エポキシドからカルバニオンへの不斉転写: エポキシシランの連続的開環-転位反応を 利用するアルキル化反応

> 広島大学大学院医歯薬学総合研究科 〇佐々木 道子,川西 英治,中井 良雄 松本 龍弥,武田 敬

Takeda, K.;Kawanishi, E.;Sasaki, M.;Takahasi, Y.;Yamaguchi, K. Org. Lett. 2002, 4, 1511-1514.

_ O	C ba	H ₃ I (1.2 e ase (1.0 e	eq) eq)	q) q)		$\mathbf{R}^{1} \mathbf{R}^{2}$		9: $R^1 = R^2 = Me$	
TBS	CN -8	THF 0 °C, 5	min	TBSO	С	N	10; R ¹ = M 11; R ¹ = R	e, R ² = H ² = H	
	ç	9		10		11		total	
base	yield (%	6) <i>E/Z</i>	yield (%	%) <i>E/Z</i>	yield (?	%) <i>E/Z</i>	yield (9	%) <i>E/Z</i>	
LDA	2	5.7	77	9.7	8	Е	87	11.0	
LHMDS	8	Ε	82	8.4	0	-	90	9.3	
NHMDS	30	238	38	3.8	5	2.3	73	6.7	
KHMDS	38	18	24	12	21	0.8	83	24	

Methylation of Metalated Cyanohydrins of δ-Silyl-γ,δ-epoxy-α,β-unsaturated Aldehyde

Reactions of Enantiomerically Pure *O*-Silyl Cyanohydrins of β-Silyl-α,β-Epoxyaldehyde with LDA in the Presense of Benzyl Bromide

Reactions of Enantiomerically Pure *O*-Carbamoyl Cyanohydrins of β-Silyl-α,β-Epoxyaldehyde with LDA in the Presense of Alkylating Reagent

Reactions of Enantiomerically Pure *O*-Silyl Cyanohydrins of β-Silyl-α,β-Epoxyaldehyde with LDA in the Presense of Benzyl Bromide

								16
	NPr 	i 2	NPr ⁱ 2 ا			NPr ⁱ	2	NPr ⁱ 2
_ 0	0 ⁰	2	0 0 0 0 0 CN -	LDA	→	O C Bn)	0 ⁰ 0
TBS	CN	TBS	↓∕∽ _H	solvent TMEDA	TBSO	CN	TBSO	CN
14 A	L.		14B	-78 °C, 1 h		H 15		^н 16
			(<i>E</i>)15	(<i>Z</i>)15		(<i>E</i>)-16	(<i>Z</i>)-16	total
solvent	SM	TMEDA	yield (%)	yield (%) ee (%)	yield (%)	yield (%)	yield (%)
THF	14A	(–)	30	36	0	2	7	75
	14B	(-)	52	-	-	7	-	59
Et ₂ O	14A	(–)	6	44	30.0	1	11	62
-	14B	(-)	23	-	-	35	-	58
	14A	(+)	8	25	0	3	18	54
	14B	(+)	39	-	-	26	-	65
toluene	14A	(–)	11	21	37.3	2	11	46
	14B	(-)	26	-	-	33	-	59
	14A	(+)	25	29	0	2	9	65
	14B	(+)	49	9	2.4	10	-	68

(*E*)-**15**, (*E*)-**16**, and (*Z*)-**16** were inseparable.

The enantiomeric purity was determined by chiral HPLC using a CHIRALPAK AD[®].

Brook, A. G.; LeGrow, G. E.; MacRae, D. M. Can. J. Chem. 1967, 45, 239-253.

Chiral Homoenolate Equivalent (1)

Reactions of Enantiomerically Pure *O*-Carbamoyl Cyanohydrins of β -Silyl- α , β -Epoxyaldehyde with Bases in the Presense of Benzyl Bromide : Effect of Bases

Reactions of Enantiomerically Pure O-Carbamoyl Cyanohydrins of β -Silyl- α , β -Epoxyaldehyde with LDA in the Presense of Benzyl Bromide : Effect of Temperature

-

-

26

-78

7B

33

59

-