

現代有機合成化学における立体化学制御と選択性の発現 炭素-炭素結合形成反応を中心に

© 武田 敬

Ver. 11/21/02

2001年10月

1

Iエノレートの化学¹⁾

・炭素-炭素結合の形成

炭化水素の pKa は~50 なので,脱プロトン化は一般に不可能. カルバニオンを発生させるためには,生成するアニオンを安定化する -置換基が必要となる. 1個のカルボニル基に隣接する炭素上の水素原子の pKa は 16~25

・カルボニル化合物の酸性度

・カルボニル基の 水素の酸性度と脱プロトン化に使用される塩基の強さとの関係

例)以下はおおよその目安で,溶媒,対イオンなどにより異なる.

EtOH +
$$\overline{OH}$$
 \xrightarrow{K} H_2O + \overline{EtO} MeOH + \overline{H} \xrightarrow{K} H_2 + MeO
 $K = \frac{K_{a (EtOH)}}{K_{a (H2O)}} = \frac{10^{-16}}{10^{-15.74}} = 10^{-0.26} = 0.55$ $K = \frac{K_{a (MeOH)}}{K_{a (H2)}} = \frac{10^{-15.2}}{10^{-35}} = 10^{19.8} = 6.3 \times 10^{19}$

ĸ

アルコールと NaOH との反応では約半分しか脱プロトン化されないが, NaH を用いるとほぼ完全に アルコキサイドになる.

NaOH, Et₃Nのような塩基ではケトンを完全にエノレートにすることはできないが, NH₂のような強塩基を用い ると完全にエノレートにすることができる.

注意しなければならないのは,反応が進行するためには,必ずしも完全にエノレートになる必要はなく,平衡条件下で あれば,エノレートが例え100万分の1しか生成していなくとも,それがその濃度でエノレートが反応すれば良い.

2

・pKa に対する置換基の影響

•

kinetic および thermodynamic enolate 生成の条件

	kinetic enolate	thermodynamic enolate
溶媒	非プロトン性溶媒	プロトン性溶媒
用いる塩基 の塩基性の強さ	強塩基	強い共役酸を発生する塩基(弱塩基)
塩基の対カチオン	Li(共有結合性が高い)	Na, K(イオン性結合性が高い)
反応温度	低温	高温
反応時間	短時間	長時間

4

^a 23 vol % HMPA-THF

• **Ireland** による脱プロトン化の遷移状態モデル(1976年)⁵⁾

二つの条件下 (THF, THF/HMPA) でのエノレート生成のモデルを提出

・THF 中では, Li カチオンはカルボニル酸素原子に配位しており,プロトン移動はイス型遷移状態(A, A')を経る分子内で進行する.

・(Z)-エノレートは,メチル基とイソプロピル基との立体反発により不利となる.

・HMPA 中では, Li カチオンが溶媒和される結果, open-chain 遷移状態 (B, B') をとり, メチル基と R 基の反発により(Z)-エノレートが 有利となる.

一般にアルキル化(置換反応)は付加反応(アルドール反応など)に比べて遅い. そのため,エノレートを位置特異的に生成させてもプロトン交換がおこり位置異性体やポリアルキル体が生成する場合がある.

73 : 27

• Exocyclic enolate (1,4-stereocontrol)

・不斉アルキル化

エノレートの geometry の問題

ジアステレオ選択性が100%であっても P_1/P_2 は E_1/E_2 以上ではありえない

エノレートの geometry 及びアルキル化の立体化学が金属イオンのキレーションにより規制される場合⁷⁾

キラル中心を含まない基質(ケトン,カルボン酸誘導体)

キラル補助基

Fraser (1979) Me_{Ph} Me_{Ph} Me_{Ph} Me_{Ph} N H O Me_{Ph} N H UDA Me_{Ph} Me_{Ph} N H O3.2:1

・カルボン酸誘導体の 不斉アルキル化

エノレートの geometry

ジアステレオ面選択性

選択性発現のための必要条件

W-form あるいは U-form の conformation の固定 X_c の固定 面選択性

Evans 法⁹⁾

問題点

・アルキル化反応が遅いので活性な1級アルキル化剤に限定され,しかも一般に過剰量を必要とする.

・エノレートが熱的に不安定なのでアルキル化の反応温度が制限される(Li塩 0。C; Na塩 -20。C)

Catalytic asymmetric alkylation¹⁰⁾

エノレートの C-アルキル化 vs O-アルキル化

- ・O-alkylation が優先する条件
 - 1. 極性溶媒 (dipolar aprotic solvent: HMPA, DMSO, DMF)

金属カチオンが溶媒和されることにより,アニオンがより free になる.負電荷はより電気陰性度の大きな原子(酸素)に局在する.

2.大きく,配位能の小さなカチオン

$$R_4 \overset{+}{N} > \overset{+}{K} > N \overset{+}{a} > \overset{+}{Li}$$

O-alklation C-alklation

3 . Aggregation Solubility

monomeric enolate	O-alkylation
aggregate enolate	C-alkylation

CI

Br

L

4.アルキル化剤の構造

X = Br, no solvent

DMF

DMF

DMF

R	C-alkylation	O-alkylation
<i>n</i> -Pr	97	3
<i>i</i> -Pr	73	27
CH ₂ =CH	100	0
PhCH ₂	100	0

54 : 46

67 : 33

>99 : 1

HSAB 理論 (The Hard and Soft Acids and Bases)¹¹⁾

最初は無機化学において R. G. Pearson によって導入され, 有機化学にも拡張された.

H⁺ と Ag⁺ の酸性の強さを比較する. 塩基が ⁻OH の場合, H⁺ の方が酸性が強いが, NH₃ では Ag⁺ の方が酸性が強い. H⁺ と類似の性質を持つ酸をHard な酸, 逆のものを Soft な酸とした.

Lewis 塩基の Soft さの定義

MeHg⁺ (aq) + BH⁺ (aq) → MeHgB⁺ (aq) + H⁺(aq) B: 塩基

平衡定数が1より非常に大きかったら Soft,1付近あるいは小さかったら Hard

		原子の大きさ	電荷	非共有電子対	 分極率	電気陰性度	酸化され易さ
Acid	Hard Soft	小 大	高 低		低 高	高 低	
Base	Hard Soft	小 大	高 低	含まない 含む	低高	高 低	難 易

Hard な酸は Hard な塩基と結合しやすく(反応が速い), Soft な酸は Soft な塩基と結合しやすい(反応が速い). 有機化学反応のほとんどは,酸(電子受容体)と塩基(電子供与他体)の反応とみなすことができるので,酸・塩基反応を有機化学反応の求電子剤・求核剤に拡張する

クーロン項 フロンティア軌道項

C_{nuc}²: 求核剤の HOINIO の電子密度 C_{elec}²:求電子剤の LUMO の電子密度

Hard な求核剤:通常負の電荷を持っており,その HOMO のエネルギーは低い(電気陰性度が高いので). Soft な求核剤:必ずしも電荷を持っているとは限らず,HOMO のエネルギーは高い.

Hard な求電子剤:通常正の電荷を持っており,そのLUMOのエネルギーは高い. Soft な求電子剤:必ずしも正電荷を持っているとは限らず,LUMOのエネルギーは低い.

Hard 同志の反応: 大きなクーロン引力のため速い ----- *charge-controlled reaction* Soft 同志の反応: HOMO と LUMO のエネルギーが近いため相互作用が大きくなり(フロンティア項が大) 反応が早くなる.----- *orbital-controlled reaction*

軌道相互作用による安定化がない

	Lewis Aicds		Electrophile	LUMO	Nucleophile	HOMO
				E (eV)		E (eV)
	Borderline		Al ³⁺	6.01 🕴	H-	-7.37
$H^{+}, LI^{+}, Na^{+}, K^{+}$	Fe ⁻¹ , Co ⁻¹ , Ni ⁻¹	Cu^{2} , Ag^{2} , Au^{2} , Π^{2} , Hg^{2}	La ³⁺	4.51	1-	-8.31
Be , Mg , Ca , Sr , Mn	Cu ² ', Zn ² ', Pb ² '	Pb ²⁺ , Cd ²⁺ , Pt ²⁺ , Hg ²⁺	Ti ⁴⁺	4.35 _	HS-	-8.59
$AI^{3+}, Sc^{3+}, Ga^{3+}, In^{3+}, La^{3+}$	BMe_3 , SO_2	CH ₃ Hg ⁺	Be ²⁺	3.75 <u>a</u>	CN-	-8.78
$C_{0}^{3+} = C_{0}^{3+} C_{0}^{3+} C_{0}^{3+}$			Mg ³⁺	2.42	Br –	-9.22 -
si ⁴⁺ Ti ⁴⁺	$K_{3}C$, $C_{6}\Pi_{5}$	K_{0}^{+} , K_{0}^{+}	Ca ²⁺	2.33	CI –	-9.94
$Ce^{3+}Sn^{4+}$		I, BI, HO, KO	Fe ³⁺	2.22	HO –	-10.45
Me _o Sn ²⁺		auinones	Sr ²⁺	2.21	H ₂ O-	-10.73
BFa		O CL Br L N RO RO	Cr ³⁺	2.06	F -	-12.18
B(OR) ₂ , AlMe ₂ , AlCl ₂		Mo	Ba ²⁺	1.89		
AIH ₂			Ga ³⁺	1.45		
RSO^{2+} , $ROSO^{2+}$, SO_3		02	Cr ²⁺	0.91		
I ⁷⁺ , I ⁵⁺ , CI ⁷⁺ , Cr ⁶⁺ , RCO ⁺			Fe ²⁺	0.69		
CO_2 , NC^+			Li ⁺	0.49		
HX			H+	0.42		
			Ni ²⁺	0.29		
			Na ⁺	0		
	Lewis Bases		Cu ²⁺	-0.55		
Hard	Borderline	Soft	TI+	-1.88		
H ₂ O, HO ⁻ , F ⁻	PhNH ₂ , Pyridine, N ₃	R ₂ S, RSH, RS ⁻	Cd ²⁺	-2.04		
CH ₃ CO ₂ ⁻ , PO ₄ ³⁻ , SO ₄ ²⁻	Br ⁻ , NO ₂ ⁻ , SO ₃ ²⁻ , N ₂	I ⁻ , SCN ⁻ , S ₂ O ₃ ²⁻ , R ₃ P, R ₃ As	Cu ⁺	-2.30 🛫		
$CI^{-}, CO_{3}^{2^{-}}, CIO_{4}^{-}, NO_{3}^{-}$		(RO) ₃ P	Ag ⁺	-2.82 û		
ROH, RO ⁻ , R ₂ O		CN ⁻ , RNC, CO	TI ²⁺	-3.37		
NH_3 , RNH_2 , N_2H_4		C ₂ H ₄ , C ₆ H ₆	Au ⁺	-4.35		
		H ⁻ , R ⁻	Ha ²⁺	-4.64		

次の反応の反応性の順序と同一	
LUMOを-7 eV にすると ΔE の大きさ 「SH > 1 > "Br > "Cl > "OH > "F Nu HO — OH	
LUMOを-5 eV にすると ΔE の大きさ 「SH > "CN > "I > "OH > "Br > "CI > "F ⇒ Nu RCH ₂ —X"	
LUMOを +1 eV にすると∆Eの大きさ "OH > "CN > "SH > "F > "Cl > "Br > "1	
рКа	

E	E _{HOMO} (eV)
-1	-8.31
SH	-8.59
⁻ CN	-8.78
[–] Br	-9.22
[–] Cl	-9.94
⁻ OH	-10.45
F	-12.18

エノレートのアルキル化はエノレートの HOMO とアルキル化剤の LUMO で考える.

IからCF₃SO₃になるにつれてより Hard なり,脱離基に結合した炭素原子の正電荷は増大する. したがって,クーロン項がより重要になり,負電荷の大きな酸素原子で反応する比率が高まる.

アルドール反応13)

アルデヒドあるいはケトンカルボニル基に対するエノレートの付加反応 合成化学上の問題点

プロトン性溶媒中では平衡条件下の反応となり,重合体,交差アルドール体の生成,レトロアルドール反応などの 問題が生ずる.

アルドール反応の立体化学に影響を及ぼす因子

エノレートの *E/Z* geometry
 アルデヒドおよびエノレートの面選択性

ジアステレオ選択性

六員環遷移状態モデル(Zimmerman-Traxler モデル)¹⁴⁾の相対的安定性により生成物の立体化学が決まる.

1. (Z)-エノレートは主として syn (threo) 体を与える(1,3-diaxial interaction > gauche interaction)

2. R¹, R³ が立体的に嵩高いほど選択性が高い

3. R²の嵩高さが非常に大きくなると選択性は逆転する(gauche interaction > 1,3-diaxial interaction)

 R^2 , R^3 が gauche より eclipsed に近い形の遷移状態を考えると説明が可能である.

(Z)-enolate

R²-R³の相互作用は gauche の場合より小さい

R¹-R³の相互作用は staggered の場合より大きい

syn

(E)-enolate

R²-R³の相互作用は gauche の場合より大きい

R¹-R³の相互作用は staggered の場合より大きい (Z)の場合と同じ

・アルドール反応における *syn/anti* 選択性を向上させる方法 Boron Enolates

M は一般的には Li だが, もし, M-O 結合の距離が Li-O より短く L が嵩高ければ R³-R¹ に加えて, R³-L, R¹-L の 1,3-diaxial interaction がより大きくなり選択性が増大すことが期待される.

Li-O 1.92-2.00 Å Mg-O 2.01-2.03Å B-O 1.36-1.47Å

· Chiral aldehyde & achiral enolate

· Chiral enolate & achiral aldehyde

· Chiral enolate と chiral aldehyde

重複不斉合成 (matched pari, mismatched pair)

・不斉誘導

Mukaiyama (1982)¹⁵⁾

Corey (1989)¹⁶⁾

・不斉触媒

Evans (1997)¹⁸⁾

Evans (1998)¹⁹⁾

25:75

Ph

Ph

不可逆的還元反応

© 武田 敬, 2002

Baldwin's Rule²⁴⁾

求核剤の求核攻撃における立体電子的要請

カルボニル基に対する求核剤の攻撃角度

```
アルキンへの求核攻撃
```

Nu 109 °

SN2 反応

Bürgi-Dunitz trajectory

Baldwin (1970)

環化の起こりやすさに関する一般則 環化反応の起こり易さは閉環部での軌道相互作用の容易さに影響を受ける. Baldwin は上記の立体電子的要請を考慮して次のような一般則を提案した.

- 1. Tetrahedral
 - ・3-Exo~7-Exo は環化しやすい
 - ・5-Endo~6-Endoは環化しにくい
- 2. Trigonal
 - ・3-Exo~7-Exo は環化しやすい
 - ・3-Endo~5-Endoは環化しにくい
 - ・6-Endo, 7-Endoは環化しやすい
- 2. Digonal
 - ・3-Exo, 4-Exo は環化しにくい
 - ・5-Exo~7-Exoは環化しやすい
 - ・3-Endo~7-Endoは環化しやすい

環化しやすい反応例

Х

3-Exo-Tet

5-Exo-Tet

3-Exo-Dig

5-Exo-Trig

ig

6-Endo-Dig

環化しにくい反応例

6-Endo-Tet

炭素-炭素二重結合の形成

- •Wittig 反応²⁵⁾
- Horner-Wadsworth-Emmons 反応²⁶⁾
- Peterson 反応27)
- Julia オレフィン合成²⁸⁾
- **Tebbe** 反応²⁹⁾

I 不安定イリド (nonstabilized ylide)

Ph₃P - CH - alkyl 酸素や水に対して不安定なので *in situ* でイリドを発生させる(base:*n*-BuLi, LDA 等の強塩基)

II 安定イリド (stabilized ylide)

 $\mathbf{Ph_3P} \stackrel{-}{\to} \mathbf{CH} = \mathbf{EWG}$ EWG (Electron Withdrawing Group) : CO_2R ; C=O; CN; SO₂R

ホスホニウム塩に水酸化アルカリを作用させて調製する;安定な結晶として保存が可能

 ${\bf III}$ semistabilized ylide

+ _ Ph₃P-CH-allyl (benzyl) 中間の安定性を持つ

• Wittig 反応の立体化学

Stabilized ylide	<i>E</i> 体が優先
Unstabilized ylide	<i>乙</i> 体が優先
Semistabilized vlide	中間の選択性

Mechanism (1)

Betaine 中間体機構

```
(1) イリドの求核付加によるベタインの生成(2) ベタインの 1,2-oxaphosphetane を経由する不可逆分解
```


Mechanism $(2)^{30}$

Wittig 反応はほとんどが速度論支配の反応であり,(E),(Z)の選択性は oxaphosphetane 中間体への遷移状態における立体因子によって 統一的に説明される.

• Unstabilized ylide

求核性が強いので reactant-like な 4 中心遷移状態となり,リン原子は sp³(正四面体)に近いリン原子上のフェニル基とアルデヒドの \mathbf{R} ,およびアルキルどうし(\mathbf{R} , \mathbf{R}')の立体反発が最小となる遷移状態 A (puckered)をとり, cis-oxaphosphetane に至る

· Stabilized ylide

product-like な遷移状態 B (リン原子の混成が sp³d に近く,平面)が有利となる

二置換オレフィンの選択的合成 Z-オレフィンの合成 ・アルデヒド + 不安定イリド + 無極性溶媒³¹⁾ Yield (%) Salt cis : trans ← PhCH=CHCH₃ Ph₃P=CHCH₃ + PhCHO None 98 87 : 13 Li 塩が存在すると中間体の安定化-平衡により,選択性が下がるので LiCl 70 81 : 19 phosphorane を生成する際に,無極性溶媒中塩 NaN(SiMe₃)₂, KN(SiMe₃)₂のような塩基を使用する.Na, K 塩は無極性溶媒に不 LiBr 68 61 : 39 溶なので,実質的に"salt free" condition になる. LiI 76 58 : 42 LiBPh₄ 63 50 : 50 ·アルデヒド + 安定イリド + プロトン性溶媒³²⁾ R₃F \cap н R Ph₃P=CHCO₂Me + MeCHO → MeCH=CHCO₂Me Z(cis)体 solvent yield cis : trans RH R R 0 solvent CH_2CI_2 88 6:94 + R₃P R₃P DMF 98 3:97 R' 0 38:62 MeOH 96 E (cis)体 R solvent Rн HR 0 Eオレフィンの合成 ・アルデヒド + 安定イリド + 無極性溶媒 Schlosser 法³³⁾ ・ アルデヒド + 不安定イリド 無極性溶媒 + 有機リチウム試薬 + n-C₅H₁₁ 1 Phli n-C5H11CHO PhLi Ph₃P=CHCH₃ Ph₃PCH₂CH₃ тне OI i THF, -78 °C CH₃ THF. -30 °C Н + PPh₃ n-C_EH₁₁ n-C5H11 HCI gas н C₅H₁₁-n CH₃ C₅H₁₁-n t-BuOK OLi OH CH₃ CH₃ Et₂O t-BuOH н н +PPh₃ ⁺PPh₃ 69% 1% Horner-Wadsworth-Emmons (HWE) 反応 \cap 1. base BrCH₂CO₂R'. Δ (RO)₃P -CH₂CO₂R" (RO)₂P R"CH=CHCO₂R (RO)₂P - 0 2. R"CHO RBr 特長 ・Wittig 反応では副生する Ph₃P=O の除去がやっかいであるが, HWE 反応では水溶性のリン酸塩となるので分離が容易. ・反応剤の求核性が高いのでホスホランに不活性なケトンとも反応する. ・オレフィンの立体化学を制御しやすい.E選択性が高い場合が多い. ・エノール化しやすいカルボニル化合物や,塩基性条件に不安定な基質には使用できない. ・ 位に EWDG を持たない基質の場合反応が進行しにくい (phosphonate の 2 量化;付加体の段階で停止). 分子間 HWE 反応 E/Z ³⁴⁾ CO₂R \cap (MeO)₂P CH₂CO₂Me (t-BuOK, THF, -78 °C) 4.3:1

(t-BuOK, THF, -78 °C)

(K₂CO₃ - H₂O, 0 °C)

CH₃ CO₂Me

120:1

32:1

(Z/E = 95:5)

35)

Ph² CH₃ CH₃ $(i^{i}PrO)_2P - CHCO_2Pr^{i}$ CH_3 (E/Z = 95:5)Ph² CH₃ (E/Z = 95:5)

(^IPrO)₂P

CH₃

0 || (EtO)₂P

(EtO)₂P

0

CH₂CO₂Et

-CH₂CO₂Et

CH₃

CHCO₂Me

電子吸引基を持たない α-silyl carbanion

対金属イオンが Li, MgX, AIX₂のような共有結合性の高い金属の場合, β -hydroxysilane が単離される. β -hydroxysilane の syn (base) 脱離及び anti (acid) 脱離を使い分けることにより E, Zのオレフィンの合成が可能

β-Hydroxysilaneのジアステレオ選択的合成

Peterson 反応の Wittig 反応に対する利点

- ・副生成物が Me₃SiOSiMe₃ (bp 190 °C) Wittig の場合 (Ph₃P=O, 結晶)
- ・立体化学的に純粋なオレフィンが得られる(電子吸引基を持たない silane の場合; β -hydroxysilane の diastereomer の分離 ・安定イリドと比較すると反応が速い(数分以内)
- ・エノール化しやすい基質でも可

・**Julia** オレフィン合成

・高い E 選択性を示し、 E/Z 比は一般に中間体 (acyloxysulfone)の立体化学に依存しない.

・生成する二重結合が共役する場合や、アルキル置換基(R, R')のα位が分岐しているほうが高い E 選択性を示す.

Tebbe 反応

Wittig, HWE, Peterson, Julia 反応ではエステルやアミドのカルボニルをメチレンにすることはできないが, Tebbe 反応では可能である.

ペリ環状反応39)

環状遷移状態を経由し中間体を含まない協奏的過程で,代表的なものは以下の3つである.

- 1. 電子環状反応 (Electrocyclic Reaction)
- 2 . 付加環化反応 (Cycloaddition Reaction) 3 . シグマトロピー転位 (Sigmatropic Rearmagement)

1. 電子環状反応 (Electrocyclic Reaction)

共役 電子系の両端で 結合を形成して閉環する反応,あるいはその逆反応

上記の反応には一般性があり,さらに熱と光で立体化学が異なることが明らかになった.

立体過程の説明(1,3-butadieneから cyclobuteneの生成を考える)

Woodward-Hoffmann 則(1965年) 二つの 結合の切断 一つの 結合と一つの 結合が生成 四つの 分子軌道が二つの 分子軌道と二つの 分子軌道になる HOMO

熱反応においては HOMO が立体過程を制御する. (最も高いエネルギーを持っていて離れやすいため,反応に最も重要である). butadiene のHOMO で結合ができるためには末端の p 軌道が回転しなけれ ばならない.回転する方向は二通りで,それぞれ二種類ある.

2. 付加環化反応 (Cycloaddition Reaction)

[4 + 2] cycloaddition

Diels-Alder 反応⁴⁰⁾

[2+2] cycloaddition $\|$

付加環化反応において考慮すべき軌道相互作用は HOMO と LUMO で, 二つの組み合わせがある

ethyleneの二量化は熱では起こらないが,光を照射すると進行する

熱

光

suprafacial & antarafacial

 $[\pi 2s + \pi 2s]$

結合の同じ側で結合ができる時 suprafacial といい,逆側で結合ができる時 antarafacial と呼ぶ. 反応に関わる電子の種類 (,),数と組み合わせて [π4s + π2s], [π2s + π2s] などと言う.

[π2s + π2a]

Diels-Alder 反応の立体化学

1.シス付加

diene および dienophile の geometry は保持される(協奏的な結合の形成).

2. Alder 則 (エンド則)

熱力学的にはエキソ付加体の方が安定だが,二次的軌道相互作用によりエンド遷移状態が安定となる. 平衡が存在する場合はエキソ体の割合が増加する.

© 武田 敬, 2002

3.配向性

フロンティア軌道から予測される配向選択性

2次的軌道相互作用 ~~~

(X = 電子供与基, Z = 電子吸引基)

 CH_3

(0

37 : 63 (EtAlCl₂, 59%)

29

- 4. Lewis 酸の効果
 - ・dienophileの LUMO のエネルギーの低下により反応速度の増大
 - ・dienophileのLUMOの軌道係数の増大により,位置選択性の増大

CH(CH₃)₂

・dienophileのLUMOの置換基部分の軌道係数が変化することにより,二次的軌道相互作用が増大.結果的にエンド付加体の生成比が増加

100 : 0 (EtAlCl₂, 70%)

 $R = (CH_2)_3OCH_2Ph$

 R_1

R. 8	\sim
	/
⊢ Ĥ	Ξ
X	ЭBn
•	

Si(C Si(C

Х	conditions	А	:	В	:	С	(yield)
(CH ₃) ₃	160 °C	79	:	9	:	12	(82%)
(CH ₃) ₃	Et ₂ AICI (-15°C)	89	:	5	:	6	(77%)
Br	160 °C	75	:	3	:	22	(64%)
Br	EtAICI ₂ (-15 °C)	90	:	1	:	9	(24%)

R

44)

ŌR₂

 OR_2

Ì

Х H

 $\mathsf{Type}\:\mathsf{II}^{46)}$

不斉 Diels-Alder 反応⁴⁷⁾

- 1. chiral dienophile
- 2. chiral diene
- 3. chiral Lewis acid catalyst

chiral dienophile⁴⁸⁾

R *	MX _n (1.5 eq)	Solvent	°C (h)	yield (%)	endo (%)	de (%)
Α	TiCl ₄	CH ₂ Cl ₂	-20 (3.5)	83	89	90
Α	SnCl4	PhCH ₃	0 (35)	95	84	89
В	TiCl ₂ (OPr ⁱ) ₂	CH ₂ Cl ₂	-20 (4)	94	96	99.3
С	TiCl ₂ (OPri) ₂	CH ₂ Cl ₂	-20 (4)	97	96	93

R	(S, S)	time	yield	ee (%)	endo/exo
Н	10 mol%	10 min	92	91	>50:1
Me	20 mol%	16 h	88	94	96:4

シグマトロピー転位反応 (Sigmatropic rearrangement)

実際の反応例

炭素のシグマトロピー転位

 $[\sigma 2a + \pi 2s]$ suprafacial inversion (si)

[*i*, *j*]シグマトロピー反応

Cope 転位

もしこの反応がラジカル機構で進行するなら

イス型遷移状態を経由する

イス型遷移状態を経由することの証明

Doering and Roth (1962)⁵⁴⁾

K. J. Shea (1980)⁵⁵⁾

dlからも meso からも同一の成績体が生成するが,立体的な制約からdl体の場合は chair 型, meso 体の場合 boat 型を経由しなければならない.したがって,二つの異性体間の速度の違いは chair 型遷移状態とboat 型遷移状態のエネルギー差に相当する. dl体は, meso 体より 18000 倍早く転位がおきる.

Oxy-Cope Rearangement

Berson and Jones (1964)⁵⁶⁾

Oxy-Cope 転位の利点

1. 基質の合成が容易である(Grignard 反応).

2. 不可逆反応である.

3. 生成物はカルボニル基とオレフィンの二つの官能基を持っており, 官能基変換が容易である.

Oxyanion-accelerated Cope Rearrangements

D.A.Evans (1975)⁵⁷⁾

 $t_{1/2} = 1.4$ min (rate enhancement of 10^{17})

Oxyanion が反応を加速する理由

Evans⁵⁸⁾

oxyanion が隣接した炭素-炭素結合を弱める. 結合解離エネルギーおよび *ab initio* 計算

Carpenter's Model⁵⁹⁾

pericyclic reaction の反応速度に対する置換基の効果

置換基の軌道と炭素骨格の軌道との conjugation の度合は原系から遷移状態に進むに連れて変化する.pericyclic reaction の遷移状態は完全に共役した軌道を含むので,原系より遷移状態の方が非局在化の割合は大きい(特に置換基が原系におい て sp³炭素に結合している場合,大きいと予想される).この非局在化の程度の違いを置換基の効果と考え,置換基の種 類および位置の違いによる原系と遷移状態のエネルギーの差を求める.遷移状態としては環状の共役炭化水素をモデルとし て使う(ex. Cope 転位には benzene). ・二つの軌道が相互作用すると,同位相で結合した軌道と逆位相で結合した軌道の二つができる.

- ・同位相の軌道(結合性軌道)のエネルギーは低く,逆位相の軌道(反結合成軌道)のエネルギーは高い.
- ・二つの軌道が相互作用するとき,1)エネルギー差が小さければ小さいほど,2)重なりが大きければ大きいほど,相互作用は強くなる(安定化,不安定化の度合いが大きくなる).
- ・エネルギーの異なる軌道が相互作用した場合,同位相の軌道はもとの軌道のうち低いほうの軌道よりエネルギーが低く,逆位相の軌道はもとの高いほうの軌道よりエネルギーが高い.同位相の軌道は低いほうの 軌道を主成分に持ち,逆位相の軌道は高いほうの軌道を主成分とする.

HOMO-LUMO Interaction

HOMO-HOMO Interaction

安定化エネルギー = $2 \times \Delta E - 2 \times \Delta E^* < 0$

軌道の相関

軌道対称性の保存

S-3

エチレンの分子軌道と軌道係数

結合はエネルギーが低いので 結合を考える

 $\Phi=c_1\phi_1+c_2\phi_2$ c1 = c2 = 0.71 $c_1^2 + c_2^2 = 1$

ブタジエンの分子軌道

カルボニル基の分子軌道

- 1. 野依良治,柴崎正勝,鈴木啓介,玉尾皓平,中筋一弘,奈良坂紘一編,大学院講義有機化学(I, II), 1999年,東京化学同人.
- 2. Boger, D. L. Modern Organic Synthesis: Lecture Notes, 1999, TSRI Press, La Jolla, CA.
- 3. 吉井英一,武田 敬,炭素-炭素結合の生成,*続医薬品の開発*(廣川書店)矢島治明,古賀憲司編,第 12巻,1-126,1992.
- 4. Smith, M B.;. March, M. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th Ed., 2001, John Wiley, New York.
- 5. Smith, M B. Organic Synthesis, 2nd Ed., McGraw-Hill, New York.

文献

1. a) Heathcock, C. H. In *Modern Synthetic Methods 1992*; Scheffold, R. Ed.; VHCA: Basel, 1992; pp1-102.

b) Mekelburger, H. B.; Wilcox, C. S. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, pp 99-131.

c) Evans, D. A. In *Asymmetric Synthesis*, Morrison, J.D., Ed., Vol. 3, Part B, pp. 1-110, 1984, Academic Press, New York.

d) Hajos, Z. G. In *Carbon-Carbon Bond Formation*, Augustine, R.L., Ed. Vol. 1, pp 1-84, 1979, Marcel Deller, Inc., New York.

- a) Hamell, M.; Levine, R. J. Org. Chem. 1950, 15, 162.
 b) Levine, R. Chem. Rev. 1954, 54, 467.
- 3. Rathke, M. W.; Kow, R. J. Am. Chem. Soc. 1972, 94, 6854.
- 4. d'Angelo, J. Tetrahedron 32, 2979-2990 (1976)
- 5. a) Ireland, R. E.; Mueller, R. H.; Willard, A. K. *J. Am. Chem. Soc.* 1976, *98*, 2868-2877.
 b) Ireland, R. E.; Wipf, P.; Armstrong, J. D., III *J. Org. Chem.* 1991, *56*, 650-657.
- 6. Conia Bull. Chem. Soc. Fr. 1966, 3881 and 3886.
- 7. Seebach, D.; Wasmuth, D. Angew. Chem. Int. Ed. Eng. 1981, 20, 971.
- 8. a) Fraser, R. R.; Akiyama, F.; Banville, J. *Tetrahedron Lett.* 1979, 20, 3929.
 b) Hashimoto, S.; Koga, K. *Tetrahedron Lett.* 1978, 573-576.
 c) Enders, D. In *Asymmetric Synthesis*, Morrison, J.D., Ed. Vol. 3, Part B, pp 275-339, 1984, Academic Press, New York.

d) Enders, D.; Kipphardt; H.; Fey, P. Org. Synth. 1987, 65, 183-201.

e) Davenport, K. G.; Eichenauer, H.; Enders, D.; Newcomb, M.; Bergbreiter, D. E. J. Am. Chem. Soc. 1979, 101, 5654-5659.

- 9. a) Evans, D. A.; Takacs, J.M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, *J. Pure & Appl. Chem.* **1981**, *53*, 1109-1127.
 - b) Evans, D. A. Aldrichim. Acta 1982, 15, 23-32.
 - c) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737-1739.
 - d) Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141-6144.
- 10. Corey, E. J.; Noe, M. C.; Xu, F. Tetrahedron Lett. 1988, 39, 5347-5350.
- 11. Ho, T. Hard and Soft Acids and Bases Principle in Organic Chemistry, 1977, Academic Press, New York.

- 12. Sarthou, P.; Guibé, F.; Bram, G. Chem. Commun. 1974, 377.
- a) Heathcock, C. H. In *Asymmetric Synthesis, Morrison*, J. D. Ed., Vol. 3, Part B, pp 111-212, 1984, Academic Press, New York.
 b) Heathcock, C. H. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds., Pergamon: Oxford, 1991; Vol. 2, pp 181-238.
 c) Heathcock, C. H. In *Modern Synthetic Methods*, 1992; Scheffold, R. Ed., VHCA, Basel, 1992, pp1-102.
 d) Cowden, C. J.; Paterson, I. *Org. React.* 1997, *51*, 1-200.
- 14. Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920-1923.
- 15. a) Iwasawa, N.; Mukaiyama, T. *Chem. Lett.* **1982**, 1441-1444.
 b) Iwasawa, N.; Mukaiyama, T. *Chem. Lett.* **1983**, 297-298.
- 16. a) Corey, E. J. J. Am. Chem. Soc. 1989, 111, 5493-5494.
 b) Corey, E. J. J. Am. Chem. Soc. 1990, 112, 4976-4977.
- 17. Carreira, E. M.; Singer, R. A.; Lee, W. J. Am. Chem. Soc. 1994, 116, 8837-8838.
- Evans, D. A.; Kozlowski, M. C.; Burgey, C. S.; MacMillan, D. W. C. J. Am. Chem. Soc. 1997, 119, 7893-7894.
- 19. Evans, D. A.; MacMillan, D. W. C. Campos, K. R. J. Am. Chem. Soc. 1997, 119, 10859-10860.
- 20. Brown, H. C. J. Am. Chem. Soc. 1970, 92, 709; 1972, 94, 7159; 1976, 98, 3383.
- 21 Cram, D. J. J. Am. Chem. Soc. 1952, 74, 2152.
- a) Chérest, M.; Felkin, H.; Prudent, N. *Tetrahedron Lett.* 1968, 2199-2204
 b) Chérest, M.; Felkin, H. *Tetrahedron Lett.* 1968, 2205-2208.
 c) Anh, N. T.; Eisenstein, O. *Tetrahedron Lett.* 1976, 155-158
 d) Huet, J.; Maroni-Barnaud, Y.; Anh, N. T.; Seyden-Penne, J. *Tetrahedron Lett.* 1976,159-162.
- 23. Reetz, M. T. Acc. Chem. Res. 1993, 26, 462-468.
- 24. a) Johnson, C. D. Acc. Chem. Res. 1993, 26, 476-482.
 b) Baldwin, J. E. J. Chem. Soc. Chem. Commun. 1976, 734, 738.
 c) Baldwin, J. E.; Cuttin, J.; Dupont, W.; Kuruse, L.; Silberman, L.; Thomas, R. C. J. Chem. Soc. Chem. Commun. 1976, 736.
- 25. a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863-927.
 - b) Maercker, A. Org. React. 1965, 14, 270-490.
 - c) Emsley, J.; Hall, D. *The Chemistry of Phosphorus*, pp 279-290, 1976, Harper & Row, Publishers, London.

d) House, H. O. *Modern Synthetic Reactions*, 2nd Ed., pp 682-709, 1972, W.A. Benjamin, Inc. Menlo Park.

e) Carruthers, W. *Some Modern Methods of Organic Synthesis*, 3rd Ed. pp 125-144, 1985, Cambridge University Press, London.

- a) Kelly, S. E. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 1, pp 729-817.
 - b) Wadsworth Jr., W. S. Org. React. 1977, 25, 73-253.
- 27. Ager, D. J. Org. React. 1990, 38, 1-223.
- 28. a) Julia, M.; Paris, J-M. *Tetrahedron Lett.* 1973, 4833-4836.
 b) Kochienski, P. J.; Lythgoe, S.; Ruston, S. *J. Chem. Soc. Perkin 1* 1978, 829-834.
 c) Kochienski, P. J.; Lythgoe, B. *J. Chem. Soc. Perkin 1* 1980, 1045-1050.

d) Kochienski, P. J.; Lythgoe, B. J. Chem. Soc. Perkin 1 1980, 1400-1404.

- 29. Pine, S. H. Org. React. 1993, 43, 1-91.
- 30. a) Vedejs, E.; Snoble, K. A. J. J. Am. Chem. Soc. 1973, 95, 5778-5780.
 - b) Vedejs, E.; Meier, G. P.; Snoble, K.A.J. *ibid.* **1981**, *103*, 2823-2831.
 - c) Vedejs, E.; Marth, C. E.; Ruggeri, R. *ibid.* **1988**, 110, 3940-3948.
 - d) Vedejs, E.; Marth, C. F. *ibid.* 1988, 110, 3948-3958.
 - e) Vedejs, E.; Marth, C. F. *ibid.* **1989**, *111*, 1519-1520.
 - f) Vedejs, E.; Freck, T. J. *ibid.* **1989**, *111*, 5861-5871.
- 31. a) Bestmann, H. J.; Stransky, W. K.; Vostrowsky, O. *Chem. Ber.* 1976, *109*, 1694-1700.
 b) Leblanc, Y.; Fitzsimmons, B. J.; Adams, J.; Perez, F.; Rokach, J. J. Org. Chem. 1986, *51*, 789-793.
- 32. Vedejs, E.; Marth, C. Tetrahedron Lett. 1987, 28, 3445-3448.
- 33. a) Schlosser, M.; Christmann, K.F. *Angew. Chem. Int. Ed. Engl.* 1966, *5*, 126.
 b) Schlosser, M., Mueller, G.; Christmann, *ibid.* 1966, 667-668.
- 34. a) Minami, N.; Ko, S. S.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 1109-1111.
 b) 高野誠一,小笠原国郎 有合化 1987, 45, 1157-1170.
- 35. Nagaoka, H.; Kishi, Y. Tetrahedron 1981, 37, 3873-3888.
- 36. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405-4408.
- a) Nicolaou, K. C.; Chakraborty, T. K.; Ogawa, Y.; Daines, R. A.; Simpkins, N. S.; Furst, G. T. *J. Am. Chem. Soc.* **1988**, *110*, 4660-4672.
 - b) Nicolaou, K. C.; Daines, K.A.; Uenishi, J.; Li, W.S.; Papahatjis, D.P.; Chakraborty, T. K. J. *Am. Chem. Soc.* **1988**, *110*, 4672-4685 (1988)
 - c) Nicolaou, K. C.; Daines, R. A.; Chakraborty, T. K.; Ogawa, Y. J. Am. Chem. Soc. **1988**, 110, 4685-4696.
 - d) Nicolaou, K. C.; Daines, R. A.; Ogawa, Y.; Chakraborty, T. K. J. Am. Chem. Soc. **1988**, 110, 4696-4705.
- 38. a) Brook, M. A. *Silicon in Organic, Organometallic, and Polymer Chemistry, John Wiley & Sons, Inc. 2000.*
 - b) *The Chemistry of Organic Silicon Compounds*, Patai, S., Rappoport, Z. Eds, John Wiley & Sons, 1989, Part 1, Part 2.
 - c) Weber, W. P. Silicon Reagents for Organic Synthesis, Springer-Verlag, New York, 1983.
 - d) Colvin, E. W., Silicon in Organic Synthesis, Butterworths, London, 1981.
 - e) Thomas, S. E. Organic Synthesis: The Roles of Boron and Silicon, Oxford Press, Oxford, 1991.
- 39. a) Woodward, R. B.; Hoffmann, R. 伊藤, 遠藤訳, 軌道対称性の保存, 1971, 廣川書店.
 - b) 井本 稔, ウッドワード・ホフマン則を使うために, 1978, 化学同人.
 - c) 山辺信一,稲垣都士,プログラム学習 入門フロンティア軌道論,1989,講談社サイエンティフィク.
- 40. a) Oppolzer, W. In *Comprehensive Organic Synthesis*; Trost, B. M., Freming, I. Eds.; Pergamon: Oxford, 1991; Vol. 5, pp 315-399.
 - b) Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon: Oxford, 1990.
 - c) Fringuelli, F.; Taticchi, A. *Dienes in the Diels-Alder Reaction*; 1990, John Wiley & Sons, Inc., New York.

d) Sauer, J.; Sustmann, R. Angew. Chem. Int. Ed. Engl. 1980, 19, 779-806.

- e) Fleming, I. Frontier Orbitals and Organic Chemical Reactions, 1976, John Wiley, Lodon.
- 41 a) Ciganek, E. *Org. React.* 1984, *32*, 1-374.
 b) Thomas, E. J. *Acc. Chem. Res.* 1991, *24*, 229-235.
 c) Weinreb, S. M. *Acc. Chem. Res.* 1985, *18*, 16.
- 42. Roush, W. R.; Gillis, H. R.; Ko, A. I. J. Am. Chem. Soc. 1982, 104, 2269-2283.
- 43. a) Roush, W. R.; Hall, S. E. J. Am. Chem. Soc. 1981, 103, 5200-5211.
 b) Roush, W. R.; Gillis, H. R. J. Org. Chem. 1982, 47, 4825-4829.
- 44. a) Boeckman Jr.; R. K.; Barta, T. E. J. Org. Chem. 1985, 50, 3421-3423.
 b) Roush, W. R.; Riva, R. J. Org. Chem. 1988, 53, 710-712.
- 45. Batey, R. A.; Thadani, A. N.; Lough, A. J. J. Am. Chem. Soc. 1999, 121, 450-451.
- 46. a) Shea, K. J.; Wise, S.; Burke, L. D.; Davis, P. D.; Gilman, J. W.; Greeley, A. C. *J. Am. Chem. Soc.* 1982, *104*, 5708-5715.
 b) Shea, K. J.; Friscella, W. M.; Carr, R. C.; Burke, L. D.; Cooper, D. K.. *J. Am. Chem. Soc.* 1987, *109*, 447-452.
- 47. a) Paquette, L. A. In *Asymmetric Synthesis*", Ed. by Morrison, J. D., 1984, Chap. 7, Academic Press, San Diego.
 - b) Oppolzer Angew. Chem. Int. Ed. Engl. 1984, 23, 876.
- 48. a) Oppolzer, W.; Kurth, M.; Reichlin, D.; Moffatt, F. *Tetrahedron Lett.* 1981, 22, 2545-2548.
 b) Oppolzer, W.; Chapuis, C.; Dao, G. M.; Reichlin, D.; Godel, T. *Tetrahedron Lett.* 1982, 23, 4781-4784.
 - c) Oppolzer, W.; Chapuis, C.; Bernardinelli, G. Tetrahedron Lett. 1984, 25, 5885-5888.
 - d) Oppolzer, W.; Chapuis, C.; Kelly, M. J. Helvetica Chim. Acta 1983, 66, 2358-2361.
- 49. Trost, B. M. O'Krongly, D.; Iletire, J. L. J. Am. Chem. Soc. 1980, 102, 7595-7596.
- 50. Masamune, S.; Reed, L. A. III; Davis, J. T.; Choy, W. J. Org. Chem. 1983, 48, 4441-4444.
- 51. a) Koga, K. J. Chem. Soc. Chem. Commun. 1979, 437.
 b) Takemura, H.; Komeshima, N.; Takahashi, I.; Hashimoto, S.; Ikota, N.; Tomioka, K.; Koga, K. Tetrahedron Lett. 1987, 28, 5687-5690.
- 52. Furura, K.; Shimizu, S.; Miwa, Y.; Yamamoto, H. J. Org. Chem. 1989, 54, 1481-1483.
- 53. Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, Y. B. J. Am. Chem. Soc. 1980, 111, 5493-5495.
- 54. von E. Doering, W.; Roth, W. R. Tetrahedron 1962, 18, 67-74.
- 55. Shea, K. J.; Phillips, R. B. J. Am. Chem. Soc. 1980, 102, 3156-3162.
- 56. Berson, J. A.; Jones, Jr., M. J. Am. Chem. Soc. 1964, 86, 5019.
- 57. Evans, D. A.; Golob, A. M. J. Am. Chem. Soc. 1975, 97, 4765-4766.
- 58. a) Evans, D. A.; Baillargeon, D. J. *Tetrahedron Lett.* 1978, 3319-3322.
 b) Ahlgren, G. *Tetrahedron Lett.* 1979, 915-918.
 c) Steigerwald, M. L.; Goddard, III, W. A.; Evans, D. A. *J. Am. Chem. Soc.* 1979, *101*, 1994-
 - 1997. d) M. D. Rozeboom, J. P. Kiplinger, and J. E. Bartmess, J. Am. Chem. Soc. **1984**, 106, 1025-
 - 1029.
- 59. Carpenter, B. K. Tetrahedron 1978, 34, 1877-1884.