

[2 + 2 + 1] 2 atoms + 2 atoms + 2 atoms

[3+2] Annulation

[I] Allylic Anion Synthons

[II] Homoallylic Anion and Radical Synthons

A. Homoallylic Anion

R.A.Bunce⁴⁾

B. Vinylcyclopropane Precursor

C. Methylenecyclopropane Precursor

D.A. Singleton⁶⁾

[III] Dimethylenmethane Synthons

A. Allylic precursors

B. Allenylic precursor

C. Cyclopropyl precursor

R. Noyori¹²⁾

[V] Trimethylenemethane Synthons

A. Bifunctional Conjunctive Reagents

B.M. Trost¹³⁾

B. Methylenecyclopropane

C. Methylenecyclopropanone

endo transition state

D. 1,3-Diyl Trapping

R.D. Little¹⁶⁾

R ₁	R ₂	cis, anti ː cis, syn	yield
CO ₂ Me	н	87 : 13	>85%
н	CO ₂ Me	75 : 25	87%

[VI] Atom Transfer Cycloadditions

[VII] Brook Rearrangement Mediated Cycloadditions¹⁸⁾

[VII] Brook Rearrangement Mediated Cycloadditions

[VIII] Vinylcarbene

Boger らの当初の研究目的

cyclopropenone ketal のDiels-Alder 反応 (Inverse electron demand)を用いて cycloheptatriene 骨格を構築す

Dual participation of cyclopropene in normal and inverse electron demand Diels-Alder reactions, AM1 results

strained ring (e.g. cyclopropenone) に二重結合を導入すると , ethylene に較べて E_{LUMO}が下がり , E_{HOMO}が上がる .

Reaction Mechanism

Establishment of a Reactive Intermediate in the [1 + 2], [3 + 2], and [3 + 4] cycloaddition reactions

1.反応性中間体の存在.

2.反応性中間体が生成するためには加熱(~80℃)が必要.

3.反応性中間体の生成は可逆的で非常に速く(15分以内),電子吸引性オレフィンとの反応が律速段階

Reactive Intermediate が -Delocalized Singlet Vinylcarbene であると考える根拠

- 1.電子吸引性オレフィンやジエンとのみ求核的カルベンとしての性質を示す(singlet carbene に特長的).
- 2. singlet carbene に特有な酸性の O-H, C-H 結合への挿入反応がおきる.
- 3.1,1-dimethoxyethylene, dihydropyran のような triplet carbene の捕捉剤とは反応しない.
 4. free radical 捕捉剤や free radical 開始剤の影響を受けない.
- 5. 求電子性の基質との反応は cycloaddition だけで,他の転位や付加脱離反応は受けない.
- 6.溶媒の違いによる反応速度の変化は少ない.

π-Delocalized singlet carbene を含む四種の可能性のあるメカニズム

1. direct [π 2s + π 2a] cycloaddition

2. stepwise addition-cyclization

н

3. [ω 2s + π 2s] cycloaddition + vinycyclopropane rearrangement

4. single-electron transfer + radical anion/radical cation combination

1.溶媒の極性の違いにより大きな反応速度の変化は観察されない.

relative rate : DMF (2) > CH₃CN (1.4) > C₆H₆ (1) > C₅H₅N (0.9) > C₆H₅NO₂ (0.7)

zwiterion 中間体を経由する step-wise 機構(2)は否定

2.cyclopropane 中間体を経由する機構(3)は次の実験事実から否定される.

cyclopropane 中間体を単離あるいは検出することはできなかった. 一つの電子吸引基しか持たないオレフィンとの反応により生成した三員環を,五員環が生成する温度(70-80°C)以上に 加熱(120-200°C)しても,五員環への転位は起きなかった.

X = OMe, NMe_2 ともに A タイプの成績体を与えたことから , cyclopropane 中間体の存在は除外される .

オレフィンの geometry は完全には保持されず,この傾向は極性の低い溶媒で大きい(PhH > MeCN). TEMPO(ラジカル捕捉剤)により阻害されない. このことから,

1) stepwise, biradical addition-cyclization, 2) zwitterion 中間体あるいは radical cation-radical anion combinat

3) concerted [2s + 2a] は除外される.

しかし, Huisgen らが 1,3-dipolar cycloaddition が two-step addition-cyclization である事を証明するのに用いた 次の例では完全に geometry が保持された.

References

- 1. (a) Ramaiah, M. Synthesis 1984, 529-570.
 - (b) Comprehensive Organic Synthesis; Trost, B.M., Freming, I., Eds.; Pergamon: Oxford, 1991; Vol. 5, pp 239-270.
 - (c) Organic Synthesis Highlight, Mulzer, J., Altenbach, H-J., Braun, M., Krohn, K., Reissig, H.-U., VCH Verlagsgesellshaft: Weinheim, 1991; pp 96-104.
 - (d) Ho, T.-L. Carbocycle Construction in Terpene Synthesis, VCH Publishers, Inc., New York, 1988.
 - (e) 小野光則 有機合成化学協会誌 39,872-892 (1981).
 - (f) 吉井英一, 武田 敬 有機合成化学協会誌 41, 348-358 (1983).
- 2. (a) Stork, G., Jung, M.E. J. Am. Chem. Soc. 1974, 96, 3682.
 - (b) Piers, E., Abeysekera, Scheffer, J.R. Tetrahedron Lett. 1979, 3279.
 - (c) Welch, S.C., Assercq, J.-M., Loh, J.-P., Glase. S.A. J. Org. Chem. 1987, 52, 1440-1450.
 - (d) Altenbach, H.-J. Angew. Chem. Int. Ed. Engl. 1979, 18, 940.
 - (e) Yoshikoshi, A., Miyashita, M. Acc. Chem. Res. 1985, 18, 284.
 - (f) Hosomi, A., Shirahata, A., Araki, Y., Sakurai, H. J. Org. Chem. 1981, 46, 4631.
 - (g) Trost, B.M., Curran, D.P. J. Am. Chem. Soc. 1980, 102, 5699.
- 3. Beak, P., Burg, D.A. J. Org. Chem. 1989, 54, 1647-1654.
- 4. Bunce, R.A., Wamsley, E.J., Pierce, J.D., Shellhammer, Jr, A.J., Drumright, R.E. *J. Org. Chem.* **1987**, *52*, 464-466.
- 5. Feldman, K.S., Romanelli, A.L., Ruckle, Jr, R.E., Miller, R.F. J. Am. Chem. Soc. **1988**, 110, 3300-3302.
- 6. Singleton, D.A., Church, K.M. J. Org. Chem. 1990, 55, 4780-4782.
- 7. (a) Rosenblum, M.J. Organomet. Chem. 1986, 300, 191.
 - (b) Rosenblum, M., Acc. Chem. Res, **1974**, 7, 122.
 - (c) Cutler, A., Ehntholt, D., Giering, W. P., Lennon, P., Raghu, S., Rosan, A., Rosenblum, M., Tancrede, J., Wells, D. J. Am. Chem. Soc. 1976 98, 3495.
 - (d) Cutler, A., Ehntholt, D., Lennon, P., Nicholas, K., Marten, D.F., Madhavarao, M., Raghu, S., Rosan, A., Rosenblum, M. J. Am. Chem. Soc. 1975, 97, 3149.
 - (e) Bucheister, A., Klemarczyk, P., Rosenblum, M. Organametallics, 1982, 1, 1679.
 - (f) Raghu, S., Rosenblum, M. J. Am. Chem. Soc. 1973, 95, 3060.
 - (g) Genco, N., Marten, D.F., Raghu, S., Rosenblum, M. J. Am. Chem. Soc. 1976, 98, 848.
 - (h) Watkins, J.C., Rosenblum, M. Tetrahedron Lett. 1984, 25, 2097.
 - (h) Watkins, J.C., Rosenblum, M. Tetrahedron Lett. 1985, 26, 3531.
- 8. (a) Danheiser, R.L., Carini, D.J., Basak, A. J. Am. Chem. Soc. 1981, 103, 1604.
 - (b) Danheiser, R.L., Carini, D.J., Fink, D.M., Basak, A. Tetrahedron, 1983, 39, 935.
 - (c) Danheiser, R.L., Kwasigroch, C.A., Tsai, Y.-M. J. Am. Chem. Soc. 1985, 107, 7233.
 - (d) Becker, D.A., Danheiser, R.L. J. Am. Chem. Soc. 1989, 111, 389.
- 9. Fuchs, P.L. J. Am. Chem. Soc. 1974, 96, 1607.
- 10. Shimizu, I., Ohashi, Y., Tsuji, J. Tetrahedron Lett. 1985, 26, 3825.
- 11. Marino, J.P., Laborde, E. J. Org. Chem. 1987, 52, 1-10.
- 12. (a) Noyori, R. Acc. Chem. Res. 1979, 12, 61.

- (b) Noyori, R., Hayakawa, Y. Org. React. 1983, 29, 163.
- 13. (a) Trost, B.M., Chan, D.M.T. J. Am. Chem. Soc. 1979, 101, 6429.
 - (b) Trost, B.M., Chan, D.M.T. J. Am. Chem. Soc. 1979, 101, 6432.
 - (c) Trost, B.M., Chan, D.M.T. J. Am. Chem. Soc. 1983, 105, 2315.
 - (d) Trost, B.M., Chan, D.M.T. J. Am. Chem. Soc. 1983, 105, 2326.
 - (e) Trost, B.M., Chan, D.M.T., Nanninga, T.N. Org. Synth. 1984, 62, 58.
 - (f) Trost, B.M., Mignani, S.M., Nanninga, T.N. J. Am. Chem. Soc. 1988, 110, 1602.
 - (g) Trost, B.M., Buch, M., Miller, M.L. J. Org. Chem. 1988, 53, 4887.
 - (h) Trost, B.M., Penaut, P. J. Am. Chem. Soc. 1982, 104, 6668.
 - (i) Trost, B.M., Chan, D.M.T. J. Am. Chem. Soc. 1980, 102, 6359.
 - (j) Gordon, D.J., Fenske, R.F., Nanninga, T.N., Trost, B.M. J. Am. Chem. Soc. 1981, 103, 5974.
 - (k) Trost, B.M., Miller, M.L. J. Am. Chem. Soc. 1988, 110, 3687.
 - (l) Trost. B.M., King, S.A., Nanninga, T.N. Chem Lett. 1987, 15.
 - (m) Trost, B.M., Chan, D.M.T. J. Am. Chem. Soc. 1981, 103, 5972.
 - (n) Trost, B.M., Nanninga, T.N., Satoh, T. J. Am. Chem. Soc. 1985, 107, 721.
 - (o) Trost, B.M., Nanninga, T.N. J. Am. Chem. Soc. 1985, 107, 1075.
 - (p) Trost, B.M., Chan, D.M.T. J. Am. Chem. Soc. 1982, 104, 3733.
 - (q) Trost, B.M. Angew. Chem. Int. Ed. Engl. 1986, 25, 1.
 - (r) Trost, B.M. Pure Appl. Chem. 1988, 60, 1615.
- 14. Binger, P., Büch, M. *Topics in Current Chemistry: Small Ring Compounds in Organic Synthesis II*, de Meijere, A. Ed., Springer-Verlag, Berlin, 1987, pp 77-151.
- 15. Ejiri, S., Yamago, S., Nakamura, E. J. Am. Chem. Soc. 1992, 114, 8707-8708 and references cited threrein.
- 16. a) Little, D.L. *Chem. Rev.* 1986, 86, 875.
 b) Little, D.L., Masjedizadeh, M.R., Dannecker-Doerig, I. J. Org. Chem. 1990, 55, 2742.
- 17. Curran, D.P., Seong, C.M. J. Am. Chem. Soc. 1990, 112, 9401-9403 and references cited therein.
- 18. Takeda, K., Makino, T., Fujisawa, M., Yoshii, E. unpublished results.
- 19. (a) Boger, D.L., Wysocki, Jr., R.J. J. Am. Chem. Soc. 1988, 53, 3408 and references cited therein.
 - (b) Boger, D.L., Brotherton-Pleiss, C.E. *Advances in Cycloaddition*, Curran, D.P. Ed. JAI Press, Greenwich, 1990, Vol. 2, pp 147-219.

[4 + 1] Annulation

[I] Vinylcyclopropane Rearrangements¹⁾

A. Intermolecular Vinylcyclopropane Rearrangements

B. Intramolecular Vinylcyclopropane Rearrangements

T.Hudlicky³⁾

[II] Charge-accerelerated Vinylcyclopropane Rearrangements

A. Oxyanion-accerelated Vinylcyclopropane rearrangements

A. Concerted 1,3-sigmatropic Shift Mechanism

B. Step-wise Mechanism

intermediates の環化が conformation の相互変換より速くなければならない.

B. Carbanion-accelerated Vinylcyclopropane Rearrangements

References

- 1. (a) *Comprehensive Organic Synthesis*; Trost, B.M., Freming, I., Eds.; Pergamon: Oxford, 1991; Vol. 5, pp 899-970, 999-1035.
 - (b) Wong, H.N.C.; Hon, M.-Y.; Tse, C.-H.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. *Chem. Rev.* **1989**, 165-198.
 - (c) Trost, B.M. Topics in Current Chemistry: , 1986, 133, 3-82.
 - (d) Salaün, J. Topics in Current Chemistry: , 1988, 144, 1.
 - (e) Salaün, J. Chem. Rev. 1983, 83, 619-632.

89,

- (f) Hudlicky, T.; Kutchan, T.M.; Naqvi, S.M. Organic Reactions, 1985, 33, 247-335.
- 2. Girad, C.; Amice, P.; Barnier, J.P.; Conia, J.M. Tetrahedron Lett. 1974, 3329-3332.
- 3. Hudlicky, T.; RuLin, F.; Lovelace, T.C.; Reed, J.W. in "Studies in Natural Product Chemistry, Stereoselective Synthesis', ed. Atta-ur-Rahman, Elsvier, Amsterdam, 1989, Vol. 3, part B, p. 3.
- 4. (a) Danheiser, R.L.; Martinez-Davila, C.; Morin, Jr., J.M. J. Org. Chem. 1980, 45, 1340.
 - (b) Danheiser, R.L.; Martinez-Davila, C.; Auchus, R.J.; Kadonaga, J.T. *J. Am. Chem. Soc.* **1981**, *103*, 2443.
- 5. Danheiser, R.L.; Bronson, J.J.; Okano, K. J. Am. Chem. Soc. 1985, 107, 4579-4581.

Basic Organometallic Chemistry

Bond Types of the Metal-Carbon Bond

1. Ionic bonds

炭素とアルカリ金属およびアルカリ土類金属との結合に限定される

CH₃-CH₂ Na⁺

Na⁺

As-C

2. Sigma-Covalent Bonds

主として非遷移金属との結合

Sn-C

電気陰性度 (Sn: 1.72; Pb: 1.55; As: 2.20; AI: 1.47; C: 2.50)

3. Electron Deficient Bonds

BeR₂, AIR₃ H₃C H₃C Htrimethylaluminum

Pb-C

4. Delocalized Bonds in Polynuclear Systems

(LiR)₄ (LiR)₆

AI-C

CH₃

CH₃

Sc ²¹ 1.36	Ti ²² 1.54	V ²³ 1.63	Cr ²⁴	Mn²⁵	Fe ²⁶	CO²⁷ 1.88	Ni ²⁸ 1.91	Cu ²⁹ 1.90
[Ar]3d ¹ 4s ²	[Ar]3d ² 4s ²	[Ar]3d ³ 4s ²	[Ar]3d ⁴ 4s ²	[Ar]3d ⁵ 4s ²	[Ar]3d ⁶ 4s ²	[Ar]3d ⁷ 4s ²	[Ar]3d ⁸ 4s ²	[Ar]3d ¹⁰ 4s ¹
Y 39	Zr 40	Nb ⁴¹	Mo ⁴²	TC ⁴³	Ru 44	Rh⁴⁵	\mathbf{Pd}^{46}	Ag 47
1.22	1.33	1.6	2.16	1.9	2.2	2.28	2.20	1.93
[Kr]4d ¹ 5s ²	[Kr]4d ² 5s ²	[Kr]4d ³ 5s ²	[Kr]4d ⁵ 5s ¹	[Kr]4d ⁵ 5s ²	[Kr]4d ⁷ 5s ²	[Kr]4d ⁸ 5s ²	[Kr]4d ¹⁰	[Kr]4d ¹⁰ 5s ¹
La 57	Hf 72	Ta ⁷³	W 74	Re ⁷⁵	Os 76	lr 77	Pt 78	Au 79
1.10	1.3	1.5	2.36	1.9	2.2	2.20	2.28	2.54
[Xe]5d ¹ 6s ²	[Xe]5d ² 6s ²	[Xe]5d ³ 6s ²	[Xe]5d ⁴ 6s ²	[Xe]5d ⁵ 6s ²	[Xe]5d ⁶ 6s ²	[Xe]5d ⁷ 6s ²	[Xe]5d ⁹ 6S ¹	[Xe]5d ¹⁰ 6s

atomic number **Sc**²¹ 1.36 electronegativity [Ar]3d¹4s² electronic configuration

Oxidation States (酸化状態)

(hapto, ハプト)	中心金属に結合した配位子の原子数
--------------	------------------

Fe(CO) ₅	Fe (0)
Cr(⁶ -C ₆ H ₆)	Cr (0)
Fe(⁵ -C ₅ H ₅) ₂	Fe (II)

形式電荷

¹ -アリル ,	³ -アリル ,	⁵ -シクロペンタジエニル	-1
CO, エチレン	ノ, ⁶ -ベン・	ゼン	0

18-Electron Rule (18電子則)

中心金属の d 電子の数と配位子から与えられる電子の数の合計は18(希ガスの電子配置)を越えることはできない.

	金属の電子配置	金属の価電子数	配位子からの電子	全価電子数
Cr(CO) ₆	3d ⁵ 4s ¹	6	2 x 6	6 + 12 = 18
Fe(CO) ₅	3d ⁶ 4s ²	8	2 x 5	8 + 10 = 18
$Co_2(CO)_8$	$3d^74s^2$	9	4 x 2	9 + 8 + 1 = 18
Fe(⁵ -C ₅ H ₅)(CO) ₂ CH ₃	3d ⁶ 4s ²	8	5 + (2 x 2) + 1	8 + 10 = 18

遷移金属化合物の代表的な反応

1. Oxidative Addition (酸化的付加)

 $R \rightarrow X + ML_n \rightarrow X$

2. Reductive Elimination (還元的脱離)

3. β-Elimination (脱離)

4. Insertion Reaction (挿入反応)

5. Nucleophilic Addition (求核的付加)

6. Electrophilic Addition (求電子的付加)

7. Transmetalation (トランスメタレーション)

Μ₁Χ

 $(+ RM_2 \longrightarrow RM_1 + M_2X)$

References

- 1. Haiduc, I., Zuckerman, J.J. Basic Organometallic Chemistry, Walter de Gruyter, Berlin, 1985.
- McQuillin, F.J., Parker, D.G., Stephenson, G.R. Transition Metal Organometallics for Organic Synthesis, Cambridge University Press, 1991.
- 2. Pearson, A.J. Metallo-organic Chemistry, John Wiley & Sons, New York, 1985.
- 3. Colquhoun, H.M., Holton, J., Thompson, D.J., Twigg, M.V. New Pathways for Organic Synthesis: Practical Applications of Transition Metals, Plenum Press, New York, 1984.
- 4. 山本嘉則,成田吉徳, *有機金属化学*, 丸善, 1983.
- 5. 岩村 秀,野依良治,中井 武,北川 勲 編,大学院有機化学 中,講談社サイエンティフィク,1988.

Properties of Organosilicon Compounds

Bond strength and Bond lengths

Bond	Bond Dissociation Energy (kcal/mol)	Bond Length (Å)
С-Н	100	1.09
Si-H	81	1.48
C-C	80	1.54
Si-C	76	1.89
C-0	81	1.41
Si-O	127	1.63
C-F	108	1.39
Si-F	193	1.60

Inductive Effect

+ - Si—C	Pauling Electronegativities		
+ -	Si	1.90	
Si—H	С	2.55	
R ₃ Si は全体として <i>電子供与基</i> として働く	0	3.44	
	F	3.93	

Field Effect

R₃Siの dipole momentの,隣接した -システムに対する影響

全体として*電子吸引基*として働く

Stabilization of α -carbon-metal bonds

Stabilization of β-carbocations (β-effect)

1,2-Rearrangement (Brook rearrangement)

References

- The Chemistry of Organic Silicon Compounds, Patai, S., Rappoport, Z. Eds, John Wiley & Sons, 1989, Part 1, Part 2.
 Weber, W.P., Silicon Reagents for Organic Synthesis, Springer-Verlag, New York, 1983.
 Tomas, S.E. Organic Synthesis: The Roles of Boron and Silicon, Oxford Press, Oxford, 1991.
 a) Lambert, J.B., Finzel, J. Am. Chem. Soc. 1982, 104, 2020.
 b) Lambert, J.B. Tetrahedron 1990, 46, 2677.

- 5. Wieschke, S.W., Chandrasekhar, J., Jorgensen, W.L. J. Am. Chem. Soc. 1985, 107, 1436.

Sigmatropic Reaction

[1,3] sigmatropic reaction

suprafacial-retention

1. [π2s + σ**2a]**

X

0

9

R

2. [π2s + σ**2s]**

[2s+ 2a] (許容) > [2s+ 2s] (禁制) > radical

二つの軌道が相互作用すると,同位相で結合した軌道と逆位相で結合した軌道の二つができる. 同位相の軌道(結合性軌道)のエネルギーは低く,逆位相の軌道(反結合成軌道)のエネルギーは高い. 二つの軌道が相互作用するとき,1)エネルギー差が小さければ小さいほど,2)重なりが大きければ 大きいほど,相互作用は強くなる(安定化,不安定化の度合いが大きくなる).

エネルギーの異なる軌道が相互作用した場合,同位相の軌道はもとの軌道のうち低いほうの軌道より エネルギーが低く,逆位相の軌道はもとの高いほうの軌道よりエネルギーが高い.同位相の軌道は 低いほうの軌道を主成分に持ち,逆位相の軌道は高いほうの軌道を主成分とする.

HOMO-LUMO Interaction

HOMO-HOMO Interaction

References

- 井本井本 1. 2. 3. 稔,*ウッドワード・ホフマン* 稔,仲矢忠雄,*有機反応論(* ╦─,稲垣都士,*プログラム学* 化学同人 小則を使
- 東京化学同人
- 化学同人,1978. 人,1982. *ィア軌道論*,講談社サイエンティフィク,1989. , 入門フロ 山辺信一

Tin Hydride Method

Atom Transfer Method

Oxyanion-accelerated Rearrangements¹⁾

D.A.Evans (1975)²⁾

Oxyanion が反応を加速する理由

Evans³⁾

oxyanion が隣接した炭素-炭素結合を弱める.

結合解離エネルギーおよび ab initio 計算

Carpenter's Model⁴⁾

pericyclic reaction の反応速度に対する置換基の効果

置換基の軌道と炭素骨格の軌道との conjugation の度合は原系から遷移状態に進むに連れて変化する. pericyclic reaction の遷移状態は完全に共役した軌道を含むので,原系より遷移状態の方が非局在化の 割合は大きい(特に置換基が原系において sp³炭素に結合している場合,大きいと予想される). この非局在化の程度の違いを置換基の効果と考え,置換基の種類および位置の違いによる原系と 遷移状態のエネルギーの差を求める.

遷移状態としては環状の共役炭化水素をモデルとして使う(ex. Cope 転位には benzene).

置換基モデルとして次のような四種類のモデルを考え,HMO法により原系と遷移状態のエネルギーを 求める(エネルギーはn +x).

- : クーロン積分 (2p 軌道に電子が1個あって,隣の2p 軌道にある電子と無関係に存在する場合の その電子のエネルギー.すなわち電子の負電荷が核の正電荷と作用しあうことにより生ずるエネルギー. 約-7 ~ -6 eV
- :共鳴積分(結合が形成されると,電子が隣の原子との間で非局在化できるようになる.その時の 安定化エネルギー.約-3eV(負)

-electron acceptor (ACC) [R ₃ B, NO ₂ etc] : dou	bly occupied 2p orbital
-electron doner (Don) [MeO, Me ₂ N, K ⁺⁻ O etc] : emp	ty 2p orbital
non-polar conjugating substituent (Con)	group
no substituent (0)	

Cope rearrangement

position	Substituent	Reactant (x)	Transtion State (y)	
1,2	Pol	4.828	8.720	0.108
	Con	6.472	10.425	0.047
	0	4.000	8.000	0.000
3	Pol	4.000	8.720	-0.720
	Con	6.000	10.425	-0.425
	0	4.000	8.000	0.000
				_

position	Order of decreasing rates			
	1	2	3	
1,2	0	Con	Pol	
3	Pol	Con	0	

Reactant のエネルギー:n +x Transtion state のエネルギー:n +y

偶数の環の場合,置換基が一つ加わる ことにより奇数の p 軌道をもつことに なり,非結合性軌道(エネルギーは ができる("電子系の MO の位相 " を参照).置換基が Acc の場合はこの 軌道には電子が入らず, Don の場合は 入っても非結合性軌道なので全 電子 エネルギーには寄与せず,Acc でも C でもエネルギーは等しくなるので,こ 場合単に polar 置換基 (Pol) として 分類する.

1,3-Sigmatropic rearrangement

position	Substituent	Reactant	Transtion state	
1,2	Pol	2.828	6.293	0.192
	Con	4.472	8.055	0.074
	0	2.000	5.657	0.000
3,4	Pol	2.000	6.293	-0.636
	Con	4.000	8.055	-0.398
	0	2.000	5.657	0.000

position	Order of decreasing rates		
	1	2	3
1,2	0	Con	Pol
3,4	Pol	Con	0

^{1.} Comprehensive Organic Synthesis; Trost, B.M., Freming, I., Eds.; Pergamon: Oxford, 1991; Vol. 5, pp 998-1035. Evans, D.A.; Golob, A.M. J. Am. Chem. Soc. 1975, 97, 4765-4766.
 a) Evans, D.A.; Baillargeon, D.J. Tetrahedron Lett. 1978, 3315-3318, 3319-3322.
 b) Steigerwald, M.L.; Goddad, III, W.A.; Evans, D.A. J. Am. Chem. Soc. 1979, 101, 1994.

^{4.} a) Carpenter, B.K. *Tetrahedron* **1978**, *34*, 1877-1884. b) Zoeckler M.T.: Carpenter B.K. *I. Am. Chem.* Soc. **1981**, 103, 7661-7663

Chemistry of Cycropropanes

Strain Energy

	cyclopropane	cyclobutane	011	H ₂ C CH ₂
strain energy	27.5 kcal/mol	26.5 kcal/mol		
Homolytic cleavage	61 kcal/mol	62.5 kcal/mol	CH2 ^{CH2}	H ₂ Ċ —— ĊH ₂

軌道の重なりは ethane に比べて 20%減少

Bonding in Cyclopropane¹⁾

Coulson-Moffit model²⁾

sp^{2.3} С--н sp⁵ c-c

Walsh Model³⁾

σ-Aromaticity

M.J.S.Dewar (1984	4) ⁴⁾		D.Cremer (1986) ⁵⁾	
cyclopropane	6	aromatic	"surface orbital" Ψ_1 に起因する	
cyclobutane	8	antiaromatic	three-center, two-electron bond 2 電子	

-Aromaticity により cyclopropane の化学的物理的性質を説明することができる.

Srain energy

strain energy (27.5 kcal/mol) は,角度の歪みから予想される (104 kcal/mol) よりもはるかに安定である.

NMR

J(¹H-¹³C), J(¹³C-¹³C) の値から cyclopropane はほぼ sp² 混成

cyclopropane の¹H NMR における高磁場シフト(~1ppm)は環電流効果により説明される

求電子剤との高い反応性

$$\mathsf{E}^{+} + \left[\mathsf{E}\mathsf{CH}_{2^{+}} \| \right]^{\ddagger}$$

遷移状態において aromaticity を維持している.

 H_0

н

^{1.} Wong, H.M.C.; Hon, M.-Y; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. *Chem. Rev.* **1989**, 89, 165-198. 2. Coulson, C.A.; Moffit, W.E. *J. Chem. Phys.* **1947**, *15*, 151.

Walsh, A.D. Nature (London) 1947, 165, 712.
 Dewar, M.J.S. J. Am. Chem. Soc. 1984, 106, 669-682.

番号

名前

1)1と2から,3および4が生成する機構を書きなさい(ただし,立体化学は問わない).

2) R が Me 基の場合 3 が優先的に生成するが, R が i-Pr 基のようなかさ高い基の場合 4 が主成績体となる.その理由を考えなさい.

3) propargylsilaneの場合とは異なり, allylsilaneの場合 C-3 に置換基がなくとも五員環を形成する理由を考えなさい.

