S �1i �(s)ds =

0

��

Trace[�T (s)S �1i �(s)]ds

=Trace[MT

i S
�1

i Mi] < Trace[Mi]

(16c))
0

�h

�
T (s)X�1ZX�1�(s)ds

=
0

�h

Trace[�T (s)X�1ZX�1�(s)]ds

=Trace[NT
X
�1
ZX

�1
N ]�kNNT k2 � kX

�1k22 � Trace[Z]

<c
2kNNT k2 � Trace[Z]:

It follows that

J <�
T (0)X�1�(0)+

N

i=1

0

��

�
T (s)S �1i �(s)ds

+
0

�h

�
T (s)X�1ZX�1�(s)ds

<�+

N

i=1

Trace[Mi]+c
2kNN

T k2 � Trace[Z] � min
X

J = J �:

(17)

Thus, the minimization ofJ implies the minimum valueJ � of the
guaranteed cost for the uncertain delay systems (8). The optimality of
the solution of the optimization problem follows from the convexity of
the objective function under the LMI constraints. This is the required
result.

Remark 1: The constant parameterc which is included in the in-
equality (16c) need to be optimized as the LMI constraint. In that case,

it is hard to obtain the optimum guaranteed cost because the resulting
problem is a nonconvex optimization problem. Hence, we propose the
above suboptimal guaranteed cost control instead of solving the non-
convex optimization problem. As a result, the robust suboptimal guar-
anteed cost controller which minimizes the value of the guaranteed cost
for the closed-loop uncertain delay system can be easily solved by using
the LMI.

The constant parameterc needs to be chosen as small as possible.
However, if there exists no solution of the considered optimization
problem, then we need to take the large parameterc. On the other hand,
it should be noted that the parameterc cannot become large because the
matrixX is constrained by the inequality (16a).

V. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of our proposed control, we
have run a simple numerical example. The system matrices with the
uncertainties are given as follows:

A =
�2 1

0 1

A
�

1 =
�0:1 0:1

0 0:1

A
�

2 =
�0:2 0:1

0 0:3

A
�

3 =
�0:15 0:01

0 0:2

B =
0

1

B
h =

0

0:1

D =D
�

1 = D
�

2 = D
�

3 =
0

1

E1 =E
�

1 = E
�

2 = E
�

3 = [ 0 0:1 ]

E2 =E
h

2 = [0:2]

�1 =1

�2 =2

�3 =3

h =1

�(t) =
1

2

F (t) = cos(60�t)

F
�

i (t) = 1� exp(�2t)

i =1; 2; 3

x =
x11

x12
:

Note that we cannot apply the technique proposed in [8]–[11] to the
above delay system, since the considered system has delay in control
input. Moreover, compared with the multiple delay systems presented
in [9], the uncertain matrices related to state delays are more general
forms. Now, we choose asR = 0:1 andQ = diag [0:2 0:1]. Moreover,
we takec = 2. By applying Theorem 3 and solving the corresponding
optimization problem (15), we obtain the linear optimal state feedback-
control law

K = [�1:0931� 10�2 �4:6304 ] :

Consequently, the optimal guaranteed cost of the uncertain closed-loop
delay system isJ � = 16:364413.
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Fig. 1. Response of the closed-loop system with the proposed control method.

Finally, the result of the simulation of this example is depicted in
Fig. 1. It is shown from Fig. 1 that the closed-loop systems are asymp-
totically stable.

VI. CONCLUSION

In this brief, a solution of the guaranteed cost-control problem for un-
certain system that have delay in both state and control input has been
presented. The robust optimal guaranteed cost controller which min-
imizes the value of the guaranteed cost for the closed-loop uncertain
delay system can be solved by using software such as MATLAB’s LMI
control Toolbox [13]. Thus, the resulting linear feedback controller can
guarantee the quadratic stability and the optimal cost bound for the un-
certain delay systems. On the other hand, there is one drawback that we
must not ignore for the proposed controller design. It should be noted
that the uncertain system with the kind of uncertainty structure as in(2),
usually results in very conservative controller design. However, since
it is well known that there are many physical systems in which the un-
certainty can be modeled by this manner [14], the assumption that the
uncertain system has the structure given by the uncertainty structure
(2) is reliable.

After submitting this brief, we have noticed that there exist the useful
results for the guaranteed cost-control problem for uncertain systems
that have delay in both state and control [18]. Although the proposed
design approach is also based on the LMI technique, the controllers
are not unique. Therefore, one needs to construct a guaranteed cost
controller through trial and error. On the other hand, our controllers
are unique. Moreover, since the considered uncertain systems contain
the multiple delay in the states, it is applicable to wider class.

Finally, it is expected that the LMI approach is also applied to the
output feedback case [15]. Such a problem is more realistic than the
state feedback case. This problem will be addressed in future investi-
gations.

APPENDIX I
PROOF OFTHEOREM 1

Using the definitions~A, ~A�
i , and ~Hh, we can change the form (1) as

_x(t) = ~Ax(t) +

N

i=1

~A�
i x(t� �i) + ~Hh

x(t� h): (18)

Suppose now there exist the symmetric positive definite matricesP ,
Si andU such that the matrix inequality (6) holds for all admissible
uncertainties (2). In order to prove the asymptotic stability of the delay
systems (18), let us define the following Lyapunov function candidate:

V (x(t)) = x
T (t)Px(t) +

N

i=1

t

t��

x
T (s)Six(s)ds

+
t

t�h

x
T (s)Ux(s)ds: (19)

Note thatV (x(t)) > 0 wheneverx(t) 6= 0. Then, the time derivative
of V (x(t)) along any trajectory of the delay system (18) is given by

d

dt
V (x(t)) =xT (t)( ~AT

P+P ~A)x(t)+

N

i=1

2xT (t)P ~A�
i x(t� �i)

+ 2xT (t)P ~Hh
x(t� h)

+

N

i=1

[xT (t)Six(t)� x
T (t� �i)Six(t� �i)]

+ x
T (t)Ux(t)� x

T (t� h)Ux(t� h)

= z
T (t)

��Q P ~A�
1 � � � P ~A�

N P ~Hh

~A�T
1 P �S1 � � � 0 0

...
...

. . .
...

...

~A�T
N P 0 � � � �SN 0

~HhTP 0 � � � 0 �U

z(t)

= z
T (t)�z(t)� x

T (t)Qx(t)

wherez(t) = xT (t) xT (t� �1) � � � x
T (t� �N ) x

T (t� h)
T
2

R
N and� and� are given in (6). Taking the fact that the inequality

(6) holds into account, it follows immediately that

d

dt
V (x(t)) < �xT (t)Qx(t) < 0: (20)

Hence,V (x(t)) is a Lyapunov function for the delay system (18).
Therefore, (18) is asymptotically stable. Furthermore, by integrating
both sides of the inequality (20) from 0 toT and using the initial con-
ditions, we have

V (x(T ))� V (x(0)) < �
T

0

x
T (t)Qx(t)dt: (21)

Since (18) is asymptotically stable, that is,x(T )! 0, whenT !1,
we obtainV (x(T )) ! 0. Thus, we get

J =
T

0

x
T(t)Qx(t)dt < V (x(0))

=�
T(0)P�(0) +

N

i=1

0

��

�
T(s)Si�(s)ds+

0

�h

�
T (s)U�(s)ds:

The proof of Theorem 1 is completed.

APPENDIX II
PROOF OFTHEOREM 2

Let us introduce the matricesX := P�1,Y := KP�1,Si := S�1i ,
andZ := P�1UP�1. Premultiplying and postmultiplying both sides
of the inequality (12) by

block diag[P P Iq In Im S1 Is � � � SN Is In � � � In]

yields (22), shown at the top of the next page, where	 := A TP +
PA+ U + �PDDTP + PHP ,A := A +BK,E := E1 +E2K:

Using the Schur complement [16], (22) holds if, and only if (23),
shown at the top of the next page, holds,where� := A

T
P+PA+R+

N

i=1
Si+U+�PDDTP+PHP+��1E

T
E,R := Q+KTRK.
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	 PBhK E T In KT PA�
1 0 � � � PA�

N 0 In � � � In

KTBhTP �U KTEhT
2 0 0 0 0 � � � 0 0 0 � � � 0

E Eh
2K ��Iq 0 0 0 0 � � � 0 0 0 � � � 0

In 0 0 �Q�1 0 0 0 � � � 0 0 0 � � � 0

K 0 0 0 �R�1 0 0 � � � 0 0 0 � � � 0

A�T
1 P 0 0 0 0 �S1 E�T

1 � � � 0 0 0 � � � 0

0 0 0 0 0 E�
1 �"Is � � � 0 0 0 � � � 0

...
...

...
...

...
...

...
. . .

...
...

...
. . .

...

A�T
N P 0 0 0 0 0 0 � � � �SN E�T

N 0 � � � 0

0 0 0 0 0 0 0 � � � E�
N �"Is 0 � � � 0

In 0 0 0 0 0 0 � � � 0 0 �S1 � � � 0

...
...

...
...

...
...

...
. . .

...
...

...
. . .

...

In 0 0 0 0 0 0 � � � 0 0 0 � � � �SN

< 0 (22)

F :=

� PA�
1 � � � PA�

N PBhK + ��1E
T
Eh
2K

A�T
1 P "�1E�T

1 E�
1 � S1 � � � 0 0

...
...

. . .
...

...

A�T
N P 0 � � � "�1E�T

N E�
N � SN 0

KTBhTP + ��1KTEhT
2 E 0 � � � 0 ��1KTEhT

2 Eh
2K � U

< 0 (23)

Using a standard matrix inequality [17], for all admissible uncer-
tainties (2) and (9), the following matrix inequality holds:

0 >F

�

A TP+PA+R+

N

i=1

Si+U PA�
1 � � � PA�

N PBhK

A�T
1 P �S1 � � � 0 0

...
...

. . .
...

...

A�T
N P 0 � � � �SN 0

KTBhTP 0 � � � 0 �U

+

PD

0

...

0

0

F (t)

E T

0

...

0

KTEhT
2

T

+

E T

0

...

0

KTEhT
2

F
T (t)

PD

0

...

0

0

T

+

0 PD�
1 � � � PD�

N 0

0 0 � � � 0 0

...
...

. . .
...

...

0 0 � � � 0 0

0 0 � � � 0 0

0 0 � � � 0 0

0 F �
1 � � � 0 0

...
...

. . .
...

...

0 0 � � � F �
N 0

0 0 � � � 0 0

�

0 0 � � � 0 0

0 E�
1 � � � 0 0

...
...

. . .
...

...

0 0 � � � E�
N 0

0 0 � � � 0 0

+

0 0 � � � 0 0

0 E�
1 � � � 0 0

...
...

. . .
...

...

0 0 � � � E�
N 0

0 0 � � � 0 0

T

�

0 0 � � � 0 0

0 F �
1 � � � 0 0

...
...

. . .
...

...

0 0 � � � F �
N 0

0 0 � � � 0 0

T 0 PD�
1 � � � PD�

N 0

0 0 � � � 0 0

...
...

. . .
...

...

0 0 � � � 0 0

0 0 � � � 0 0

T

=L: (24)

Let A+DF (t)E ! ~A = A+�A(t), [Bh +�Bh(t)]K ! ~Hh =
Hh +�Hh(t) andQ+KTRK = R! Q. Then,L = �. Hence,
the closed-loop systems are asymptotically stable under Theorem 1.
On the other hand, since the results of the cost bound (14) can be
proved by using the similar argument for the proof of Theorem 1,
it is omitted.
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Pursley’s Aperiodic Cross-Correlation Functions Revisited

Tohru Kohda and Hiroshi Fujisaki

Abstract—Pursley’s aperiodic cross-correlation function of one delay
parameter, which plays an important role in the quasi-synchronous state,
is revisited. Using sequences up-sampled by a factor of , we generalize
this function to the one with two discrete delay parameters which play an
important role in asynchronous state. Furthermore, Markov spreading
sequences are shown to be simply generated by a two-state Markov chain.
Applying the central limit theorems, in particular, the Fortet–Kac theorem
to the aperiodic cross-correlation function of spreading sequences with
Markovity, we can get theoretical estimate of the variance of multiple-ac-
cess interference.

Index Terms—Asynchronous direct-sequence code-division-multiple-ac-
cess (DS/CDMA) system, average interference parameter (AIP), multiple-
access interference (MAI), Markov chains, up-sampled sequences.

I. INTRODUCTION

Consider baseband direct-sequence spread-spectrum (DS/SS) com-
munications ofJ users as shown in Fig. 1. We define the data signal
of the jth user and its assigned SS code signal(j = 1; 2; . . . ; J) re-
spectively, byd(j)(t) = 1

p=�1d
(j)
p uT (t � pT ), d(j)p 2 f1;�1g,

X(j)(t) = 1

q=�1X
(j)
q uT (t� qTc), andX(j)

q 2 f1;�1g, where

uD(t) =
1; for 0 � t � D

0; otherwise.

Since thejth user’s code sequence has periodN = T=Tc, it is denoted
byXXX(j) = fX

(j)
q gN�1q=0 . Without loss of generality, we assumeTc = 1.

Let s(j)(t) = X(j)(t)d(j)(t) be thejth user’s SS modulated signal,
andtj be its time delay.

In an asynchronous DS code-division-multiple-access (DS/CDMA)
system, values of theaperiodic cross-correlation functionRA

N (`), in-
troduced by Pursley [1] determine the magnitude of multiple-access
interference (MAI) from other channels. The average interference pa-
rameter (AIP), a quadratic form ofRAN (`), has often been discussed as
a measure of bit-error probabilities in asynchronous DS/CDMA sys-
tems [1]–[8] or as a measure of correlational properties of spreading
sequences [9], [10].

Recently, by discussing a variance of MAI with respect tocode
symbols, it has been confirmed that sequences generated by some
Markov chains are superior/inferior [11]–[14] to sequences of in-
dependent and identically distributed (i.i.d.) random variables in an
asynchronous/quasi-synchronous (or chip-synchronous) state [15],
[16].

In this brief, we show that from the viewpoint of symmetry, it would
be better to evaluate the MAI in terms of the even and odd cross-corre-
lation functions rather than in terms of the aperiodic cross-correlation
function. Generalization of theaperiodic cross-correlation function
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