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Abstract

We study non-orientable Seifert surfaces for knots in the 3-sphere, and examine
their boundary slopes. In particular, it is shown that for a crosscap number two
knot, there are at most two slopes which can be the boundary slope of its minimal
genus non-orientable Seifert surface, and an infinite family of knots with two such
slopes will be described. Also, we discuss the existence of essential non-orientable
Seifert surfaces for knots.
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1 Introduction

For a knot K in the 3-sphere S3, we mean by a Seifert surface a connected
compact surface with boundary K. Usually, a Seifert surface is assumed to be
orientable, but we allow non-orientable one in this paper. It is well known that
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any knot has an orientable Seifert surface. Also any knot has a non-orientable
one as well. For example, we obtain it by adding a small half-twisted band to
an orientable one.

Let N(K) be a tubular neighborhood of K and let E(K) = ¢l(S® — N(K))
be the exterior. A slope is the isotopy class of an essential unoriented simple
closed curve on the torus OF(K). The slopes on 0E(K) are parameterized by
QuU{1/0} in the usual way, using a meridian-longitude system of K (see [13]).

For a Seifert surface F, it can be assumed that F' N N(K) is an annulus.
(Then F'N E(K) is also referred to as a Seifert surface for K.) Then F N
OF(K) is an essential loop in OF(K), and hence it defines a slope, which is
called the boundary slope of F'. By the homological argument, we see that the
boundary slope of an orientable Seifert surface is always 0, whereas that of a
non-orientable Seifert surface is an even integer.

If F'is a non-orientable Seifert surface for K, then a new non-orientable Seifert
surface F' for K can be obtained by adding a small half-twisted band to
F locally. Thus any even integer can be the boundary slope of some non-
orientable Seifert surface for K.

The genus g(K) of a knot K is the minimal number of the genera of orientable
Seifert surfaces for K. Clark [3] defined the crosscap number cr(K) of K to
be the minimal number of the first Betti numbers of non-orientable Seifert
surfaces for K. (For the trivial knot, it is defined to be 0.) It is not easy to
determine the crosscap number of a given knot in general. See [11,14,15]. A
non-orientable Seifert surface for a knot is said to be minimal genus if its first
Betti number equals the crosscap number of the knot.

In this paper, we focus on the boundary slopes of minimal genus non-orientable
Seifert, surfaces for knots.

Theorem 1 For a crosscap number one knot, the boundary slope of its min-
imal genus non-orientable Seifert surface is unique.

It is easy to see that the figure eight knot has crosscap number two and
bounds two once-punctured Klein bottles with boundary slopes 4 and —4.
Also the (=2, 3, 7)-pretzel knot bounds such with boundary slopes 16 and 20.
See Section 3.

Theorem 2 For a crosscap number two knot K, the boundary slope of its
minimal genus non-orientable Seifert surface F' is a multiple of four, and
there are at most two slopes which can be the boundary slope of F'. If there are
two, «a and 3, then | — | = 4 or 8. Furthermore, if |a — B| = 8, then K is
the figure eight knot and {«, f} = {—4,4}.



As an earlier result, it was shown in [14] that a crosscap number two, genus
one knot is a doubled knot, and that the boundary slope of a minimal genus
non-orientable Seifert surface for such a knot is 4 or —4. Also, a crosscap
number two composite knot is a connected sum of two 2-cabled knots, and the
boundary slope of its minimal genus non-orientable Seifert surface is unique
[15]. The proof of Theorem 2 is the main part of this paper, and is based on
the analysis of graphs of intersections coming from two once-punctured Klein
bottles bounded by a knot (cf. [4]).

Theorem 3 There exists an infinite family of crosscap number two knots such
that each of the knots bounds two minimal genus non-orientable Seifert sur-
faces whose boundary slopes have distance 4.

In fact, we expect that our family gives all such knots.

In the case of higher crosscap numbers, we could not give an upper bound
for the number of boundary slopes of minimal genus non-orientable Seifert
surfaces, but it is not hard to give examples which admit some such slopes.

Theorem 4 For any integer n > 3, there exist infinitely many knots K with
cr(K) = n such that there are at least n (when n is even) or n — 1 (when
n is odd) slopes which can be the boundary slope of its minimal genus non-
orientable Seifert surface.

Any minimal genus orientable Seifert surface for a knot K is essential (that
is, both incompressible and boundary incompressible) in the exterior E(K).
Also we can show that any minimal genus non-orientable Seifert surface for a
knot is incompressible. But there exists a knot (e.g. 74 in the knot table [13])
whose minimal genus non-orientable Seifert surface cannot be essential [1]. As
far as we know, the next question seems to be unknown.

Question 5 Does every knot have an essential non-orientable Seifert surface?

In this direction, it is proved in [5] that alternating knots have essential non-
orientable Seifert surfaces by using the checkerboard surfaces.

We have a partial answer to this question.

Theorem 6 FEvery knot whose crosscap number is at most two has an essen-
tial non-orientable Seifert surface.
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2 Crosscap number one case

In this section, we prove Theorem 1.

Proof of Theorem 1 Let K be a crosscap number one knot and let A be a
Mobius band spanned by K. Then K is a cable knot of the center line of A.
More precisely, K is a (2, p)-cable knot of some knot (possibly, the unknot)
for an odd integer p (see [3, Proposition 2.2]). Then it is easy to see that the
boundary slope of A is equal to 2p.

Since 2p is the only slope which yields a reducible manifold for a (2, p)-cable
knot [6, Corollaries 7.3, 7.4], we have the uniqueness of the boundary slopes
of Mébius bands spanned by K. This completes the proof of Theorem 1. O

3 Crosscap number two case

Let K be a crosscap number two knot and let F' be a once-punctured Klein
bottle with 0F = K.

Lemma 7 The boundary slope of F' is a multiple of four.

PROOF. First F' can be expressed as a disk with two non-orientable bands.
That is, each band has an odd number of half-twists as shown in Figure 1. We
can assume that crossings of bands are as in Figure 2 and that each band has
twists near its end and it is flat elsewhere. Figure 3 shows an example.

Let K' be a simple loop obtained by pushing K into F' slightly. Then the link-
ing number of K and K’ is equal to the boundary slope of F'. Each crossing on
bands contributes 4 (mod 4), and each set of half-twists on bands contributes
2 (mod 4). Therefore the linking number is a multiple of four. O
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For a surface S (# S? D?) properly embedded in E(K), S is said to be
incompressible in E(K) if for each disk D C E(K) with D NS = 0D, there
is a disk D' C S with 0D = 0D’, and boundary incompressible in E(K) if for
each disk £ C E(K) with ENS = aand ENJE(K) = § (where aUf = 0F,
anp=0da=0p), a cuts off a disk from S. See [9].

Lemma 8 FNE(K) is incompressible and boundary incompressible in E(K).

PROOF. For simplicity, we denote F'N E(K) by F. Assume that F' is com-
pressible in E(K), and let D be a compressing disk for F. Note that 9D is
orientation-preserving in F'.

If 0D is non-separating in F', then compression along D gives a disk bounded
by K. This means that K is unknotted, a contradiction. If 0D is separating
in F, then compression along D gives a projective plane in F(K), which is
impossible. Therefore, F' is incompressible in E(K).

Next, assume that F' is boundary compressible, and let £ be a boundary
compressing disk for F'. That is, 0F = aUf, « C F and § C OE(K), where « is
an essential arc in F'. Let r denote the boundary slope of F', and let us consider
r-surgery K (r). Let F' be the Klein bottle in K (r) obtained by capping OF
off by a meridian disk of the attached solid torus V. If 5 bounds a disk E’



on OE(K) together with a subarc of OF, then F U E’ gives a compressing
disk for F' in E(K) (after pushing off from OF(K)). This contradicts the
incompressibility of F. Hence the union of § and a subarc of OF forms a
longitude of V. Since the total space K () is orientable, a must be orientation-
reversing on F'. Thus the core knot K, of V' can be isotoped to an orientation-
reversing loop on F using F.

Now, K, is an orientation-reversing loop on F. Then VN F is a Mdbius band,
and hence B = cl(F — V N F) is also a M6bius band. Thus E(K) contains a
properly embedded Mobius band B. Let s be the boundary slope of B. Then
s-surgery K (s) contains a projective plane. Hence K (s) is real projective 3-
space P? or a reducible manifold with P? summand. In the latter case, s must
be integral by [8]. In the former case, K is not a torus knot by [10]. Then the
cyclic surgery theorem [4] implies that s is integral. This contradicts that K
has crosscap number two. Hence F' is boundary incompressible. O

Now, we consider two once-punctured Klein bottles P and () bounded by K.
But we use the same notations P and @) for PNE(K) and QN E(K) hereafter.
By Lemma 7, we can assume that the boundary slopes of P and () are 4k and
40, respectively. As usual, let A = A(4k,4¢) = 4|k — {| denote the minimal
geometric intersection number of those boundary slopes on 0F(K).

We may assume that P and () intersect transversely. By the incompressibility
of P and @ (Lemma 8), we can assume that no circle component of P N Q
bounds a disk in P or ). We can further assume that JP intersects 0@ in
exactly A points. Let P be the Klein bottle obtained by capping 0P off by a
disk. Define @ similarly.

Let Gp be the graph in P obtained by taking as the (fat) vertex the disk
P —IntP and as the edges the arc components of PN () in P. Similarly, G, is

the graph in Q. Note that both of Gp and G have only one vertex of degree
A.

Number the points of 0P N 0@ 1,2,...,A in sequence along OP. Remark
that the labels 1,2, ..., A appear in the same order along 0Q) (with a suitable
direction). This comes from the fact that both of 0P and 0@ have integral

slopes.

A triwial loop in a graph is a length one cycle which bounds a disk face of the
graph.

The next lemma follows from Lemma 8.

Lemma 9 Neither Gp nor G¢ contains trivial loops.
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Although P and @) are non-orientable, we can establish a parity rule. In fact,
this is a natural generalization of the usual parity rule [4].

Assign arbitrary orientations to 0P and 0@). Let e be an edge in Gp. Since e
is an arc properly embedded in P, a regular neighborhood D of e in P is a
disk in P. Then 0D = aUbUcUd, where a and ¢ are arcs in 0P with induced
orientations from dP. On D, if a and ¢ have opposite directions as illustrated
in Figure 4, then e is called positive, otherwise negative.

Similarly, define the sign of edges in G . Then we have the following rule.

Lemma 10 (Parity rule) An edge e is positive (negative resp.) in Gp if and
only if e is negative (positive resp.) in Gg.

PROOF. This follows from the fact that E(K) is orientable and 0E(K) is a
torus. U

Lemma 11 Gp and G contain at most two negative edges. Furthermore, if
there are two negative edges, then they are not parallel.

PROOF. Assume that Gp contains three negative edges. Since there are only
two isotopy classes of negative edges in Gp, there exist two negative edges e;
and ey that are parallel in Gp. We can assume that e; has the labels {1, z}
and e has {2,z + 1}. See Figure 5. Here, two end circles of the cylinders are
identified through a suitable involution to form the Klein bottle P.



Fig. 6.

By the parity rule, e; and e, are positive in Gg. There are two isotopy classes
of positive edges in G, but G cannot have two non-isotopic positive edges.
(By Lemma 9, there are no trivial loops.) Therefore, e; and e, are parallel in
G¢. Then the labels would appear in a wrong order along 0(Q).

The latter conclusion immediately follows from the above argument. O

Lemma 12 A <8.

PROOF. By Lemma 11 and the parity rule, each of Gp and G contains at
most four edges. Since the vertex of G p, say, has degree A, we have A < 8. O

Thus A = 0,4 or 8.
First, we prove that if A = 8 then the knot is the figure eight knot.

Consider the standard (minimal crossing) diagram of the figure eight knot.
Then the two checkerboard surfaces give once-punctured Klein bottles bounded
by the figure eight knot. One has the boundary slope 4, and the other has —4.
Then we have a pair of graphs as illustrated in Figure 6.

Proposition 13 If A = 8 then K is the figure eight knot, and moreover the
boundary slope of a once-punctured Klein bottle bounded by K is 4 or —4.

PROOF. Assume that A = 8. By Lemma 11 and the parity rule, each of
Gp and G contains exactly two positive edges and two negative edges. Then
there is only one configuration for the pair {Gp, Gg} as shown in Figure 6. In
addition, P N () contains no circle component, since each face of Gp and G
is a disk. From now on, it is convenient if we denote by P and () the original
once-punctured Klein bottles bounded by K.



Let f and g be the positive edges parallel in Gp (see Figure 6), and let D; be
the disk representing the parallelism of f and ¢ in P.

Then a thin regular neighborhood B; of D; in S? gives a 2-string trivial tangle
(B1, BiNK). Hereafter, we fix an orientation of K, and assume that any subarc
of K has an induced orientation from K. Then D; respects this orientation,
that is, there is an orientation of D; which induces compatible orientations to
B NK.

Let By = cl(S* — B;). Then (By, By N K) is also a 2-string tangle.

Claim 14 The strings of the tangle (By, Bo N K) are parallel in By.

Proof of Claim 14 Let Dy = (Q N By. Then D, is a disk whose boundary
consists of two strings of the tangle (Bs, B, N K) and two arcs in dBs;. Thus
we have the conclusion. O

We remark that Dy also respects the orientation of K.

If the two strings of (By, Bo N K) are unknotted in By, then (B, BoN K) is a
trivial tangle, and therefore K is a 2-bridge knot.

We know that the surgered manifolds K (4k) and K (4¢) are not hyperbolike,
because they contain Klein bottles. (Recall that a closed orientable 3-manifold
is hyperbolike if it is irreducible, atoroidal, and is not a Seifert fibered mani-
fold whose orbifold is a 2-sphere with at most three cone points [7].) By the
classification of Dehn surgeries on 2-bridge knots by Brittenham and Wu [2,
Theorem 1.1], we have the desired conclusion that K is the figure eight knot,
and the boundary slopes of P and () are 4 and —4.

Thus we assume that the two strings of (By, Bo N K) are knotted in Bs.

Let D3 C D5 be the disk giving the parallelism between two parallel positive
edges in G. Therefore, D3 respects the orientation of K. Let By C B, be a
thin regular neighborhood of D3 in S?, and let By = cl(S* — Bj).

Clearly, the tangle (Bs, BsN K) is a trivial 2-string tangle, and the two strings
of (By, By N K) are parallel by Claim 14, since Gp and G have the same
form.

If two strings of (B,, By N K) are unknotted, then K is 2-bridge, and hence
we have the desired conclusion as above.

Otherwise, each string of (By, By N K) is knotted in B,. But this does not
happen as seen in Figure 7. O
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Proof of Theorem 2 By Lemma 7, the boundary slope of a minimal genus
non-orientable Seifert surface for K is a multiple of four, and for any two
such boundary slopes the distance A between them is 4 or 8 by Lemma 12.
If K bounds two once-punctured Klein bottles whose boundary slopes have
A = 8, then K is the figure eight knot, and {—4,4} are the only possibilities
of such boundary slopes by Proposition 13. If A =4, then there are only two
boundary slopes that are consecutive multiples of four. The proof of Theorem
2 is complete. O

Proof of Theorem 3 Let k be the braid o;0;" of six strings contained in
a cylinder C. For an integer n, glue the top and bottom of C' with (2n + 1)7
rotation to obtain a standard solid torus V in S® and a knot K. See Figure
8.

As shown in Figure 9, K,, bounds two once-punctured Klein bottles whose
boundary slopes have distance 4. It is easy to see that K, is a closed positive
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Fig. 10.

or negative braid, and therefore fibered. Then an easy Euler characteristic
calculation shows that K, has genus 15n + 5 when n > 0 or 15|n| — 10 when
n < 0. Thus our family gives infinitely many knots.

Finally we prove er(K,) = 2. In fact, Ky and K ; are the (—2,3,7)-pretzel
knot and its mirror image, and so they are crosscap number two. The other
K, is a satellite knot whose companion is a (2,2n+ 1) torus knot and pattern
is as shown in Figure 10.

This pattern knot is hyperbolic, since the complement is homeomorphic to that
of the (—2, 4, 5)-pretzel link [12]. Thus the torus decomposition of the exterior
of K,, (n # 0,—1) consists of one hyperbolic piece and a torus knot exterior.
Hence K, is not a 2-cabled by the uniqueness of the torus decomposition, and
therefore its crosscap number is not one. This completes the proof of Theorem
3. O

Obviously, the above construction can be generalized in such a way that V' is
knotted in S®. We conjecture that this generalized construction gives all cross-
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cap number two knots that admit two minimal genus non-orientable Seifert
surfaces whose boundary slopes have distance 4. Note that the (—2,3,7)-
pretzel knot and its mirror image are the only hyperbolic knots arisen by our
construction. We remark that there is a supporting evidence for this conjec-
ture. When A = 4, we can conclude that there is only one possible configu-
ration for the pair {Gp,Gg}. In fact, our construction is based on the graph
pair.

4 Higher crosscap number case

To prove Theorem 4, we use the next result about the additivity of crosscap
numbers.

Lemma 15 (Murakami-Yasuhara [11]) For any non-trivial knots Ky, Ko, . ..

with cr(K;) <2 (i=1,2,...,n), we have

cr(K Kot .. 1Ky,) = or(Ky) +or(Ks) + ...+ er(K).

Proof of Theorem 4 Let n > 3 be an integer. Assume n = 2m + 2. Let
K, (p > 0) be the knot constructed in the proof of Theorem 3, where the
top and bottom of the cylinder C' are glued with (2p + 1)7 rotation and
V is unknotted in S3. Recall that ¢r(K,) = 2 and K, has genus 15p + 5.
Let K = K,4(§™4,)), where 4; denotes the figure eight knot. Then er(K) =
2(m+ 1) = n by Lemma 15. Let  and x + 4 be the boundary slopes of once-
punctured Klein bottles bounding K. Then the boundary slope of minimal
genus non-orientable Seifert surface for K can be x —4m,z —4m+4,x —4m+
8, ...,x+4m,x + 4m + 4. Thus K has at least n such boundary slopes. Also
different values of p yield distinct knots K.

Assume n = 2m + 1. Let T, be the (2, p) torus knot for an odd integer p > 3,
and F the (—2,3,7)-pretzel knot. Let K = T,fF§(4™ '4;). Then cr(K) =
34 2(m — 1) = n by Lemma 15. The boundary slope of minimal genus non-
orientable Seifert surface for K can be 2p + 20 — 4m, 2p + 24 — 4m, 2p + 28 —
dm, 2p+32—4m, ..., 2p+12+4m, 2p+16+4m. Thus K has at least n—1 such
boundary slopes, and different values of p yield distinct knots K again. O

5 Essential non-orientable Seifert surfaces

It is well known that a minimal genus orientable Seifert surface for a knot is
essential in the knot exterior.
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Lemma 16 A minimal genus non-orientable Seifert surface for a knot is in-
compressible in the knot exterior.

PROOF. Let K be a non-trivial knot in S3, and let S be a minimal genus
non-orientable Seifert surface for K. We use the same notation S for SNE(K).

Assume that S is compressible in F(K), and let D be a compressing disk for
S.

If OD is separating in S, then compression along D gives two surfaces S; and
S, where 0S; = K and S, is closed. Then S, is orientable, and hence S; is
non-orientable. It is easy to see that 51(S;) < (1(S) — 2, where (; denotes
the first Betti number. This contradicts the minimality of S. Therefore D is
non-separating in S.

Let S' be the resulting surface obtained by compressing S along D. Since
p1(S") = B1(S) — 2, S must be orientable by the minimality of S. But if we
add a small half-twisted band to S’, then we obtain a non-orientable Seifert
surface S” for K with 5,(S") = £:1(S") +1 < (1(S). This contradicts the
minimality of §. O

Finally, we prove Theorem 6.

Proof of Theorem 6 Let K be a non-trivial knot in S* with cr(K) < 2,
and let S be a minimal genus non-orientable Seifert surface for K. By Lemma
16, S is incompressible in E(K).

If S is boundary compressible, then the argument in the proof of Lemma 8
shows that K bounds a disk (if ¢r(K) = 1), or a Mébius band (if ¢r(K) = 2).
In either case, this is a contradiction. O
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