# エポキシシランを利用する合成反応の開発

## 広島大学大学院医歯薬学総合研究科

## 武 田 敬

## 岐阜薬科大学 2005年5月13日



## **Reactions of Epoxysilanes**





Brook rearrangement

## Brook Rearrangement





Brook, A.G. J. Am. Chem. Soc. 1957, 79, 4373.

## Properties of Organosilicon Compounds





#### Bond strength and Bond lengths

p*p*-d*p* Bonding

| Bonds | Bond Dissociation Energy (kcal/mol) | Bond Length (Å) |
|-------|-------------------------------------|-----------------|
| С-Н   | 100                                 | 1.09            |
| SiH   | 81 (x 0.81)                         | 1.48 (x 1.36)   |
|       |                                     |                 |
| C-C   | 80                                  | 1.54            |
| Si-C  | 76 (x 0.95)                         | 1.89 (x 1.23)   |
|       |                                     |                 |
| C-0   | 81                                  | 1.41            |
| Si-O  | 127 (x 1.57)                        | 1.63 (x 1.16)   |
|       |                                     |                 |
| C-F   | 108                                 | 1.39            |
| Si-F  | 193 (x 1.79)                        | 1.60 (x 1.15)   |



## Brook Rearrangement





Brook, A.G. J. Am. Chem. Soc. 1957, 79, 4373.



Takeda, K.; Fujisawa, M.; Makino, T,; Yoshii, E,; Yamaguchi, K. *J. Am. Chem. Soc.* **1993**, *115*, 9351-9352. Takeda, K.; Yamawaki, K.; Hatakeyama, N. *J. Org. Chem.* **2002**, *67*, 1786-1794.













Kei Takeda, Eiji Kawanishi, Michiko Sasaki, Yuji Takahashi, Kentaro Yamaguchi Org. Lett. 2002, 4, 1511-1514.





#### Solvent Effect on E/Z Selectivity





| base                                 | diastereomer | yield (%) | E/Z  | SM |
|--------------------------------------|--------------|-----------|------|----|
| LiN(SiMe <sub>3</sub> ) <sub>2</sub> | Α            | 19        | 0.4  | 67 |
| LiN(SiMe <sub>3</sub> ) <sub>2</sub> | В            | 18        | 34.0 | 63 |
| NaN(SiMe <sub>3</sub> ) <sub>2</sub> | Α            | 86        | 1.4  |    |
| NaN(SiMe <sub>3</sub> ) <sub>2</sub> | B            | 97        | 16.0 |    |







|       | from A    |             | f         | from B       |  |  |
|-------|-----------|-------------|-----------|--------------|--|--|
| base  | yield (%) | E/Z         | yield (%) | E/Z          |  |  |
| LDA   | 76 (82)   | 2.9 (2.5)   | 69 (84)   | 38.0 (22.0)  |  |  |
| LHMDS | 36 (44)   | 39.0 (23.0) | 68 (83)   | 54.0 (31.0)  |  |  |
| NHMDS | 86 (91)   | 38.0 (40.0) | 85 (92)   | 124.0 (47.0) |  |  |
| KHMDS | 78 (84)   | 0.3 (0.9)   | 66 (87)   | 12.0 (9.7)   |  |  |





| Base  | SM | yield (%) | E/Z  | SM, yield (%) |
|-------|----|-----------|------|---------------|
| LDA   | E  | 76        | 58.0 |               |
| LHMDS | E  | 46        | E    | 47            |
| NHMDS | E  | 81        | E    | 6             |
| KHMDS | E  | 75        | E    | 8             |
|       |    |           |      |               |
| LDA   | Ζ  | 41        | 0.01 | 18            |
| LHMDS | Ζ  | 0         |      | 87            |
| NHMDS | Z  | 30        | 0.02 | 59            |
| KHMDS | Z  | 76        | 0.01 | 8             |



#### A Proposed Reaction Pathway (1)

















## Tandem Formation of Functionalized Carbocycles via Reactions with Bis-Electrophiles (1)





























#### Intramolecular Trapping of Chiral Carbanions by [2,3]-Wittig Rearrangement (3)





#### Intramolecular Trapping of Chiral cabanions by [2,3] Wittig Rearrangement (3)



#### Intramolecular Trapping of Chiral cabanions Using [3 + 4] Annulation (1)



### Intramolecular Trapping of Chiral cabanions Using [3 + 4] Annulation (2)



| R <sup>1</sup>                      | R <sup>2</sup> | yield (%) |
|-------------------------------------|----------------|-----------|
| CHMe <sub>2</sub>                   | H              | 60        |
| (CH <sub>2</sub> ) <sub>4</sub> Me  | H              | 30        |
| ОМе                                 | H              | 35        |
| Bn                                  | H              | 31        |
| - (CH <sub>2</sub> ) <sub>4</sub> - |                | 55        |

#### Intramolecular Trapping of Chiral cabanions Using [3 + 4] Annulation (3)



#### Intramolecular Trapping of Chiral cabanions Using [3 + 4] Annulation (4)





**Development, Scope, Limitation and Mechanistic Studies Michiko Sasaki** Asymmetric Version (Intermolecular) Eiji Kawanishi **Reactions with Bis-Electrophiles Tatsuya Matumoto** Wittig-Type Reaction Michiko Sasaki, Mai Horai **Extention to One-Carbon Homologues** Seigo Okugawa Acrolein  $\beta$ -Anion Equivalent Michiko Sasaki Tandem Asymmetric [2,3]-Wittig Rearrangement Michiko Sasaki **Reactions with KCN/18-crown-6** Koudai Tanaka Asymmetric [3 + 4] Annulation Yoshio Nakai

> Grant-in-Aid for Scientific Research The Uehara Memorial Foundation The Naito Foundation





