$R+S, \therefore \perp^{\prime \prime}$＠＠ $\int \bigcirc>$ 技灰左＞○迫駅 \times 窯憂•『常，Ü 迫駅○蚊這

｜｜｜｜聰㝹しé

ê

風炊乃－灘迭シ̈風炊アイ灘迭欧害迎祇繁幣熟脅\＃簡髪迎祇シ（2）\＄迎祇炊王瞥絞祝

藢㑡า ь 㛴レ ぷ

万米㕔㞾困À 品Û 諦Û U 沓

牟支

$\AA \zeta \equiv \psi \beta$ 7
 §
A Synthesis of 4-Hydroxy-2-cyclopentenone Derivatives by [3+2] Annulation of β-Heteroatom- Substituted Acryloylsilanes and Lithium Enolate of Methyl Ketones f
A Formation of Four- to Six-Membered Carbocycles by Tandem Brook Rearrangement- Intramolecular Michael Reaction 17
A Enantioselective Reduction of α, β-Unsaturated Acylsilanes by Chiral Lithium Amides -- R 1
A Facile Construction of a Tricyclo[5.3.0.0 ${ }^{1,4}$]decenone Ring System by the Brook Rearrange- ment-Mediated [3 + 4] Annulation в \int
A Synthesis of the Tricyclic Skeleton of Cyathins Using Brook Rearrangement-Mediated [3+4] Annulation $\int 7$

-. [全À

4

À
6

㖇凰黾お㑡㝢 $=€ \diamond$ 㝒 B 内 ψ 万S \in＇$E \in A ̈$

14

 す抜弓 $\tilde{A}[3+4]$ Џи

 ϵ Ä

 $A \in \ddot{A}$

À

À

$\leq \quad>Џ$ и

divinylcyclopropanolate ϵ anionic oxy－Cope㙇（P）Ћす $€[3+4] \amalg$ и

 $€ \in \grave{\zeta} \zeta a^{\prime} E A i$ t＇Y ФÄ

㒆占 $24 B$ 㑫㑡 $N \Phi A ̈$

（a）Takeda，K．；Takeda，M．；Nakajima，A．；Yoshii，E．J．Am．Chem．Soc．1995，117，6400－6401．（b） Takeda，K．；Nakajima，A．；Yoshii，E．Synlett 1996，753－754．（c）Takeda，K．；Nakajima，A．；Takeda， M．；Okamoto，Y．；Sato，T．；Yoshii，E．；Koizumi，T．；Shiro，M．J．Am．Chem．Soc．1998，120， 4947－4959．（d）Takeda，K．；Nakajima，A．；Takeda，M．；Yoshii，E．；Zhang，J．；Boeckman，Jr．，R．K． Org．Synth．1999，76，199－213．

Synthesis of 4-Hydroxy-2-cyclopentenone Derivatives by [3 + 2] Annulation of $\boldsymbol{\beta}$-Heteroatom-Substituted Acryloylsilanes and Lithium Enolate of Methyl Ketones

Kei Takeda, ${ }^{*}$ Yasuhiro Ohtani, Emi Ando, Ken-ichi Fujimoto, Eiichi Yoshii, Toru Koizumi Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630

Sugitani, Toyama 930-0194

The $[3+2]$ annulation using β-[2-(pyridyl)thio] and β, β-dichloro derivatives of acryloylsilane and the lithium enolate of methyl ketones successfully proceeded to afford 4-alkyl-4-hydroxy-3-(2-pyridylthio)cyclopentanone and 4-alkyl-3-chloro-4-hydroxy-2-cyclopentenone, respectively.

The construction of highly functionalized cyclopentenone derivatives has attracted a great deal of attention in recent years because the skeleton has been found in a variety of biologically important molecules. Earlier investigations ${ }^{1-3}$ in our laboratory have shown that the [3+2] annulation employing a combination of (β-(phenylthio)acryloyl)silanes $\mathbf{1}$ and the lithium enolate of methyl ketones $\mathbf{2}$ provided an efficient route for the rapid construction of polyfunctionalized cyclopentenol derivatives 3 .

Scheme 1.

Although the cyclopentenols $\mathbf{3}$ resulting from the annulation are themselves useful structural entities because they contain potentially useful functionalities for further derivatization, the versatility of the annulation would be greatly enhanced if direct formation of 4-hydroxy-2cyclopentenone derivative 4 from the annulation becomes possible. This prompted us to investigate the annulation using the acryloylsilane bearing a better leaving group than the phenylthio group as the β-substituent. First, we examined the reaction using the β-sulfinyl and β-sulfonyl derivatives, $\mathbf{5}^{4}$ and $\mathbf{6}^{4}$, which were prepared by the mCPBA oxidation of the phenylthio derivative 1 .

4

5

6

Although the sulfinyl derivative $\mathbf{5}$ afforded a complex mixture, the reaction of the sulfonyl derivative 6 produced the cyclopentenone 8 together with uncyclized products 9 and $\mathbf{1 0}$. Compound $\mathbf{1 0}$ can be formed by the elimination of phenylsulfinate from the enolate of $\mathbf{9}$ which is generated by intramolecular and/or intermolecular proton abstraction involving the delocalized allylic anion intermediate $\mathbf{1 1}$. The formation of $\mathbf{9}$ and $\mathbf{1 0}$ suggests that $\mathbf{1 1}$ is not reactive enough to cyclize in order to form $\mathbf{8}$ due to the carbanion stabilizing ability of the sulfonyl group and consequently undergoes the competing proton abstraction leading to $\mathbf{9}$ and $\mathbf{1 0}$.

Scheme 2.

Next, we examined the reaction of acryloylsilane $\mathbf{1 2}^{5}$ bearing the β-(2-pyridyl)thio group which has lithium chelating ability ${ }^{6}$ and is more electron-withdrawing than the phenylthio group but less than the phenylsulfonyl group. When the reaction of $\mathbf{1 2}$ with the enolates $\mathbf{2}$ was conducted under the same conditions as those for $\mathbf{1}$, diastereomeric cyclopentenols $\mathbf{1 3}$ and $\mathbf{1 4}$ rather than the cyclopentenol $\mathbf{4}$ were obtained as summarized in Scheme 3.

Scheme 3.

Treatment of $\mathbf{1 3}$ with aqueous HF in MeCN , however, afforded 2-cyclopentenone 4, in contrast to the reaction of $\mathbf{3}$ under same conditions which provided the 3-(phenylthio)cyclopenta-none derivatives $15 .{ }^{1}$

We next turned to the use of (β, β-(dichloro)acryloyl)trime-thylsilane (16), readily prepared according to the protocol of

Cunico and Cui-ping7,8 and expected it to give the 3-chloro-4-hy droxy-2-cyclopentenone derivative 18, a potentially useful compound for further synthetic manipulation, during the annulation. We first attempted the reaction of 16a with the lithium enolate of 2-octanone, generated from LDA, but 3-chloro-4-hexyl-4-hydroxy-2-cyclopentenone (18) was obtained in only 13% yield. The major side products were the enamine 19 which can be formed by an addition-elimination reaction of the diisopropylamine to $\mathbf{1 6 a}$, and the aldol condensation products of the ketone. The aldol condensation can be attributed to the generation of the ketone by the enolate-mediated dehydrochlorination of 16a.

Scheme 4.

Next, we examined the reaction under the amine-free conditions using mesityllithium as a base to prevent the formation of the side products. When 16a was treated with lithium enolate 2 at -80° to -30° or $0^{\circ} \mathrm{C}, 3$-chloro-4-hydroxy-2-cyclopentenones $\mathbf{2 0}$ were obtained in moderate to good yields as shown in Scheme 5. ${ }^{9}$

Scheme 5.

Somewhat lower yields relative to the original annulation using 1, especially in the normal chain ketones, might be attributed to the decomposition via the enolate-mediated dehydrochlorination. No enol silyl ether corresponding to 3, even when t-butyldime-thylsilyl derivatives 16b was used, was detected. Slightly lower yields (39-53\%) of $\mathbf{2 0}$ were obtained from the reaction of $\mathbf{1 6 b}$. The use of β, β-dibromo derivative resulted in a poor yield $(\sim 10 \%)$ of 20.

In summary, we have demonstrated that the Brook rearrangement-mediated $[3+2]$ annulation was successfully applied to the direct synthesis of the 3-chloro-4-hydroxy-2cyclopentenone derivatives.

We thank the Grant-in-Aid for Scientific Research (No. 10671986 (K.T.)) from the Ministry of Education, Science, Sports and Culture, Japan, and the Hoan Sha Foundation for partial support of this research.

References and Notes

1 K. Takeda, M. Fujisawa, T. Makino, E. Yoshii, and K. Yamaguchi, J. Am. Chem. Soc., 115, 9351 (1993).
2 K. Takeda, I. Nakayama, and E. Yoshii, Synlett, 1994, 178.
3 K. Takeda, K. Kitagawa, I. Nakayama, and E. Yoshii, Synlett, 1997, 255.
4 These compounds were prepared by the mCPBA oxidation of $(Z) \mathbf{- 1}$. For the preparation of $\mathbf{1}$, see: K. Takeda, A. Nakajima, M. Takeda, Y. Okamoto, T. Sato, E. Yoshii, T. Koizumi, and M. Shiro, J. Am. Chem. Soc., 120, 4947 (1998).
5 This compound was prepared using 2,2'-dipyridyldisulfide in a similar manner to that for $\mathbf{1}$.
6 D. A. Evans and G. C. Andrews, Acc. Chem. Res., 7, 147 (1974).
7 R. F. Cunico and Z. Cui-ping, Tetrahedron Lett., 33, 6751 (1992).
8 R. F. Cunico and Z. Cui-ping, Tetrahedron, 51, 9823 (1995).
9 General procedure for the [3+2] annulation using 16a: Reaction of 16a with Li enolate of 3,3-dimethyl-2-butanone. To a cooled $\left(-80^{\circ} \mathrm{C}\right)$ solution of 2-bromomesitylene ($149 \mathrm{mg}, 749$ $\mu \mathrm{mol})$ in THF (0.8 mL) was added $t-\mathrm{BuLi}(1.15 \mathrm{M}$ in pentane, $1.43 \mathrm{~mL}, 1.64 \mathrm{mmol})$. The solution was stirred at the same temperature for 20 min . To this mixture was added dropwise a solution of 3,3-dimethyl-2-butanone ($94 \mu \mathrm{~L}, 749 \mu \mathrm{~mol}$) in THF (1.5 mL). After being stirred at $-80{ }^{\circ} \mathrm{C}$ for 30 min , the solution was added dropwise to a solution of (3,3(dichloro)propanoyl)trimethylsilane ($134.3 \mathrm{mg}, 681 \mu \mathrm{~mol}$) in THF (29 mL). The reaction mixture was allowed to warm to $-30^{\circ} \mathrm{C}$ over 30 min , and quenched using saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 2)$, and the combined organic phases were washed with saturated brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residual oil was subjected to column chromatography (silica gel, 10 g ; elution with 1:1 hexane- $\mathrm{Et}_{2} \mathrm{O}$) to give $\mathbf{2 0}(\mathrm{R}=\mathrm{Et})(90 \mathrm{mg}, 70 \%)$.

Formation of Four- to Six-Membered Carbocycles by Tandem Brook Rearrangement-Intramolecular Michael Reaction

Kei Takeda,* Tadashi Tanaka
Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630
Sugitani, Toyama 930-0194, Japan
FAX:+81-764-34-5049; E-mail: takedak@ms.toyama-mpu.ac.jp

Abstract

A tandem Brook rearrangement-intramolecular Michael reaction has been developed as a synthetic route to functionalized carbocycles. Acylsilanes, tethered by a two-, three-, or four-carbon chain to an acrylate Michael acceptor, have been prepared and used as the cyclization substrates. Treatment of these compounds with PhLi or $\mathrm{LiP}(\mathrm{O})(\mathrm{OMe})_{2}$ at temperatures below $0{ }^{\circ} \mathrm{C}$ results in the formation of four- to six-membered carbocycles in good yields.

Key words: tandem reaction, acylsilane, Brook rearrangement, intramolecular Michael reaction, carbocycles

Intramolecular Michael reaction constitutes one of the most efficient methodologies for constructing carbocycles and has been widely applied for syntheses of naturally occurring products. ${ }^{1,2}$ In many cases, carbanions stabilized by an electron-withdrawing group stronger than the Michael acceptor or by two electron-withdrawing groups have been employed as a Michael donor, allowing selective proton abstraction with bases in the presence of the Michael acceptor. In contrast, intramolecular Michael reactions of unstabilized carbanion centers have received much less attention, with the lithium-halogen exchange-initiated conjugate addition reactions of Cooke being the only examples reported to the best of our knowledge. ${ }^{3-5}$

Six years ago we reported that the reaction of benzoylsilane $\mathbf{1}$ with ketone enolates 2 affords cis-1,2-cyclopropanediol derivatives 5 via the Brook rearrangement 6,7 in the adduct $\mathbf{3}$ followed by the internal attack of the generated α-siloxy carbanion 4 on the β-carbonyl group. ${ }^{8}$

These results led us to expect that the reaction of acylsilanes $\mathbf{6}$ bearing a Michael acceptor at the appropriate position in the same molecule with a suitable nucleophile would provide a new entry to the construction of carbocycles via a tandem sequence of the Brook rearrangement ($\mathbf{7}$ to $\mathbf{8}$) and the intramolecular Michael reaction ($\mathbf{8}$ to $\mathbf{9}$).

For the investigations of the tandem reaction, we chose phenyllithium and lithium dimethyl phosphite as the nucleop\hile, because the Brook rearrangement is usually accelerated by a carbanion stabilizing group. The cyclization precursor $\mathbf{1 4 a}{ }^{9}$ for a six-membered ring system was prepared by a five-step sequence involving hydroboration, ${ }^{10}$ starting with O-protected 5-heptyn-1-ol 10a ${ }^{11}$ (Scheme1). In the case of the acylsilanes $\mathbf{1 4 b}, \mathbf{c}^{9}$ for four- and fivemembered rings, reduction of the carbonyl group of the acylsilane before Swern oxidation was required because the oxidation of ω-hydroxyacylsilanes corresponding to 13a afforded dihydrofuran or dihydropyran derivatives $\mathbf{1 5 b}, \mathbf{c}$, cyclization and a dehydration product.

Scheme 1

When phenyllithium (1 equiv) was added to a THF solution (0.01 M) of acylsilanes 14a-c at $-80{ }^{\circ} \mathrm{C}$ and the solution was allowed to warm to $0^{\circ} \mathrm{C}$, the tandem Brook rearrangementintramolecular Michael reaction proceeded smoothly to afford two diastereomeric cycloalkanols $\mathbf{1 6}$ and $\mathbf{1 7}$ in good yields (Scheme 2). ${ }^{12}$ Their stereochemistries were assigned by conversion to bicyclic cis-lactones 18a-c and hydroxy esters 19a-c, respectively, by brief treatment with $n-\mathrm{Bu}_{4} \mathrm{NF}$ in THF.

Scheme 2

Although the origin of stereoselectivity in the cyclization are unclear at present, these results indicate that the tandem sequence of the Brook rearrangement and intramolecular Michael reaction is a facile process and that an unstabilized carbanion such as α-siloxycarbanion can function as a Michael donor.
Reaction of 14a-c with lithium dimethyl phosphite, conducted in a similar manner to the reaction with phenyllithium, resulted in the formation of a single cyclized product 20a-c with undetermined stereochemistry and a Brook rearranged but uncyclized product 21a-c (Scheme 3). 13

Scheme 3

The somewhat lower yields of the cyclization products and the formation of the uncyclized products may be due to the bulkiness of the phosphoryl group and/or the increased stabilization of the α-phosphoryl carbanion relative to the phenyl group.

In conclusion, we have developed an unprecedented, tandem Brook rearrangementintramolecular Michael reaction sequence that is potentially useful for the construction of functionalized carbocycles.

Acknowledgments

This research was partially supported by a grant-in-aid for Scientific Research (No. from the Japanese Ministry of Education, Sciences, Sports and Culture, and the Ciba-Geigy Foundation (Japan) for the Promotion of Science.

References and Notes

(1) Little, R. D.; Masjedizadeh, M. R.; Wallquist, O.; McLoughlin, J. I. In Organic Reactions; John Wiley \& Sons: New York, 1995; Vol. 47, p 315-552.
(2) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon Press: Oxford, 1992; Vol. 9.
(3) M. P. Cooke, Jr. J. Org. Chem. 1993, 58, 6833-6837 and references cited therein.
(4) For intermolecular Michael reaction of the carbanion generated by Brook rearrangement followed by conversion to copper species, see: Enda, J.; Kuwajima, I. J. Am. Chem. Soc. 1985, 107, 5495-5501.
(5) For participation of the carbanion generated by the Brook rearrangement in the intramolecular alkylation to form cyclopropane derivatives, see: Reich, H. J.; Holtan, R. C.; Bolm, C. J. Am. Chem. Soc. 1990, 112, 5609-5617.
(6) Brook, A. G. Acc. Chem. Res. 1974, 7, 77-84.
(7) Brook, A. G.; Bassindale, A. R. In Rearrangements in Ground and Excited States; de Mayo, P., Ed.; Academic Press: New York, 1980; Vol. 2, p 149-221.
(8) Takeda, K.; Nakatani, J.; Nakamura, H.; Sako, K.; Yoshii, E.; Yamaguchi, K. Synlett 1993, 841-843.
(9) Characteristic data for 14a-c. 14a: a colorless oil, R_{f} (hexane : $\mathrm{AcOEt}=5: 1$) $=0.46$. IR (film) 1725, 1655, $1640 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right.$), 0.87 (9H, s, t-Bu), 1.33-1.39 (2 H, m, H-5), 1.45-1.51 (2 H, m, H-6), 2.12-2.16 (2 H, m, H4), $2.55(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H}-7), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.76(1 \mathrm{H}, \mathrm{dt}, J=15.8,1.5 \mathrm{~Hz}, \mathrm{H}-$ 2), $6.89(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.1 \mathrm{~Hz}, \mathrm{H}-3) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-6.90\left(\mathrm{SiMe}_{2}\right)$, $16.6\left(\mathrm{CMe}_{3}\right), 21.5(\mathrm{C}-6), 26.5\left(\mathrm{CMe}_{3}\right), 27.8(\mathrm{C}-5), 32.2(\mathrm{C}-4), 49.9(\mathrm{C}-7), 51.5(\mathrm{OMe})$, $121.1(\mathrm{C}-2), 149.2(\mathrm{C}-3), 167.1\left(\mathrm{CO}_{2} \mathrm{Me}\right), 247.2(\mathrm{SiC}=\mathrm{O})$. HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Si}$ $\left(\mathrm{M}^{+}-t-\mathrm{Bu}\right)$ 227.1103, found 227.1110. 14b: a colorless oil, R_{f} (hexane : $\mathrm{AcOEt}=5: 1$) $=0.46$. IR (film) $1725,1655,1640 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.14(6 \mathrm{H}, \mathrm{s}$, SiMe_{2}), 0.89 ($9 \mathrm{H}, \mathrm{s}, t$ - Bu), 1.63-1.69 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 2.12-2.16 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), $2.59(2 \mathrm{H}$, $\mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H}-6), 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.76-5.80(1 \mathrm{H}, \mathrm{dm}, J=15.8 \mathrm{~Hz}, \mathrm{H}-2), 6.88$ (1 $\mathrm{H}, \mathrm{dt}, J=15.8,7.1 \mathrm{~Hz}, \mathrm{H}-6) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-6.87\left(\mathrm{SiMe}_{2}\right), 16.6$
(CMe_{3}), 20.3 (C-5), 26.5 (CMe_{3}), 31.7 (C-4), 49.2 (C-6), 51.6 (OMe), 121.4 (C-2), $148.9(\mathrm{C}-3), 167.1\left(\mathrm{CO}_{2} \mathrm{Me}\right), 246.8(\mathrm{SiC}=\mathrm{O}) .14 \mathrm{c}$: a colorless oil, $R_{f}($ hexane : $\mathrm{AcOEt}=$ $5: 1)=0.46$. IR (film) 1725, 1655, $1640 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.14(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiMe}_{2}\right), 0.88(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.34-2.39(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.70(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}-5)$, $3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.77(1 \mathrm{H}, \mathrm{dt}, J=15.6,1.7 \mathrm{~Hz}, \mathrm{H}-2), 6.88(1 \mathrm{H}, \mathrm{dt}, J=15.6,7.1 \mathrm{~Hz}$, $\mathrm{H}-3) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-6.93\left(\mathrm{SiMe}_{2}\right), 16.6\left(\mathrm{CMe}_{3}\right), 24.6(\mathrm{C}-4), 26.5$ $\left(\mathrm{CMe}_{3}\right), 48.2$ (C-5), 51.6 (OMe), 121.4 (C-2), 148.4 (C-3), $167.0\left(\mathrm{CO}_{2} \mathrm{Me}\right), 244.9$ ($\mathrm{SiC}=\mathrm{O}$). HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si} 256.1495$, found 256.1479.
(10) Miller, J. A.; Zweifel, G. Synthesis 1981, 288-289.
(11) Yoshizaki, H.; Tanaka, T.; Yoshii, E.; Koizumi, T.; Takeda, K. Tetrahedron Lett. 1998, 39, 47-50.
(12) General procedure for the tandem Brook rearrangement-Michael reaction using phenyllithium. Reaction of $\mathbf{1 4 a}$ with phenyllithium. To a cooled $\left(-80^{\circ} \mathrm{C}\right)$ solution of 14a ($142 \mathrm{mg}, 0.50 \mathrm{mmol}$) in THF (50 mL) was added phenyllithium (1.07 M in cyclohexane- $\left.\mathrm{Et}_{2} \mathrm{O}, 514 \mu \mathrm{~L}, 0.550 \mathrm{mmol}\right)$. The solution was stirred at the same temperature for 30 min , and then allowed to warm to $-30^{\circ} \mathrm{C}$ before the addition of $\mathrm{AcOH}(32 \mu \mathrm{~L}, 0.550 \mathrm{mmol})$ in THF (2 mL). The reaction mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL), and then extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 1,10 \mathrm{~mL} x$ 2). Combined organic phases were washed with saturated brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residual oil was subjected to column chromatography (silica gel, 15 g ; elution with 10:1 hexane:AcOEt) to give a 1.6:1 mixture of 16a and 17 a ($142 \mathrm{mg}, 79 \%$), which could be separated by medium pressure liquid chromatography (10μ silica gel). 16a a colorless oil, $R_{f}($ hexane $: \mathrm{AcOEt}=15: 1)=$ 0.32. IR (film) $1740 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.16$ and 0.08 (each 3 H , s, SiMe_{2}), 0.99 ($9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}$), 1.35-1.44 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), $1.45-1.55(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.58-1.64$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 1.69-1.74 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 1.76-1.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 1.88 ($1 \mathrm{H}, \mathrm{dm}, J=12.2$ $\mathrm{Hz}, \mathrm{H}-3)$, 2.15-2.23 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-3$, and $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$), $2.42(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$), 3.53 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 7.20-7.31 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.46-7.48 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-1.65$ and $-0.89\left(\mathrm{SiMe}_{2}\right), 19.5\left(\mathrm{CMe}_{3}\right), 22.7(\mathrm{C}-4), 24.7$ (C-5), $26.7\left(\mathrm{CMe}_{3}\right), 28.0(\mathrm{C}-6), 35.3\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 37.5(\mathrm{C}-3), 45.0(\mathrm{C}-1), 51.5(\mathrm{OMe})$, 79.1 (C-2), 126.7, 126.9, 127.8 and 146.3 (Ar), 174.5 (C=O). HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}-t-\mathrm{Bu}\right) 305.1573$, found 305.1575. 17a: a colorless oil, R_{f} (hexane : $\mathrm{AcOEt}=10: 1)=0.46$. IR (film) $1740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.10(6 \mathrm{H}$, $\mathrm{s}, \mathrm{SiMe}_{2}$), $0.90(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.36-1.59(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and H-4), 1.62-1.68 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 1.73 ($\left.1 \mathrm{H}, \mathrm{ddd}, J=15.4,3.5,0.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 1.77-1.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.94(1 \mathrm{H}$, ddd, $J=13.4,13.4,3.8 \mathrm{~Hz}, \mathrm{H}-6), 2.00(1 \mathrm{H}, \mathrm{dm}, J=13.4 \mathrm{~Hz}, \mathrm{H}-6), 2.17(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.15.4,11.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$, 2.14-2.22 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 2.63-2.68 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), 3.52 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 7.22-7.32 (3 H, m, Ar-H), 7.42 ($2 \mathrm{H}, \mathrm{d}, J=7.32 \mathrm{~Hz}$, Ar-H). ${ }^{13} \mathrm{C}$ NMR (125
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.35$ and $-2.17\left(\mathrm{SiMe}_{2}\right), 18.8\left(\mathrm{CMe}_{3}\right), 19.9(\mathrm{C}-4), 21.8(\mathrm{C}-5), 25.3(\mathrm{C}-$ 3), 26.3 ($\mathrm{CMe} e_{3}$), $31.3(\mathrm{C}-6), 34.2\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 42.9(\mathrm{C}-1), 51.6(\mathrm{OMe}), 76.8(\mathrm{C}-2)$, $126.6,127.5,128.2$, and $146.0(\mathrm{Ar}), 173.8(\mathrm{C}=\mathrm{O})$. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ 362.2277, found 362.2271 . 16b: a colorless oil, $R_{f}($ hexane $: \mathrm{AcOEt}=15: 1)=0.32$. IR (film) $1740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.14$ and 0.08 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.98(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.54-1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.81-1.94(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.95-2.02(1 \mathrm{H}, \mathrm{m}$, H-5), 2.10 (1 H , ddddd, $J=9.4,4.7,4.7,4.7,4.7 \mathrm{~Hz}, \mathrm{H}-3), 2.15-2.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1)$, 2.31 ($\left.1 \mathrm{H}, \mathrm{dd}, J=15.6,10.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$, $2.42(1 \mathrm{H}, \mathrm{dd}, J=15.6,4.1 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$), 2.41-2.48 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 3.53 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 7.19-7.32 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.42-7.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-2.58$ and $-2.27\left(\mathrm{SiMe}_{2}\right), 19.1$ $\left(\mathrm{CMe}_{3}\right), 21.9(\mathrm{C}-4), 26.5\left(\mathrm{CMe} e_{3}\right), 30.3(\mathrm{C}-5), 33.5\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 39.4(\mathrm{C}-3), 51.3(\mathrm{C}-1)$, 51.5 (OMe), 86.2 (C-2), 125.9, 126.7, 127.9, and 145.8 (Ar), 174.4 (C=O). HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si} 348.2121$, found 348.2152. 17b: a colorless oil, R_{f} (hexane : $\mathrm{AcOEt}=10$: 1) $=0.46$. IR (film) $1740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.41$ and -0.08 (each 3 $\mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), 0.86 ($9 \mathrm{H}, \mathrm{s}, t$-Bu), 1.35-1.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 1.61 ($1 \mathrm{H}, \mathrm{dd}, J=15.2,11.5$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 1.82-1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.91-1.99(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.02(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.15.2,3.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 2.04-2.10(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.14-2.21(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.22-2.28$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 2.65-2.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), 3.57 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 7.22-7.32 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.36-7.38 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-3.21 and $-2.61\left(\mathrm{SiMe}_{2}\right), 18.4$ (CMe_{3}), 21.0 (C-4), 26.1 ($\mathrm{CMe} e_{3}$), 28.5 (C-5), 35.2 (C-3), $36.8\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 48.9(\mathrm{C}-1)$, 51.6 (OMe), 87.1 (C-2), 127.5, 128.1, and 143.6 (Ar), 173.8 ($\mathrm{C}=\mathrm{O}$). HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si} 348.2121$, found 348.2091. 16c: a colorless oil, $R_{f}($ hexane : $\mathrm{AcOEt}=10: 1$) $=0.46$. IR (film) $1740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.46,-0.06$ (each 3 H , s, SiMe_{2}), 0.84 ($9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$), 1.61-1.68 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), $1.85-1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.27-2.33$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $2.59\left(1 \mathrm{H}, \mathrm{dd}, J=15.6,7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 2.74-2.85(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-3$), 2.88 ($1 \mathrm{H}, \mathrm{dd}, J=15.6,7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$), 3.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 7.23-7.27 (1 H , $\mathrm{m}, \mathrm{Ar}-\mathrm{H})$, 7.31-7.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.45-7.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-3.42$ and $-2.83\left(\mathrm{SiMe}_{2}\right), 18.3\left(\mathrm{CMe}_{3}\right), 20.1(\mathrm{C}-4), 26.0\left(\mathrm{CMe}_{3}\right), 31.9(\mathrm{C}-3)$, $35.3\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 45.5(\mathrm{C}-1), 51.5(\mathrm{OMe}), 78.6(\mathrm{C}-2), 126.3,127.3,128.2$, and 146.5 (Ar), $174.0(\mathrm{C}=\mathrm{O})$. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}-t\right.$ - Bu$)$ 277.1260, found 277.1254. 17c: a colorless oil, $R_{f}($ hexane : $\mathrm{AcOEt}=15: 1)=0.32$. IR (film) $1740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.24$ and -0.02 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.90(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.28-1.36$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), $1.50\left(1 \mathrm{H}, \mathrm{dd}, J=15.6,10.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 2.05-2.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4)$, $2.16\left(1 \mathrm{H}, \mathrm{dd}, J=15.6,4.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 2.31-2.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.68-2.72(1 \mathrm{H}$, m, H-3), 2.94-3.01 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), 3.57 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 7.24-7.27 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.32-7.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.38-7.41 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-2.81$ and -2.67 ($\left.\mathrm{SiMe}_{2}\right), 18.2\left(\mathrm{CMe}_{3}\right), 20.1(\mathrm{C}-4), 26.1\left(\mathrm{CMe}_{3}\right), 34.1(\mathrm{C}-3), 36.7\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$,
46.5 (C-1), 51.5 (OMe), 79.7 (C-2), 126.6, 127.3, 128.1, and 142.7 (Ar), 173.3 ($\mathrm{C}=\mathrm{O}$). HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$ 277.1260, found 277.1259.
(13) General procedure for the tandem Brook rearrangement-Michael reaction using lithium dimethyl phosphite. Reaction of $\mathbf{1 4 a}$ with lithium dimethyl phosphite. To a cooled (-80 ${ }^{\circ} \mathrm{C}$) solution of dimethyl phosphite ($50 \mathrm{~mL}, 0.550 \mathrm{mmol}$) in THF (2.6 mL) was added n butyllithium (1.33 M in hexane, $0.41 \mathrm{~mL}, 0.550 \mathrm{mmol}$). After being stirred at the same temperature for 15 min , the mixture was added to a cooled $\left(-80^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 4 a}(142$ $\mathrm{mg}, 0.500 \mathrm{mmol})$ in THF (50 mL). The solution was stirred at the same temperature for 30 min , and then allowed to warm to $-30^{\circ} \mathrm{C}$ before the addition of $\mathrm{AcOH}(32 \mu \mathrm{~L}, 0.550$ mmol) in THF (2 mL). The reaction mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL), and then extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 1,10 \mathrm{~mL} \times 2)$. Combined organic phases were washed with saturated brine (20 mL), dried (MgSO_{4}), and concentrated. The residual oil was subjected to column chromatography (silica gel, 15 g ; elution with 1:2 hexane:AcOEt) to give a 2.0:1 mixture of 20a and 21a ($137 \mathrm{mg}, 69 \%$), which could be separated by medium pressure liquid chromatography (10μ silica gel). 20a: a colorless oil, $R_{f}($ hexane : $\mathrm{AcOEt}=1: 2)=0.32$. IR (film) $1735 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.15\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.91(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.24-1.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.35-$ 1.44 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 1.46-1.60 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and H-6), 1.62-1.69 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and H-5), 2.04-2.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $2.15\left(1 \mathrm{H}, \mathrm{dd}, J=16.2,10.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 2.20-2.25(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-1), 3.16\left(1 \mathrm{H}, \mathrm{dd}, J=16.2,2.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.72(3 \mathrm{H}$, $\left.\mathrm{d}, J_{\mathrm{H}-\mathrm{P}}=10.5 \mathrm{~Hz}, \mathrm{P}(\mathrm{OMe})_{2}\right), 3.78\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}-\mathrm{P}}=10.3 \mathrm{~Hz}, \mathrm{P}(\mathrm{OMe})_{2}\right) .{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.11$ and $-2.50\left(\mathrm{SiMe}_{2}\right), 19.5\left(\mathrm{CMe}_{3}\right), 20.1(\mathrm{C}-4), 25.3(\mathrm{C}-5), 26.4$ $\left(\mathrm{CMe}_{3}\right), 27.8(\mathrm{C}-6), 33.3(\mathrm{C}-3), 37.2\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 39.3(\mathrm{C}-1), 51.6\left(\mathrm{CO}_{2} \mathrm{Me}\right), 52.0\left(J_{\mathrm{C}-\mathrm{P}}\right.$ $\left.=8.3 \mathrm{~Hz}, \mathrm{P}(\mathrm{OMe})_{2}\right), 53.6\left(J_{\mathrm{C}-\mathrm{P}}=7.4 \mathrm{~Hz}, \mathrm{P}(\mathrm{OMe})_{2}\right), 77.9(\mathrm{C}-2), 174.2(\mathrm{C}=\mathrm{O})$. HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{PSi} 394.1941$, found 394.1961. 20b: a colorless oil, R_{f} (hexane : $\mathrm{AcOEt}=2: 1)=0.27$. $\mathrm{IR}($ film $) 1740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.13$ and 0.15 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), 0.87 ($9 \mathrm{H}, \mathrm{s}, t$-Bu), 1.37-1.46 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 1.58-1.67 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 4), 1.74-1.82 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 1.87-1.93 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 1.99-2.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 2.16-2.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $2.27\left(1 \mathrm{H}, \mathrm{dd}, J=16.2,10.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 2.46-2.54(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1)$, $2.86\left(1 \mathrm{H}, \mathrm{dd}, J=16.2,3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.74\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}-\mathrm{P}}=\right.$ $\left.10.5 \mathrm{~Hz}, \mathrm{P}(\mathrm{OMe})_{2}\right), 3.78\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}-\mathrm{P}}=10.5 \mathrm{~Hz}, \mathrm{P}(\mathrm{OMe})_{2}\right) .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-3.10$ and $-2.77\left(\mathrm{SiMe}_{2}\right), 19.0\left(\mathrm{CMe}_{3}\right), 22.4(\mathrm{C}-4), 26.0\left(\mathrm{CMe}_{3}\right), 30.9(\mathrm{C}-5)$, $34.7\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$, $36.8(\mathrm{C}-3), 44.3(\mathrm{C}-1), 51.7\left(\mathrm{CO}_{2} \mathrm{Me}\right), 52.7\left(\mathrm{P}(\mathrm{OMe})_{2}\right), 53.4$ $\left(\mathrm{P}(\mathrm{OMe})_{2}\right), 82.9(\mathrm{C}-2), 174.1(\mathrm{C}=\mathrm{O})$. HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{PSi} 380.1784$, found 380.1764. 20c: a colorless oil, R_{f} (hexane : $\mathrm{AcOEt}=1: 2$) $=0.25$. IR (film) $1740 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.08$ and -0.03 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.67(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu})$, 1.39-1.46 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 1.92-2.06 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-4$), $2.23(1 \mathrm{H}, \mathrm{dd}, J=16.0,9.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 2.32-2.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.45\left(1 \mathrm{H}, \mathrm{dd}, J=16.0,6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$,
2.94-3.01 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), $3.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.56\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}-\mathrm{P}}=10.5 \mathrm{~Hz}, \mathrm{P}(\mathrm{OMe})_{2}\right)$, $3.60\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}-\mathrm{P}}=10.5 \mathrm{~Hz}, \mathrm{P}(\mathrm{OMe})_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.29$ and -2.54 $\left(\mathrm{SiMe}_{2}\right), 18.6\left(\mathrm{CMe}_{3}\right), 21.3(\mathrm{C}-4), 25.9(\mathrm{CMe} 3), 31.2(\mathrm{C}-3), 34.8\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 38.9(\mathrm{C}-$ 1), $51.6\left(\mathrm{CO}_{2} \mathrm{Me}\right), 53.1\left(\mathrm{P}(\mathrm{OMe})_{2}\right), 73.9(\mathrm{C}-2), 173.0(\mathrm{C}=\mathrm{O})$. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{PSi} 366.1628$, found 366.1652 .

Enantioselective Reduction of α, β-Unsaturated Acylsilanes by Chiral Lithium Amides

Kei Takeda, ${ }^{*}$ Yuji Ohnishi, Toru Koizumi

Faculty of Pharmaceutical Sciences
Toyama Medical and Pharmaceutical University
2630 Sugitani, Toyama 930-0194, Japan

During our investigation of the mechanism of the Brook rearrangement-mediated [3+4] annulation, ${ }^{1}$ we observed that treatment of α-silyl- β-ketoalcohol 1 with LDA (1 equiv) afforded α silylalcohol 2 in 16% yield in addition to cycloheptenone 4 (37\%), and 3-nonen-2-one (3) (36\%). ${ }^{2}$ The formation of $\mathbf{2}$ suggests that reduction of acryloylsilane $\mathbf{5}$, a retro aldol product, by LDA via the hydride transfer of the Meerwein-Ponndorf-Verley type occurred at $-80^{\circ} \mathrm{C}$.

Scheme 1

5
Although there have been reports on the reduction of a carbonyl group by LDA, ${ }^{3}$ the ability of LDA as a reducing agent has attracted far less attention and there has been no report concerning the reduction of α, β-unsaturated acylsilanes by LDA. Therefore, we first examined the reduction of acylsilanes by LDA. When acryloylsilanes $\mathbf{6}^{4}$ were treated with 1 equiv of LDA in THF at $-80^{\circ} \mathrm{C}$ for 30 to 60 min , the corresponding α-silylalcohols 7 were obtained in yields depending on the β substituent. Thus, the substrates bearing no γ-hydrogen being abstracted afforded better yields of 7 (Table 1, entries 5-9), whereas in the case of the substrate with γ-hydrogen, significant amounts of the starting acryloylsilane were recovered, suggesting the competitive formation of dienolate in the latter cases. ${ }^{51}$

Table 1

					yield (\%)
entry	6	X	conditions	7	recovery of 6
1	a	Me	$-80^{\circ} \mathrm{C}, 30 \mathrm{~min}$	49	50
2		$i-\mathrm{Pr}$	$-80^{\circ} \mathrm{C}, 30 \mathrm{~min}$	64	30
3		$c-\mathrm{C}_{6} \mathrm{H}_{11}$	$-80^{\circ} \mathrm{C}, 30 \mathrm{~min}$	58	37
4		$c-\mathrm{C}_{3} \mathrm{H}_{5}$	$-80^{\circ} \mathrm{C}, 30 \mathrm{~min}$	36	56
5		t-Bu	$-80^{\circ} \mathrm{C}, 60 \mathrm{~min}$	93	3
6		SiMe_{3}	$-80^{\circ} \mathrm{C}, 30 \mathrm{~min}$	67	-
7		$\mathrm{SiMe}_{2} \mathrm{Ph}$	$-80^{\circ} \mathrm{C}, 60 \mathrm{~min}$	81	-
8		SiMePh_{2}	$-80^{\circ} \mathrm{C}, 60 \mathrm{~min}$	82	-
9		SiPh_{3}	$-80^{\circ} \mathrm{C}, 30 \mathrm{~min}$	88	-
10		H	$-80^{\circ} \mathrm{C}, 30 \mathrm{~min}$	26	-

On the basis of the above result, we envisioned that the use of lithium amide of chiral secondary amines instead of LDA would offer the possibility of enantioselective reduction. To the best of our knowledge, there are only two reports in the literature on the enantioselective reduction of a carbonyl group via formal hydride transfer from chiral lithium amides. In 1969 Wittig and Thiele reported the enantioselective reduction of phenyl α-naphthyl ketone by lithium $(R)-(-)-\alpha$-phenylethylanilide to give the corresponding alcohol in 25% yield and ee less than $60 \% .{ }^{6}$ Cervinka and co-workers used (S)-(+)-2-methylpiperidine as a chiral source in the reaction with diaryl ketones with little success. ${ }^{7}$ Since α-hydroxysilanes have shown promise as versatile synthons for synthetically useful transformations, the generation of such spieces in enatiomerically pure form would be desirable. ${ }^{89,10}$ We first examined the enantioselective reduction by several known lithium amides $\mathbf{8}$ $12{ }^{11}$ using 6 e as a substrate. Among the five lithium amides examined, $\mathbf{1 2}$ gave the best result in terms of chemical and optical yields; that is, the reaction proceeded smoothly to give alcohol $\mathbf{1 3}$ with excellent optical purity. Assignment of absolute configuration of $\mathbf{1 3}$ was made by the method of Trost ${ }^{12}$ using O-methylmandelate and the modified Mosher method. ${ }^{13}$ Changes in the solvent from THF to THF-HMPA (3 equiv) or toluene caused a decrease in chemical yield and/or ee.

8

11

9

Table 2. Enantioselective Reduction of 6e

lithium amide	temperature	yield (\%)	ee (\%) ${ }^{b}$
$\mathbf{8}$	$-80^{\circ} \mathrm{C}$ to $-15^{\circ} \mathrm{C}$	16^{a}	66
9	$-80^{\circ} \mathrm{C}$ to $-15^{\circ} \mathrm{C}$	55	57
10	$-80^{\circ} \mathrm{C}$	85	9
11	$-80^{\circ} \mathrm{C}$	99	14
12	$-80^{\circ} \mathrm{C}$	88	>99

${ }^{a} 63 \%$ of $\mathbf{6 e}$ was recovered. ${ }^{b}$ Enantiomeric purity was determined by chiral HPLC assay (Daicel Chiralcel-OD)

Encouraged by these results, we examined the enantioselective reduction of some $\alpha . \beta$ unsaturated acylsilanes, including cycloalkenylcarbonylsilanes, by 14 . The results are summarized in Table 4. Although the chemical yields depended upon the presence of an abstractable γ-hydrogen, as was the case for LDA, α-silylalcohol 16 was obtained in excellent optical yield. Unfortunately, β silyl derivatives $6 e-g$ produced a complex mixture in sharp contrast to the case of LDA. Elevated reaction temperatures and/or longer reaction times resulted in the Brook rearrangement and in some cases followed by allylic rearrangement of the generated carbanion.

Table 3. Asymmetric Reduction of α, β-Unsaturated Acylsilanes 6

			$\xrightarrow[\substack{\text { THF } \\-80^{\circ} \mathrm{C}, 30 \text { min }}]{12}$			
	R^{1}	R^{2}	R^{3}	yield (\%)	ee (\%)	$\begin{gathered} \hline \text { recovery c } \\ 6 \end{gathered}$
6a	Me	H	$\mathrm{Bu}^{\text {t }}$	31	>99 ${ }^{\text {b }}$	53
6b	$i-\mathrm{Pr}$	H	$B u^{t}$	55	$>99{ }^{\text {b }}$	4
6 c	$c-\mathrm{C}_{6} \mathrm{H}_{11}$	H	$\mathrm{Bu}^{\text {t }}$	55	>99 ${ }^{\text {b }}$	32
6d	$\mathrm{c}_{-} \mathrm{C}_{3} \mathrm{H}_{5}$		$\mathrm{Bu}^{\text {t }}$	68	$>99^{b}$	13
6k	$-\left(\mathrm{CH}_{2}\right)_{3}$		Ph	63	$>99{ }^{\text {c }}$	37
61	-($\left.\mathrm{CH}_{2}\right)_{4}$		Ph	55	>99 ${ }^{\text {c }}$	41
6 m	-($\left.\mathrm{CH}_{2}\right)_{5}$		Ph	61	$>99{ }^{\text {c }}$	34

${ }^{a}$ Absolute configuration was assigned by analogy with $\mathbf{1 3}$.
${ }^{b}$ Enantiomeric purity was determined by chiral HPLC assay (Daicel
Chiralcel-OD and Chiralcel-OJ). ${ }^{c}$ Enantiomeric purity was
determined by ${ }^{1}$ H NMR spectra after conversion into the
corresponding Mosher's esters

This method was applicable to benzoylsilanes 15a-b and nonenolizable phenyl ketones $15 \mathbf{c} \mathbf{- d}$, albeit in lower chemical and optical yields.

Table 4

${ }^{a}$ Enantiomeric purity was determined by chiral HPLC assay (Daicel Chiralcel-OD and Chiralcel-OJ). ${ }^{b}$ Absolute configuration was assigned by comparison of the sign of optical rotation with reported value. ${ }^{14,15} c$ Absolute configuration was assigned by analogy with 16a. ${ }^{d}$ Commercially available.

Although the enantioselectivity can be interpreted as being the result of a process via a sixmembered transition state 17 in which the silyl and the chelated piperazinylmethyl groups occupy an axial position, the precise mechanism is not known and is now under investigation. ${ }^{16}$

In conclusion, we have found that the lithium amide of chiral secondary am^{17} ines can serve as the chiral source in the enantioselective reduction of a carbonyl group, especially α, β-unsaturated acylsilanes. In this method, α-silylalcohols can be obtained in an optically pure form even if the chemical yield is not so good because, in most cases, the α-silylalcohol is only a product and can be easily separated from the recovered acylsilanes. Investigation of the potential application, especially the use of acryloylsilanes as a chiral homoenolate equivalent using a tandem reaction sequence involving enantioselective reduction, and Brook and allylic rearrangements is underway.

Acknowledgment This research was partially supported by a grant-in-aid for Scientific Research (No. 10671986) from the Japanese Ministry of Education, Sciences, Sports and Culture, and the Ciba-Geigy Foundation (Japan) for the Promotion of Science.

Supporting Information Available: Full experimental details and characterization data for all new compounds described in the text (7 pages, PDF). This material is available free of charge via the Internet at http://pubs.acs.org.
(1) Takeda, K.; Takeda, M.; Nakajima, A.; Yoshii, E. J. Am. Chem. Soc. 1995, 117, 6400-6401.
(2) Takeda, K.; Nakajima, A.; Takeda, M.; Okamoto, Y.; Sato, T.; Yoshii, E.; Koizumi, T.; Shiro, M. J. Am. Chem. Soc. 1998, 120, 4947-4959.
(3) For a review of reduction with lithium dialkylamides including LDA, see: Majewski, M.; Gleave, D. M. J. Organomet. Chem. 1994, 470, 1-16.
(4) Compounds 6a-e and $\mathbf{6 f} \mathbf{- j}$ were prepared according to the methods of Danheiser and Reich, respectively. (a) Danheiser, R. L.; Nowick, J. S. J. Org. Chem. 1989, 54, 2798-2802. (b) Reich, H. J.; Kelly, M. J.; Olson, R. E.; Holtan, R. C. Tetrahedron 1983, 39, 949-960.
(5) The formation of 1,2 - and/or 1,4 -adducts of the amide to the α, β-unsaturated acylsilanes leading to the recovery of the starting material cannot be ruled out. (a) Kowalski, C.; Creary, X.; Rollin, A. J.; Burke, M. C. J. Org. Chem. 1978, 43, 2601-2608. (b) Herrmann, J. L.; Kieczykowski, G. R.; Schlessinger, R. H. Tetrahedron Lett. 1973, 2433-2436.
(6) Wittig, G.; Thiele, U. Liebigs Ann. Chem. 1969, 726, 1-12.
(9) For asymmetric reduction of acylsilanes, see: microbial reduction; (a) Linderman, R. J.; Ghannam, A.; Badej, I. J. Org. Chem. 1991, 56, 5213-5216. (b) Tacke, R.; in Organosilicon and Bioorganosilicon Chemistry; Sakurai, H. Ed.; Ellis Horwood: New York, 1985, pp 252-262. use of chiral borans; (b) Buynak, J. D.; Stickland, J. B.; Hurd, T.; Phan, A. J. Chem. Soc. Chem. Commun. 1989, 89-90. (c) Buynak, J. D.; Zhang, H.; Strickland, J. B.; Lamb, G. W.; Khasnis, D.; Modi, S.; Williams, D. J. Org. Chem., 1991, 56, 7076-7083. (d) Soderquist, J. A.; Anderson, C. L.; Miranda, E. L.; Rivera, I; Kabalka, G. W. Tetrahedron Lett.1990, 31, 4677-4680. Also, see: (e) Cirillo, P. F.; Panek, J. S. Org. Prep. Proc. Int. 1992, 24, 553-582.
(10) (a) Cirillo, P. F.; Panek, J. S. J. Org. Chem., 1994, 59, 3055-3063. (b) Sakaguchi, K.; Mano, H.; Ohfune, Y. Tetrahedron Lett. 1998, 39, 4311-4312.
(11) Compounds $\mathbf{8}$ and $\mathbf{9}$ are commercially available. Compounds 10, 11, and $\mathbf{1 2}$ were prepared according to literature methods. (a) Sone, T.; Hiroi, K.; Yamada, S. Chem. Pharm. Bull. 1973, 21, 2331-2335. (b) Shirai, R.; Aoki, K.; Sato, D.; Kim, H.-D., Murakata, T.; Koga, K. Chem. Pharm. Bull. 1994, 42, 690-693. For a review on the use of the chiral lithium amides in asymmetric synthesis, see: (c) Cox, P. J.; Simpkins, N. S. Tetrahedron: Asymmetry 1991, 2, 1-26.
(12) Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.; Balkovec, J. M.; Baldwin, J. J.; Christy, E. E.; Ponticello, G. S.; Varga, S. L.; Springer, J. P. J. Org. Chem. 1986, 51, 2370-2374. (13) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 40924096.
(14) Seebach, D.; Beck, A. K.; Roggo, S.; Wonnacott, A. Chem. Ber. 1985, 118, 3673-3682.
(15) Wright, A.; West, R. J. Am. Chem. Soc. 1974, 96, 3227-3232.
(16) For a mechanistic discussion on the reduction with lithium amides, see ref. 3. Although the placement of the large silyl group at the axial position seems unlikely, the preference for the axial conformation of silyl group relative to methyl group, which was ascribed to the reduced steric interactions due to the longer C-Si bond compared to the C-C bond, was reported; Cho, S-G.; Rim, O-K.; Kim, Y-S. Theochem 1996, 364, 59-68.

Enantioselective Reduction of α, β-Unsaturated Acylsilanes by Chiral Lithium Amides

Kei Takeda,* Yuji Ohnishi, Toru Koizumi

Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University 2630 Sugitani, Toyama, 930-0194, Japan

Supporting Information

Experimental Section

General: IR spectra were recorded on a Perkin-Elmer FT1640 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were taken on Varian UnityPlus $500(500 \mathrm{MHz})$ in CDCl_{3} with reference to $\mathrm{CHCl}_{3}(\delta 7.26) .{ }^{13} \mathrm{C}$ NMR spectra were measured with Varian UnityPlus $500(125 \mathrm{MHz})$ in CDCl_{3} with reference to the CDCl_{3} triplet (δ 77.2). Resonance patterns were described as $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, and $\mathrm{br}=$ broad. Low-and high-resolution mass spectra (EI-MS) were obtained with a JEOL JMS-D-300 spectrometer combined with a JEOL JMA-2000 data processing system. For chromatography, the following adsorbents were used: Fuji-Davison silica gel BW-200 (150-325 mesh) for column chromatography; Merck precoated silica gel 60 F- 254 plates for analytical thin-layer chromatography. All moisture sensitive reactions were performed under a positive pressure of nitrogen. Anhydrous MgSO_{4} was used for drying all organic solvent extracts in workup, and the removal of the solvents was performed with a rotary evaporator. Dry solvents and reagents were obtained by using standard procedures. Melting points (uncorrected) were determined by using a Yanagimoto micro-melting point apparatus. Elemental combustion analysis was performed at the Microanalysis Laboratory of this University.
(E)-tert-Butyldimethylsilyl 2-(Methyldiphenylsilyl)ethenyl Ketone (6h) This compound was prepared according to the procedure for 2-trimethylsilyl derivative by Reich. ${ }^{1}$ yellow oil, $R_{f}=0.30$ (hexane-AcOEt $=20: 1$). IR (film) $1600 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 0.24\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.70(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.93$ $(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 6.76(1 \mathrm{H}, \mathrm{d}, J=19.0 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{d}, J=19.0), 7.34-7.52(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR $\delta-5.8$ $\left(\mathrm{SiMe}_{2}\right),-4.0(\mathrm{SiMe}), 16.9\left(\mathrm{CMe}_{3}\right), 26.8(t-\mathrm{Bu}), 128.1,129.8,134.9,134.9,135.0,140.5$ and $150.0(\mathrm{Ar})$, $236.5(\mathrm{C}=\mathrm{O})$. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{OSi}_{2}$: C, 72.07 ; $\mathrm{H}, 8.25$, found: $\mathrm{C}, 71.72 ; \mathrm{H}, 8.42$.
(E)-tert-Butyldimethylsilyl 2-(Triphenylsilyl)ethenyl Ketone (6i) This compound was prepared according to the procedure for 2-trimethylsilyl derivative. yellow needles, $R_{f}=0.26$ (hexane- $\mathrm{AcOEt}=30$

[^0]: 1). IR (KBr) $1595 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 0.23\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.92(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 6.78(1 \mathrm{H}, \mathrm{d}, J=19.0 \mathrm{~Hz})$, $6.28(1 \mathrm{H}, \mathrm{d}, J=19.0), 7.37-7.53(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR $\delta-5.8\left(\mathrm{SiMe}_{2}\right), 16.9\left(\mathrm{CMe}_{3}\right), 26.8(t-\mathrm{Bu}), 128.3$, 130.2, 133.1 and 136.1 (Ar), $138.4(\mathrm{C}-3)$, $151.1(\mathrm{C}-2), 236.5(\mathrm{C}=\mathrm{O})$. MS, $m / e, 428\left(\mathrm{M}^{+}\right)$, 259 (base peak). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{OSi}_{2}$: C, 75.64; H, 7.52, found: C, 75.40; H, 7.45.
tert-Butyldimethylsilyl Ethenyl Ketone ($\mathbf{6 j}$) This compound was prepared according to the procedure for trimethylsilyl derivative. colorless oil, IR (film) $1600 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 0.24\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.93(9 \mathrm{H}$, $\mathrm{s}, t-\mathrm{Bu}), 5.77(1 \mathrm{H}, \mathrm{dd}, J=10.8,1.3 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}), 6.03(1 \mathrm{H}, \mathrm{dd}, J=17.7,1.3 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 6.57(1 \mathrm{H}, \mathrm{dd}, J=$ $17.7,10.8 \mathrm{~Hz}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR $\delta-5.9\left(\mathrm{SiMe}_{2}\right), 16.8\left(\mathrm{CMe}_{3}\right), 26.7(t-\mathrm{Bu}), 126.8(\mathrm{C}-3), 141.7(\mathrm{C}-2), 237.3$ $(\mathrm{C}=\mathrm{O})$. HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{OSi}\left(\mathrm{M}^{+}+1\right) 171.1205$ found 171.1204.

Cycloheptenecarbonyl(dimethyl)phenylsilane ($\mathbf{6 m}$) To a mixture of cycloheptanone ($15.0 \mathrm{~g}, 0.134$ mol) and $\mathrm{Me}_{3} \mathrm{SiCN}(17.3 \mathrm{~g}, 23.2 \mathrm{~mL}, 0.174 \mathrm{~mol})$ in benzene (50 mL) was added zinc iodide ($1.00 \mathrm{~g}, 3.13$ $\mathrm{mmol})$. After the reaction mixture was stirred at room temperature for $1 \mathrm{~h}, \mathrm{POCl}_{3}(60.0 \mathrm{~g}, 0.991 \mathrm{~mol})$ and pyridine (200 mL) were added, and then the mixture was refluxed for 5 h . The cooled dark solution was poured into ice-10\% hydrochloric acid (900 mL), and extracted with ether ($800 \mathrm{~mL} \times 3$). The combined organic phases were washed with saturated brine (800 mL), dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 400 g ; elution with hexane- $\mathrm{AcOEt}=20: 1$) to give 1 -cyano-1-cycloheptene ($12.9 \mathrm{~g}, 79 \%$) as a colorless oil.

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 1-cyano-1-cycloheptene ($\left.10 \mathrm{~g}, 85.2 \mathrm{mmol}\right)$ in $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added dropwise diisobutylaluminium hydride (0.94 M hexane solution, $100 \mathrm{~mL}, 94 \mathrm{mmol}$) over 20 min . After the reaction mixture was stirred for 1 h , the reaction was quenched by addition of $\mathrm{MeOH}(100 \mathrm{~mL})$ followed by stirring at room temperature for 1 h . The mixture was filtered through a plug of Celite, and the filtrate was concentrated in vacuo. The residual oil was diluted with THF (300 mL), and then oxalic acid (10% aqueous solution, 300 mL) was added at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 20 min , the mixture was poured into $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{~mL})$, and extracted with ether ($600 \mathrm{~mL} x 3$). The combined organic phases were washed with saturated brine (400 mL), dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 500 g ; elution with hexane $-\mathrm{AcOEt}=20: 1$) to give 1 cycloheptenecarboxaldehyde ($6.8 \mathrm{~g}, 64 \%$, as a colorless oil).

To a cooled $\left(-80^{\circ} \mathrm{C}\right)$ solution of $\mathrm{PhMe}_{2} \mathrm{SiLi}^{2}(0.37 \mathrm{M}$ in THF, $164 \mathrm{~mL}, 60.7 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ was added dropwise 1-cycloheptenecarboxaldehyde ($6.8 \mathrm{~g}, 54.8 \mathrm{mmol}$). The solution was allowed to warm to $0{ }^{\circ} \mathrm{C}$ over 2 h , and then quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (300 mL). The mixture was diluted with water $(200 \mathrm{~mL})$, and then extracted with $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL} x 3)$. The combined organic

[^1]phases were washed with saturated brine (500 mL), dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 400 g ; elution with hexane- $\mathrm{AcOEt}=20: 1$) to give cycloheptenyl(dimethylphenylsilyl)methanol $\left(12.6 \mathrm{~g}, 88 \%\right.$ as an yellow oil). $R_{f}=0.17$ (hexane-AcOEt $=$ 30 : 1). IR (film) $3455 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 0.35$ and 0.37 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), 1.33-1.48 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and H6), 1.67-1.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 1.90-1.99 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 2.06-2.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $4.02(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 5.63$ $(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{H}-2), 7.35-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.58-7.64(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR $\delta-5.0$ and -4.5 (SiMe_{2}), 27.0 (C-4), 27.5 (C-6), 28.5 (C-3), 31.5 (C-7), 32.8 (C-5), 72.3 (CHOH), 123.7 (C-2), 127.9, 129.4, 134.3 and 137.2 (Ar), 146.6 (C-1). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{OSi} 260.1596$ found 260.1604.

A solution of cycloheptenyl(dimethylphenylsilyl)methanol ($6.0 \mathrm{~g}, 23.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was added at $-60^{\circ} \mathrm{C}$ over 10 min to a solution of chloro(dimethyl)sulfonium chloride, which was prepared by dropwise addition of solution of DMSO ($3.6 \mathrm{~g}, 3.27 \mathrm{~mL}, 46.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ to a cooled (-70 ${ }^{\circ} \mathrm{C}$) solution of oxalyl chloride ($3.2 \mathrm{~g}, 2.2 \mathrm{~mL}, 25.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ over 5 min , followed by stirring at -60 to $-70^{\circ} \mathrm{C}$ for 30 min . After stirring at ca. $-65^{\circ} \mathrm{C}$ for 30 min , triethylamine $(11.6 \mathrm{~g}, 16 \mathrm{~mL}$, 1.15 mmol) was added. The solution was allowed to warm to room temperature over 30 min . The mixture was diluted with water (100 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL} \times 2)$. The combined organic phases were washed with saturated brine (75 mL), dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 550 g ; elution with hexane-AcOEt $=30: 1$) to give cycloheptenecarbonyl(dimethyl)phenylsilane ($5.8 \mathrm{~g}, 98 \%$) as an yellow oil, which solidified on keeping in a refrigerator. Yellow prisms, $\mathrm{mp} 62-64^{\circ} \mathrm{C}$ (hexane). $R_{f}=0.33$ (hexane- $\mathrm{AcOEt}=30: 1$). IR (KBr) $1575 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 0.52$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), 1.38-1.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 1.46-1.51 (2H, m, H-4), 1.79-1.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 2.25-2.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 2.36-2.40 ($2 \mathrm{H}, \mathrm{H}-7$), $6.92(1 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{H}-2), 7.34-7.54(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.50-7.54$ (2H, m, Ar). ${ }^{13} \mathrm{C}$ NMR δ-2.2 (SiMe_{2}), 23.9 (C-7), 25.9 (C-6), 26.1 (C-4), 29.4 (C-3), 32.0 (C-5), 127.9, 129.3, 133.7 and 136.9 (Ar), 151.8 (C-2), $152.0(\mathrm{C}-1), 232.6(\mathrm{C}=\mathrm{O})$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{OSi}$: C, 74.36; H, 8.58, found: C, 74.27; H, 8.65.

General Procedure for LDA reduction To a cooled $\left(-80^{\circ} \mathrm{C}\right)$ solution of $\beta-t$-butylacryloylsilane $\mathbf{6 e}$ ($96 \mathrm{mg}, 0.424 \mathrm{mmol}$) in THF (4.2 mL) was added dropwise a solution of lithium diisopropylamide (LDA), prepared from diisopropylamine ($77.2 \mu \mathrm{~L}, 55.8 \mathrm{mg}, 0.551 \mathrm{mmol}$) and $n-\mathrm{BuLi}(1.46 \mathrm{M}$ in hexane, $378 \mu \mathrm{~L}, 0.551 \mathrm{mmol})$ in THF (0.8 mL). After the solution was stirred at $-80^{\circ} \mathrm{C}$ for 30 min , a solution of acetic acid ($33 \mathrm{mg}, 0.55 \mathrm{mmol}$) in THF (2 mL) was added rapidly in one portion. The reaction mixture was poured into half saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 3)$. The combined organic phases were washed with saturated brine (30 mL), dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 10 g ; elution with hexane- $\mathrm{AcOEt}=$ 30:1) to give corresponding alcohol $7 \mathrm{e}(90.0 \mathrm{mg}, 93 \%)$.
$7 \mathbf{7 a}(\mathbf{X}=\mathbf{M e})$ colorless oil, $R_{f}=0.22$ (hexane-AcOEt $=30: 1$). IR (film) $3450 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta-0.06$ and 0.01 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.94(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.71(3 \mathrm{H}, \mathrm{dt}, J=6.4,1.5 \mathrm{~Hz}, \mathrm{H}-4), 4.05(1 \mathrm{H}, \mathrm{ddq}, J=$ $7.1,1.5,1.5 \mathrm{~Hz}, \mathrm{H}-1), 5.50(1 \mathrm{H}, \mathrm{dqd}, J=15.3,6.4,1.5 \mathrm{~Hz}, \mathrm{H}-3), 5.65(1 \mathrm{H}, \mathrm{ddq}, J=15.3,7.1,1.5 \mathrm{~Hz}, \mathrm{H}-$ 2). ${ }^{13} \mathrm{C}$ NMR $\delta-8.7$ and- $7.5\left(\mathrm{SiMe}_{2}\right), 17.1\left(\mathrm{CMe}_{3}\right), 18.1$ and $27.1(t-\mathrm{Bu}), 67.1(\mathrm{C}-1), 122.5(\mathrm{C}-3), 133.4$ (C-2). HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{OSi} 186.1440$ found 186.1424.

7b ($\mathbf{X}=\boldsymbol{i}-\mathbf{P r}$) colorless oil, $R_{f}=0.22$ (hexane- $\mathrm{AcOEt}=28: 1$). IR (film) $3455 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta-0.06$ and 0.00 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.94(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 0.98$ and $0.99(6 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 2.31(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4)$, $4.06(1 \mathrm{H}, \mathrm{ddd}, J=0.9,1.5,6.8 \mathrm{~Hz}, \mathrm{H}-1), 5.45(1 \mathrm{H}, \mathrm{ddd}, J=1.5,6.6,15.4 \mathrm{~Hz}, \mathrm{H}-3), 5.59(1 \mathrm{H}, \operatorname{ddd}, J=$ $1.1,6.8,15.4 \mathrm{~Hz}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR $\delta-8.7$ and- $7.5\left(\mathrm{SiMe}_{2}\right), 17.2\left(\mathrm{CMe}_{3}\right), 22.8$ and $27.2(t-\mathrm{Bu}), 31.2(\mathrm{C}-4)$, $67.0(\mathrm{C}-1), 129.3(\mathrm{C}-2), 134.9(\mathrm{C}-3)$. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{OSi} 213.1675\left(\mathrm{M}^{+}-1\right)$ found 213.1665.
$7 \mathbf{c}\left(\mathbf{X}=\boldsymbol{c}-\mathbf{C}_{6} \mathbf{H}_{11}\right)$ colorless oil, $R_{f}=0.32$ (hexane- $\mathrm{AcOEt}=30: 1$). IR (film) $3455 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR δ 0.07 and -0.01 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.94(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 0.95-1.28$ and $1.62-1.73\left(10 \mathrm{H}, \mathrm{m}, c-\mathrm{C}_{6} \mathrm{H}_{11}\right), 1.97$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), $4.06(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=6.8, \mathrm{H}-1), 5.43(1 \mathrm{H}, \mathrm{ddd}, J=15.4,6.6,1.5 \mathrm{~Hz}, \mathrm{H}-3), 5.58(1 \mathrm{H}, \mathrm{ddd}, J=$ $15.4,6.8,1.3 \mathrm{~Hz}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR $\delta-8.7$ and-7.4 $\left(\mathrm{SiMe}_{2}\right), 17.2\left(\mathrm{CMe}_{3}\right), 27.2(t-\mathrm{Bu}), 26.4$ and $33.4(c-$ $\mathrm{C}_{6} \mathrm{H}_{11}$), 40.8 (C-4), $67.1(\mathrm{C}-1), 129.7(\mathrm{C}-2), 133.7$ (C-3). HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{OSi} 254.2066$ found 254.2063.
$\mathbf{7 d}\left(\mathbf{X}=\boldsymbol{c}-\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{5}}\right)$ colorless oil, $R_{f}=0.23$ (hexane- $\mathrm{AcOEt}=30: 1$).IR (film) $3455 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta-0.06$ and 0.00 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), 0.33 and 0.68 (each $\left.2 \mathrm{H}, \mathrm{m}, c-\mathrm{C}_{3} \mathrm{H}_{5}\right), 0.94(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4)$, $4.04(1 \mathrm{H}, \mathrm{dd}, J=1.5,7.2, \mathrm{H}-1), 5.06(1 \mathrm{H}, \mathrm{ddd}, J=1.5,8.5,15.3 \mathrm{~Hz}, \mathrm{H}-3), 5.69(1 \mathrm{H}, \mathrm{dd}, J=7.2,15.3 \mathrm{~Hz}$, $\mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR $\delta-8.7$ and-7.5 $\left(\mathrm{SiMe}_{2}\right), 6.8$ and $6.9\left(c-\mathrm{C}_{3} \mathrm{H}_{5}\right), 13.7(\mathrm{C}-4), 17.2\left(\mathrm{CMe}_{3}\right), 27.2(t-\mathrm{Bu}), 67.0$ (C-1), 129.9 (C-2), $131.7(\mathrm{C}-3)$. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{OSi}\left(\mathrm{M}^{+}+1\right) 213.1675$ found 213.1673.
$7 \mathbf{e}\left(\mathbf{X}=\boldsymbol{t}\right.$-Bu) colorless oil, $\boldsymbol{R}_{f}=0.32$ (hexane-AcOEt $=30: 1$). IR (film) $3848 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta-0.07$ and -0.01 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.94(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 4.07(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}, \mathrm{H}-1), 5.50(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}$, $\mathrm{H}-3), 5.54(1 \mathrm{H}, \mathrm{dd}, J=5.7,15.8 \mathrm{~Hz}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR $\delta-8.6$ and- $7.5\left(\mathrm{SiMe}_{2}\right), 17.2\left(\mathrm{CMe}_{3}\right), 27.2$ and 30.0 $(t-\mathrm{Bu}), 33.0(\mathrm{C}-4), 67.1(\mathrm{C}-1), 127.0(\mathrm{C}-2), 134.9(\mathrm{C}-3)$. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{OSi}\left(\mathrm{M}^{+}-1\right) 227.1831$ found 227.1829.
$7 \mathbf{f}\left(\mathbf{X}=\mathbf{S i M e}_{3}\right)$ colorless oil, $R_{f}=0.39$ (hexane-AcOEt $=30: 1$). IR (film) $3435 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta-0.05$ and -0.02 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.06\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.95(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 4.21(1 \mathrm{H}, \mathrm{dd}, J=2.1,4.7 \mathrm{~Hz}, \mathrm{H}-1)$, $5.67(1 \mathrm{H}, \mathrm{dd}, J=2.1,18.8 \mathrm{~Hz}, \mathrm{H}-3), 6.28(1 \mathrm{H}, \mathrm{dd}, J=4.7,18.8 \mathrm{~Hz}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR $\delta-8.8$ and -7.4 $\left(\mathrm{SiMe}_{2}\right),-0.9\left(\mathrm{SiMe}_{3}\right), 17.3\left(\mathrm{CMe}_{3}\right), 27.1(t-\mathrm{Bu}), 69.6(\mathrm{C}-1), 122.9(\mathrm{C}-3), 133.4(\mathrm{C}-2)$. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{OSi}_{2} 244.1679$ found 244.1654.
$\mathbf{7} \mathbf{g}(\mathbf{X}=\mathbf{S i M e} \mathbf{2} \mathbf{P h})$ colorless oil, $R_{f}=0.31$ (hexane- $\mathrm{AcOEt}=30: 1$). IR (film) $3430 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta-$ 0.05 and -0.01 (each 3 H , s, Me of $\mathrm{SiMe}_{2} \mathrm{Bu}^{t}$), $0.34\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of $\left.\mathrm{SiMe}_{2} \mathrm{Ph}\right), 0.95(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 4.26(1 \mathrm{H}$,
br, H-1), $5.82(1 \mathrm{H}, \mathrm{dd}, J=2.1,18.8 \mathrm{~Hz}, \mathrm{H}-3), 6.35(1 \mathrm{H}, \mathrm{dd}, J=4.5,18.8 \mathrm{~Hz}, \mathrm{H}-2), 7.26-7.53(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ H). ${ }^{13} \mathrm{C}$ NMR $\delta-8.8$ and-7.3 (Me of $\left.\mathrm{SiMe}_{2} \mathrm{Bu}^{t}\right),-2.2\left(\mathrm{Me}\right.$ of $\left.\mathrm{SiMe}_{2} \mathrm{Ph}\right), 17.3\left(\mathrm{CMe}_{3}\right), 27.1(t-\mathrm{Bu}), 69.6(\mathrm{C}-$ 1), 120.4 (C-3), 127.9, 129.1 and 134.7 (Ar), 150.7 (C-2). HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{OSi}_{2} 306.1835$ found 306.1859 .
$\mathbf{7 h}\left(\mathbf{X}=\mathbf{S i M e P h}_{2}\right)$ colorless oil, $R_{f}=0.13$ (hexane- $\mathrm{AcOEt}=35: 1$). IR (film) $3455 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR δ 0.05 and 0.02 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.64(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.95(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 4.31(1 \mathrm{H}, \mathrm{dd}, J=2.2,4.3 \mathrm{~Hz}$, $\mathrm{H}-1), 6.03(1 \mathrm{H}, \mathrm{dd}, J=2.2,18.8 \mathrm{~Hz}, \mathrm{H}-3), 6.38(1 \mathrm{H}, \mathrm{dd}, J=4.3,18.8 \mathrm{~Hz}, \mathrm{H}-2) 7.34-7.55(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\delta-8.8\left(\mathrm{SiMe}_{2}\right),-3.3(\mathrm{SiMe}), 17.2\left(\mathrm{CMe}_{3}\right)$, 27.1 and $27.2(t-\mathrm{Bu}), 69.7(\mathrm{C}-1), 118.1(\mathrm{C}-3), 128.0$, 129.4, 134.9 and 135.0 (Ar), 153.1 (C-2). HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{OSi}_{2} 368.1992$ found 368.1965.
$7 \mathbf{i}\left(\mathbf{X}=\mathbf{S i P h}_{3}\right)$ colorless oil, $R_{f}=0.29$ (hexane-AcOEt $=15: 1$). IR (film) $3490 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR δ 0.10 and 0.01 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.92(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 4.34(1 \mathrm{H}, \mathrm{br}, \mathrm{H}-1), 6.26(1 \mathrm{H}, \mathrm{dd}, J=2.1,18.7 \mathrm{~Hz}, \mathrm{H}-$ 3), $6.38(1 \mathrm{H}, \mathrm{dd}, J=3.8,18.7 \mathrm{~Hz}, \mathrm{H}-2) 7.34-7.65(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta-12.4\left(\mathrm{SiMe}_{2}\right), 13.7$ $\left(\mathrm{CMe}_{3}\right), 23.6(t-\mathrm{Bu}), 66.3(\mathrm{C}-1), 112.5(\mathrm{C}-3), 124.5,126.1,131.6$ and 132.6 (Ar), 151.7 (C-2). HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{OSi}_{2} 430.2148$ found 430.2156 .
$7 \mathbf{j}(\mathbf{X}=\mathbf{H})$ colorless oil, $R_{f}=0.29$ (hexane-AcOEt $=30: 1$). IR (film) $3390 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta-0.04$ and 0.00 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.96(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.28(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 4.18(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 4.99(1 \mathrm{H}, \mathrm{ddd}, J=1.6$, $3.0,10.7 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}), 5.08(1 \mathrm{H}, \mathrm{ddd}, J=1.6,2.1,17.0 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 6.07(1 \mathrm{H}, \mathrm{ddd}, J=5.3,10.7,17.0 \mathrm{~Hz}, \mathrm{H}-$ 2). ${ }^{13} \mathrm{C}$ NMR $\delta-9.0$ and -9.0 (each SiMe $), 17.2\left(\mathrm{CMe}_{3}\right), 27.1(t-\mathrm{Bu}), 67.7(\mathrm{C}-1), 109.5(\mathrm{C}-3), 140.9(\mathrm{C}-2)$. HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{OSi} 171.1205\left(\mathrm{M}^{+}-1\right)$ found 171.1194.

General Procedure for Asymmetric Reduction by Chiral Lithium Amides The following procedure for $6 \mathbf{e}$ is representative: To a cooled $\left(-80^{\circ} \mathrm{C}\right)$ solution of $\mathbf{6 e}(104 \mathrm{mg}, 0.459 \mathrm{mmol})$ in THF (4.5 mL) was added dropwise a solution of lithium amide of $\mathbf{1 2}$, prepared from $\mathbf{1 2}(159 \mathrm{mg}, 0.549 \mathrm{mmol})$ and $n-\operatorname{BuLi}(1.45 \mathrm{M}$ in hexane, $379 \mu \mathrm{~L}, 0.549 \mathrm{mmol})$ in THF $(0.9 \mathrm{~mL})$. After the reaction mixture was stirred at $-80^{\circ} \mathrm{C}$ for 30 min , the reaction was quenched by acetic acid ($33 \mathrm{mg}, 0.55 \mathrm{mmol}$) in THF (2 mL). The mixture was poured into half saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$ and then extracted with $\mathrm{Et}_{2} \mathrm{O}(30$ $\mathrm{mL} x$ 3). The combined organic phases were washed with saturated brine (30 mL), dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 10 g ; elution with hexane- $\mathrm{AcOEt}=30: 1$) to give $\mathbf{1 3}$ ($92.1 \mathrm{mg}, 88 \%$).
$\mathbf{1 4 k}\left(\mathbf{R}_{\mathbf{1}}=\mathbf{R}_{\mathbf{2}}=-\left(\mathbf{C H}_{2}\right)_{3}\right.$-) colorless oil, $R_{f}=0.21$ (hexane-AcOEt $=30: 1$). IR (film) $3435 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 0.37$ and 0.39 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), 1.79-2.39 ($\left.6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right), 4.28(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 5.44(1 \mathrm{H}, \mathrm{m}$, H-3), 7.36-7.61 (5H, m, Ph). ${ }^{13} \mathrm{C}$ NMR $\delta-5.2$ and -5.1 (each SiMe $), 23.8,32.3,34.0\left(\left(\mathrm{CH}_{2}\right)_{3}\right), 67.3(\mathrm{C}-1)$, 121.9 (C-3), $147.0(\mathrm{C}-2), 127.9,129.5,134.2,147.0(\mathrm{Ph})$. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20}$ OSi 232.1283 found 232.1283.
$141\left(\mathbf{R}_{1}=\mathbf{R}_{2}=-\left(\mathbf{C H}_{2}\right)_{4}\right.$-) colorless oil, $R_{f}=0.24$ (hexane-AcOEt $=30: 1$). IR (film) $3455 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 0.35$ and 0.36 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), 1.34-2.05 $\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right), 3.96(1 \mathrm{H}, \mathrm{br}, \mathrm{H}-1), 5.50(1 \mathrm{H}, \mathrm{m}$, H-3), 7.36-7.60 (5H, m, Ph). ${ }^{13} \mathrm{C}$ NMR $\delta-5.0$ and -4.8 (each $\left.\mathrm{SiMe}_{2}\right), 22.9,22.9,25.2,27.3\left(\left(\mathrm{CH}_{2}\right)_{4}\right), 71.0$ (C-1), 119.5 (C-3), 137.2 (C-2), 127.9, 134.2, 134.3, 137.2 (Ph). HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{OSi} 246.1440$ found 246.1142 .
$\mathbf{1 4 m}\left(\mathbf{R}_{\mathbf{1}}=\mathbf{R}_{\mathbf{2}}=-\left(\mathbf{C H}_{2}\right)_{5^{-}}\right)$yellow oil, $R_{f}=0.17$ (hexane-AcOEt $=30: 1$). IR (film) $3455 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 0.35$ and 0.37 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), 1.33-1.48 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4,6$), 1.67-1.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 1.93-1.95 $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.06-2.21(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.02(1 \mathrm{H}, \mathrm{s}, \mathrm{CHSi}), 5.63(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{H}-2), 7.35-7.61(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta-5.0$ and $-4.5\left(\mathrm{SiMe}_{2}\right), 27.0(\mathrm{C}-4), 27.5$ (C-6), 28.5 (C-3), 31.5 (C-7), 32.8 (C-5), $72.3(\mathrm{CHSi}), 123.7(\mathrm{C}-2), 127.9,129.4,134.3$ and 137.2 (Ar), 146.6 (C-1). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{OSi}$ 260.1596 found 260.1604 .

Enantiomeric Purity Assays of 13, 14 and 16. ${ }^{a}$

	HPLC column ${ }^{\text {b }}$	eluent (hexane:i-PrOH)	flow rate ($\mathrm{mL} / \mathrm{min}$)	retention times (min)		$[\alpha]_{\mathrm{D}}\left(\mathrm{CHCl}_{3}\right)$ S
				R	S	
13	OD	200:1	0.3	17.0	14.8	$-41.1^{\circ}(\mathrm{c}=1.13)$
14a	OD	200:1	0.3	19.9	19.0	$-36.7^{\circ}(\mathrm{c}=0.65)$
14b	OJ	200:1	0.3	14.3	12.1	$-38.8{ }^{\circ}(\mathrm{c}=1.90)$
14c	OD	200:1	0.3	17.2	16.1	$-37.6^{\circ}(\mathrm{c}=1.05)$
14d	OD	200:1	0.5	13.1	12.4	$-39.1{ }^{\circ}(\mathrm{c}=1.20)$
14k	-	-	-	-	-	$-49.8{ }^{\circ}(\mathrm{c}=0.44)^{\mathrm{c}}$
141	OD	$20: 1$	0.3			$-8.2{ }^{\circ}(\mathrm{c}=1.07)$
14m	-	-	-	-	-	$-21.2{ }^{\circ}(\mathrm{c}=1.03)^{\mathrm{c}}$
16a	OD	20: 1	1.0	12.5	7.0	$-79.7{ }^{\circ}(\mathrm{c}=1.08)$
16b	OD	20: 1	1.0			$-43.5{ }^{\circ}(\mathrm{c}=0.51)$
16c	OD	20:1	1.0	15.5	12.8	$+7.0^{\circ}(\mathrm{c}=0.56)$
16d	OD	20:1	1.3			$-4.0^{\circ}(\mathrm{c}=1.35)$

${ }^{a}$ In the case of $\mathbf{1 6 c}$ and $\mathbf{1 6 d},(R)-\mathbf{1 2}$ was used. ${ }^{b}$ OD: Daicel Chiralcel-OD; OJ: Daicel Chiralcel-OJ. ${ }^{c}$ The absolute configuration was not determined.

Determination of the Absolute Configuration of 13.

The MTPA esters of $\mathbf{1 3}$ and the O-methylmandelates of $\mathbf{1 3}$ and ent- $\mathbf{1 3}$ were prepared by conventional manner.

		${ }^{1} \mathrm{H}$ chemical shift, $\delta(\mathrm{ppm})$			
		(S)-MTPA	$(R)-\mathrm{MTPA}$	$\delta_{S}-\delta_{R}$	assigned configuration
MTPA esters	$\mathrm{H}-1$	5.55	5.44	+0.11	S
of $\mathbf{1 3}$	$\mathrm{H}-2$	5.46	5.34	+0.12	
	$\mathrm{H}-3$	5.68	5.57	+0.11	

SiMe	-0.03	0.00	-0.03
SiMe	-0.04	-0.02	-0.02
t-Bu	0.86	0.89	-0.03

(S)-O-methylmandelates of $\mathbf{6 e}$ and ent-13

	${ }^{1} \mathrm{H}$ chemical shift, $\delta(\mathrm{ppm})$		$\Delta \delta=\delta_{6 \mathrm{be}}-\delta_{\text {ent-6e }}$	assigned configuration
	$\mathbf{1 5}$	ent- $\mathbf{1 5}$		
$\mathrm{H}-1$	5.29	5.29	0	
$\mathrm{H}-2$	5.17	5.35	-0.18	S
$\mathrm{H}-3$	4.88	5.42	-0.54	
SiMe	-0.07	-0.26	+0.19	
SiMe	-0.07	-0.26	+0.19	
$t-\mathrm{Bu}$	0.77	0.72	+0.05	

Facile Construction of a Tricyclo[5.3.0.0 ${ }^{1,4}$]decenone Ring System by the Brook Rearrangement-Mediated [3 + 4] Annulation

Kei Takeda,* Yasuhiro Ohtani
Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
takedak@ms.toyama-mpu.ac.jp

Abstract

Reaction of 3-alkyl-3-haloacryloylsilanes I with the lithium enolate of 1-acetyl-1cyclopentene II afforded tricylco[5.3.0.0 ${ }^{1,4}$]decenone derivatives III via Brook rearrangement-mediated $[3+4]$ annulation.

Recently, we have reported that the reaction of β, β-dichloroacryloylsilane with ketone enolates proceeds smoothly at lower temperatures to afford 3-alkyl-3-chloro-4-hydroxy-2cyclopentenone derivatives via Brook rearrangement-mediated [3+2] annulation followed by dechlorosilylation. ${ }^{1,2}$ Herein, we describe the direct formation of tricyclo[5.3.0.0 ${ }^{1,4}$]decenone ring system from the reaction of β-alkyl- β-haloacryloylsilane with the lithium enolate of 1-acetyl-1-cyclopentene which was found during an extension of the [3+2] annulation for the formation of cycloheptenedione derivatives by the $[3+4]$ annulation ${ }^{3}$ using enolates of alkenyl methyl ketones.
Our initial attempt to react β-chloro- β-methylacryloylsilane $1 \mathrm{a}^{4}$ with the lithium enolate of 3-nonen-2-one, produced the corresponding [3+4] annulationdechlorosilylation product 2a in 75% yield (Scheme 1). Additional examples using acyclic enone enolates are given in Scheme 1.

In sharp contrast to these results, reaction of 1 with the enola ${ }^{5}$ te of 1-acetyl-1cyclopentene (3) produced tricyclo[5.3.0.0 ${ }^{1,4}$] decenone derivatives 5^{6} in yields dependent upon the β-substituent of 1 , in addition to 6 , a $[3+4]$ annulationdechlorosilylation product. The formation of 5 can be understood in terms of an S_{N}-like intramolecular attack of the enolate at C-4 position in the intermediate 4.

Scheme 1

Scheme 2

In the reactions with enolates of 1-acetyl-1-cyclohexene, 7 was the only product except for $\mathrm{R}=t$ - Bu where the corresponding tricyclic compound 8 d was obtained in 9% yield (50% yield of 7 d).

Figure 1.

These results suggest that small structural changes in 1 and the enolates significantly affect the product distributions, and led us to consider replacing the chlorine atom with a better leaving group. When the β-bromo derivative 9^{4} was reacted with 3 under the same conditions as those for the β-chloroderivative 1,5 was obtained as a sole product in all cases except for $9 \mathrm{~d}(\mathrm{R}=t-\mathrm{Bu})$ where 7% of 6 was isolated. The same reaction with the enolate of 1-acetyl-cyclohexene afforded the corresponding tricyclic compounds 8 in moderate yield, in sharp contrast to the reaction with 1 in which only substrate 1 d afforded a tricyclic product (8 d).

Scheme 3

A low-temperature quenching experiment was carried out using 1a to gain information on the reaction path for the formation of the tricyclic compound 5 and the cycloheptenedione 6 (Scheme 4). Tricyclic compound $10,{ }^{7}$ an intramolecular alkylation product of the enolate at C-6 position in 4 , and 11 and
its double bond isomers 12 and 13 were isolated. The yield of 6 a increased at the expense of 10 with rising temperature, whereas that of 5 a was relatively constant, suggesting that the major pathway involves the initial formation of 5 a and 10 by way of intramolecular alkylation of the enolate in 4 followed by transformation of 10 to $\mathbf{6 a}$ via 11-13. In fact, in order to duplicate the conditions present when LDA was used to generate the enolates, treatment of 10 with LiCl and diisopropylamine in THF at -80° to $0^{\circ} \mathrm{C}$ afforded 6 a (56\%) and 13 (14%), while in the case of $5 \mathbf{a}$, no reactions occurred under the same conditions.
In conclusion, we have developed a rapid and efficient route for the synthesis of a tricyclo[5.3.0.0 $0^{1,4}$] decenone ring system, which is a potentially useful intermediate for synthesizing a variety of biologically significant compounds, but which is difficult to make by other approaches. ${ }^{8}$

Scheme 4

Acknowledgment This research was partially supported by a grant-in-aid for Scientific Research (No. 10671986) from the Japanese Ministry of Education, Sciences, Sports and Culture, and the Ciba-Geigy Foundation (Japan) for the Promotion of Science.
Supporting Information Available: Full experimental details and characterization data for all new compounds described in the text (7 pages).

References and Notes

(1) Takeda, K.; Ohtani, Y.; Ando, E.; Fujimoto, K.; Yoshii, E.; Koizumi, T. Chem. Lett. 1998, 1157-1158.
(2) For the $[3+2]$ annulation, see: (a) Takeda, K.; Fujisawa, M.; Makino, T.; Yoshii, E.; Yamaguchi, K. J. Am. Chem. Soc., 1993, 115, 9351-9352. (b) Takeda, K.; Nakayama, I.; Yoshii, E. Synlett 1994, 178-178. (c) Takeda, K.; Kitagawa, K.; Nakayama, I.; Yoshii. E. Synlett 1997, 255-256.
(3) (a) Takeda, K.; Takeda, M.; Nakajima, A.; Yoshii, E. J. Am. Chem. Soc. 1995, 117, 6400-6401. (b) Takeda, K.; Nakajima, A.; Yoshii, E. Synlett 1996, 753-754. (c) Takeda, K.; Nakajima, A.; Takeda, M.; Okamoto, Y.; Sato, T.; Yoshii, E.; Koizumi, T.; Shiro, M. J. Am. Chem. Soc. 1998, 120, 4947-4959. (d) Takeda, K.; Nakajima, A.; Takeda, M.; Yoshii, E. Org. Synth. 1999, 76, 199-213.
(4) (a) Cunico, R. F.; Zhang, C. Tetrahedron Lett. 1992, 33, 6751-6754. (b) Cunico, R. F.; Zhang, C. Tetrahedron 1995, 51, 9823-9838.
(6) The structures were assigned on the basis of their IR spectra, which showed a peak at $1775 \mathrm{~cm}^{-1}$, and confirmed by a X-ray analysis of 5 a after derivatization.
(7) The structure of $\mathbf{1 0}$ was assigned on the basis of its ${ }^{13} \mathrm{C}$ NMR spectrum that showing peaks assinged as a quatanary carbon at 34.2 and 49.7 ppm , and IR absorption at $1685 \mathrm{~cm}^{-1}$ which is indicative of the cyclopropyl carbonyl moiety with an siloxyvinyl group, see: Lyle, T. A.; Frei, B. Helv. Chim. Acta. 1981, 64, 2598-2605.
(8) For preparation of tricyclo[5.3.0.0 $0^{1,4}$]decenone ring system using α -oxycyclopropylcarbinol-cyclobutanone rearrangement, see: (a) Wenkert, E.; Arrhenius, T. S. J. Am. Chem. Soc. 1983, 105, 2030-2033. For preparation by photochemical reaction, see: (b) Exon, C.; Nobbs, M.; Magnus, P. Tetrahedron 1981, 37, 4515-4519, (c) Wiesner, K. Tetrahedron 1975, 31, 1655-1658, and ref. 6.

Facile Construction of a Tricyclo[5.3.0.0 ${ }^{1,4}$]decenone Ring System by the Brook Rearrangement-Mediated [3 + 4] Annulation

Kei Takeda, ${ }^{\text {, }}$ Yasuhiro Ohtani
Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University 2630 Sugitani, Toyama 930-0194, Japan

Supporting Information

General: IR spectra were recorded on a Perkin-Elmer FT1640 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were taken on Varian UnityPlus $500(500 \mathrm{MHz})$ in CDCl_{3} with reference to CHCl_{3} (δ 7.26) unless otherwise noted. ${ }^{13} \mathrm{C}$ NMR spectra were measured with Varian UnityPlus 500 (125 MHz) in CDCl_{3} with reference to the CDCl_{3} triplet ($\delta 77.2$) unless otherwise noted. Resonance patterns were described as $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, and br = broad. Low- and high-resolution mass spectra (EI-MS) were obtained with a JEOL JMS-D300 spectrometer combined with a JEOL JMA-2000 data processing system. For routine chromatography, the following adsorbents were used: Fuji-Davison silica gel BW-200 (150325 mesh) for column chromatography; Merck precoated silica gel 60 F-254 plates for analytical thin-layer chromatography. All moisture sensitive reactions were performed under a positive pressure of nitrogen. Anhydrous MgSO_{4} was used for drying all organic solvent extracts in workup, and the removal of the solvents was performed with a rotary evaporator. Dry solvents and reagents were obtained by using standard procedures. Melting points (uncorrected) were determined by using a Yanagimoto micro-melting point apparatus. Elemental combustion analysis was performed at the Microanalysis Laboratory of this University.

1-(tert-Butyldimethylsilyl)-3-alkyl-3-chloro-2-propen-1-one (1). The following procedure for $\mathbf{1 a}(\mathrm{R}=\mathrm{Me})$ is representative: These compounds were prepared by a modified procedure of Cunico as described for the the corresponding trimethylsilyl derivative. A solution of (1-(ethoxy)ethenyl)-tert-butyldimethylsilane ($6.00 \mathrm{~g}, 32.2 \mathrm{mmol}$), $\mathrm{BrCCl}_{3}(6.30 \mathrm{~mL}, 64.4 \mathrm{mmol})$, and DBU ($4.80 \mathrm{~mL}, 32.2 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(21 \mathrm{~mL})$ was irradiated with a sunlamp for 4 h before addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixtue was extracted with pentane ($20 \mathrm{~mL} x \mathrm{3}$). The combined organic phases were successively washed with hydrochloric acid $(0.1 \mathrm{~N})$ and saturated brine, and concentrated. The residual oil was filtered through a pad of Florisil (pentane), and then subjected to column chromatography (silica gel, 200 g ; elution with $5: 1$ pentane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give $1(\mathrm{R}=\mathrm{Cl})(6.56 \mathrm{~g}, 85 \%)$. a red oil. $R_{f}=0.23$ (hexane : $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=5: 1\right)$. IR (film) 1630
$\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.21\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2}\right), 0.94(9 \mathrm{H}, \mathrm{s}, \mathrm{Sit} B u), 7.01(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 2). $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-7.14(\mathrm{SiMe})_{2}\right), 17.1(\mathrm{SiC}), 26.6(\mathrm{Si}-t \mathrm{Bu}), 128.7(\mathrm{C}-2), 130.0$ (C-3), 231.9 (C-1). HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{OCl}_{2} \mathrm{Si} 238.0347$, found 238.0336 .

To a cooled $\left(-80^{\circ} \mathrm{C}\right)$ suspension of anhydrous $\mathrm{CuCN}(1.34 \mathrm{~g}, 14.7 \mathrm{mmol})$ in THF (120 mL) was added dropwise a solution of $\mathrm{MeLi}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 14.7 \mathrm{~mL}, 14.7 \mathrm{mmol}\right)$. The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$. After the mixture became a clear solution, the solution was cooled to $-80^{\circ} \mathrm{C}$. To this solution was added dropwise a solution of $\mathbf{1}(\mathrm{R}=\mathrm{Cl})$ $(2.50 \mathrm{~g}, 10.5 \mathrm{mmol})$ in THF $(175 \mathrm{~mL})$. The reaction mixture was allowed to warm to $-30{ }^{\circ} \mathrm{C}$ before addition of $\mathrm{AcOH}(0.86 \mathrm{~mL}, 14.7 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, and then extracted with pentane ($150 \mathrm{~mL} x 3$). The combined organic phases were washed with saturated brine, dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 120 g ; elution with 19:1 hexane- $\mathrm{Et}_{2} \mathrm{O}$) to give $\mathbf{1 a}(\mathrm{R}=$ $\mathrm{Me})(1.84 \mathrm{~g}, 80 \%)$.
1a ($\mathrm{R}=\mathrm{Me}$): an yellow oil. $R_{f}=0.42$ (hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=5: 1$). IR (film) $1635 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.19(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.19(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.93(9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t B u), 2.47(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-4), 6.88(1 \mathrm{H}, \mathrm{q}, J=0.4 \mathrm{~Hz}, \mathrm{H}-2) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-7.1(\mathrm{SiMe} 2), 17.1(\mathrm{SiC})$, 24.6 (C-4), 26.7 (SitBu), 129.4 (C-2), 147.7 (C-3), 234.8 (C-1). HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{OClSi}$, 218.0894, found 218.0925.

1b ($\mathrm{R}=n$ - Bu): an orange oil. $R_{f}=0.48$ (hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=6: 1$). IR (film) $1630 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.18\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2}\right), 0.90(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}-7), 0.92(9 \mathrm{H}, \mathrm{s}$, $\mathrm{Si} t \mathrm{Bu}), 1.34(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.56(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.81(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}-4), 6.86(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-7.1(\mathrm{SiMe} 2), 14.0(\mathrm{C}-7), 17.0(\mathrm{SiC}), 22.2(\mathrm{C}-6), 26.7(\mathrm{Si} t B u)$, 30.2 (C-5), 36.4 (C-4), 129.4 (C-2), 152.7 (C-3), 234.5 (C-1). HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{ClOSi}$ 260.1363 , found 260.1368 .

1c ($\mathrm{R}=n$-hexyl): a yellow oil. $R_{f}=0.38$ (hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=9: 1$). IR (film) $1640 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.19$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2}$), 0.87 ($3 \mathrm{H}, \mathrm{t}, J=7.5, \mathrm{H}-9$), 0.93 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t B u$), $1.25-1.35(6 \mathrm{H}, \mathrm{m}), 1.54-1.59(2 \mathrm{H}, \mathrm{m}), 2.81(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}-4), 6.86(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2) .{ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-7.0(\mathrm{SiMe} 2$), $14.2(\mathrm{C}-7), 17.1(\mathrm{SiC}), 22.7,26.7(\mathrm{Sit} t \mathrm{Bu}), 28.1,28.7$, 31.7, 36.6 (C-4), 129.5 (C-2), 152.7 (C-3), 234.5 (C-1). HRMS calcd for 288.1676, found 288.1673.

1d ($\mathrm{R}=t$ - Bu): an yellow oil. $R_{f}=0.38$ (hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=9: 1$). IR (film) $1630 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.20\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2}\right), 0.94$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t B u$), 1.19 ($9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$), 6.43 $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-6.6\left(\mathrm{SiMe} e_{2}\right), 17.0(\mathrm{SiC}), 26.6(\mathrm{Si} t B u), 30.1(t-$ $\mathrm{Bu}), 40.4$ (C-4), 133.4 (C-2), 151.1 (C-3), 238.8 (C-1). HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{OClSi}\left(\mathrm{M}^{+}-\right.$ $\mathrm{C}_{4} \mathrm{H}_{9}$), 203.0659, found 203.0629.

General Procedure for the [3 + 4] Annulation Leading to Cycloheptenediones 2:
Reaction of 1a with Lithium Enolate of 3-Nonen-2-one. To a cooled $\left(-80^{\circ} \mathrm{C}\right)$ solution of lithium diisopropylamide (LDA), prepared from diisopropylamine ($0.100 \mathrm{~mL}, 80 \mathrm{mg}, 0.789$ $\mathrm{mmol})$ and $n-\mathrm{BuLi}(1.41 \mathrm{M}$ in hexane, $0.55 \mathrm{~mL}, 0.775 \mathrm{mmol})$ in THF $(0.8 \mathrm{~mL})$ was added dropwise a solution of 3-nonen-2-one ($130 \delta \mathrm{~L}, 109 \mathrm{mg}, 0.775 \mathrm{mmol}$) in THF (0.8 mL). After stirring at $-80^{\circ} \mathrm{C}$ for 30 min , the solution was added dropwise via a cannula to a cooled $(-80$ $\left.{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 a}(150 \mathrm{mg}, 0.686 \mathrm{mmol})$ in THF (31 mL). The reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$, and then quenched by addition of $\mathrm{AcOH}(46 \delta \mathrm{~L}, 0.789 \mathrm{mmol})$. The mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$. The combined organic phases were washed with saturated brine, dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 40 g ; elution with 1:2 hexane- $\mathrm{Et}_{2} \mathrm{O}$) to give $\mathbf{2 a}$ ($106 \mathrm{mg}, 75 \%$).
2a ($\mathrm{R}=\mathrm{Me}$): a pale yellow oil. $R_{f}=0.16$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=5: 1$). IR (film) $1655 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.85(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{H}-5 '), 1.21-1.31(5 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.42-1.47$ $(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.67-1.72(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.00\left(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.57-2.62(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H}-6)$, $2.67(1 \mathrm{H}, \mathrm{dd}, J=15.3,6.6 \mathrm{~Hz}, \mathrm{H}-7), 2.78(1 \mathrm{H}, \mathrm{dd}, J=15.3,3.2 \mathrm{~Hz}, \mathrm{H}-7), 3.62(1 \mathrm{H}, \mathrm{d}, J=$ 16.7, H-2), $3.71(1 \mathrm{H}, \mathrm{d}, J=16.7, \mathrm{H}-2), 5.96(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1$ (C-5'), 22.5, $25.9\left(\mathrm{CH}_{3}\right), 27.5,31.6,32.0,41.0$ (C-6), 46.1 (C-7), 60.7 (C-2), 129.0 (C-4), 161.5 (C-5), 193.4 (C-3), 203.6 (C-1). HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}, 208.1463$, found 208.1494. 2b $(\mathrm{R}=n-\mathrm{Bu})$: a colerless oil. $R_{f}=0.23$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=1: 2$). IR (film) $1650,1575 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.85(3 \mathrm{H}, \mathrm{t}, J=6.8, \mathrm{H}-5$ "), $0.89(3 \mathrm{H}, \mathrm{t}, J=7.3, \mathrm{H}-4$ '), 1.21-1.38 ($7 \mathrm{H}, \mathrm{br} \mathrm{m}$), 1.39-1.49 ($4 \mathrm{H}, \mathrm{m}$), $1.67(1 \mathrm{H}, \mathrm{m}), 2.20(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 2.53(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.74$ (2H, app d, $J=4.7 \mathrm{~Hz}, \mathrm{H}-7), 3.58(1 \mathrm{H}, \mathrm{dd}, J=16.8,0.9 \mathrm{~Hz}, \mathrm{H}-2), 3.76(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}$, $\mathrm{H}-2), 5.94(1 \mathrm{H}, \mathrm{d}, J=0.9, \mathrm{H}-4) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0(\mathrm{C}-5 "), 14.1$ (C-4'), $22.5,27.6,30.4,30.5,31.6,32.4,38.7,40.0$ (C-6), 46.3 (C-7), 60.9 (C-2), 127.9 (C-4), 165.6 (C-5), 193.7 (C-3), 203.6 (C-1). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} 250.1933$, found 250.1929. $2 \mathrm{c}\left(\mathrm{R}=n\right.$-hexyl): olorless oil. $R_{f}=0.21$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=1: 1$). IR (film) $1650,1575 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ 'and $\mathrm{H}-5 "$), 1.23-1.36 ($11 \mathrm{H}, \mathrm{m}$), 1.43-1.55 (4 H , $\mathrm{m}), 1.67-1.71(1 \mathrm{H}, \mathrm{m}), 2.23(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{H}-1$ '), 2.54-2.59 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), $2.78(2 \mathrm{H}$, app d, $J=7.1 \mathrm{~Hz}, \mathrm{H}-7), 3.62(1 \mathrm{H}, \mathrm{dd}, J=16.9,1.0 \mathrm{~Hz}, \mathrm{H}-2), 3.80(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.98$ $(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{H}-4) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1$ (C-5"), 14.2 (C-6'), 22.6, 22.7, 27.7, 28.4, 29.2, 31.7, 32.5, 39.1 (C-1'), 40.1 (C-6), 46.4 (C-7), 61.0 (C-2), 128.0 (C-4), 165.7 (C-5), 193.9 (C-3), 203.7 (C-1). HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2} 278.2246$, found 278.2232.
$2 d(\mathrm{R}=t-\mathrm{Bu})$: an amorphous solid, $R_{f}=0.21$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=1: 2$). IR (film) $1640,1575 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H}-5$ '), $1.15(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}), 1.19-1.29$
($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}$, and $\left.\mathrm{H}-4^{\prime}\right), 1.46-1.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime}\right.$ and $\left.\mathrm{H}-2^{\prime}\right), 1.59-1.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime}\right)$, 2.65-2.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and H-7), $2.90(1 \mathrm{H}, \mathrm{dd}, J=15.6,4.3 \mathrm{~Hz}, \mathrm{H}-7), 3.62(1 \mathrm{H}, \mathrm{d}, J=16.6$ $\mathrm{Hz}, \mathrm{H}-2), 3.89(1 \mathrm{H}, \mathrm{d}, J=16.6 \mathrm{~Hz}, \mathrm{H}-2), 6.03(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 14.1$ (C-5'), 22.6 (C-2'), 27.9 (C-3'), 28.6 (tBu), 35.2 ($\left.\mathrm{C}-1^{\prime}\right), 35.3$ (C-6), 38.9 (CMe_{3}), 45.6 (C-7), 61.3 (C-2), 125.3 (C-4), 171.6 (C-5), 194.9 (C-3), 203.4 (C-1). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} 250.1933$ found 250.1936
Reaction of 1 with Lithium Enolate of 1-Acetyl-1-cyclopentene. Reaction was carried out in the same way as described for the $[3+4]$ annulation leading to cycloheptenediones $\mathbf{2}$.
$5 \mathbf{5 a}\left(\mathrm{R}=\mathrm{CH}_{3}\right.$): a pale yellow oil, $R_{f}=0.41$ (hexane : $\mathrm{Et} 2 \mathrm{O}=12: 1$). IR (film) $1775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.89$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t B u$), 1.431.53 ($2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-10$), 1.64-1.71 (3 H , br m, H-8, H-9, and H-10), 1.72 ($3 \mathrm{H}, \mathrm{d}, J=$ $0.9 \mathrm{~Hz}, \mathrm{CH}_{3}$), 2.18-2.22 (m, 1H, H-9), 2.98 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{H}-7$), $3.02(1 \mathrm{H}, \mathrm{d}, J=17.7 \mathrm{~Hz}, \mathrm{H}-3)$, $3.08(1 \mathrm{H}, \mathrm{d}, J=17.7 \mathrm{~Hz}, \mathrm{H}-3), 5.50(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.0(\mathrm{SiMe})$, -2.6 ($\mathrm{Si} M e$), $15.7\left(6-\mathrm{CH}_{3}\right), 18.2(\mathrm{SiC}), 25.9$ (SitBu), 26.5 (C-8), 28.8 (C-9), 30.4 (C-10), 57.9 (C-7), 60.2 (C-3), 81.0 (C-4), 82.3 (C-1), 129.2 (C-5), 145.7 (C-6), 215.9 (C-2). In order to obtain a crystaline derivative for an X-ray analysis, this compound was transformed into 4-(tert-butyldimethylsiloxy)-6-methyltricyclo[5.4.0.0 ${ }^{1,4}$]undec-5-en-2-yl 3,5-dinitrobenzoate by the following sequence: (1) DIBAL, $\mathrm{Et}_{2} \mathrm{O}$ (2) 3,5-dinitrobenzoyl chloride, pyridine (3) 5% HF-MeCN (4) separation of the diastereomers (5) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. X ray; monoclinic $\mathrm{P} 2_{1} / \mathrm{a}(\# 14), \mathrm{a}=10.629(1), \mathrm{b}=10.277(1), \mathrm{c}=18.411(1) \AA, \delta=96.535(7)^{\circ}, \mathrm{V}=1998.0(3) \AA^{3}$, $\mathrm{Z}=4, \mathrm{D}_{\text {calc }}=1.384 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{R}=3.9$ for 2996 reflections. Diffraction data were collected on a Rigaku AFC7R diffractometer with graphite monochromated Mo-Ka radiation and rotating anode generator. The structure was solved by the direct methods and expanded using Fourier techniques.
5b $\left(\mathrm{R}=n\right.$ - Bu): a colorless oil. $R_{f}=0.44$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=19: 1$). IR (film) $1775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.11$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e$), 0.89 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t B u$), 0.90 ($3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$), $1.25-1.43$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-3^{\prime}$), $1.43-1.52$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$, and $\mathrm{H}-10$), 1.63-1.72 (3H, m, H-8, H-9, and H-10), 1.96-2.02 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ '), 2.06-2.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ '), 2.16-2.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), $3.03(1 \mathrm{H}$, br m, H-7), $3.03(1 \mathrm{H}, \mathrm{d}, J=18.0 \mathrm{~Hz}, \mathrm{H}-3), 3.07(1 \mathrm{H}, \mathrm{d}, J=$ $18.0 \mathrm{~Hz}, \mathrm{H}-3), 5.50(1 \mathrm{H}, \mathrm{d}, J=0.8 \mathrm{~Hz}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ;-3.0(\mathrm{Si} M e),-2.6$ (SiMe), 14.1 (C-4'), 18.2 (SiC), 22.7 (C-3'), 25.9 (SitBu), 26.6 (C-10), 28.6 (C-8), 29.6 (C-1'), 30.1 (C-2'), 30.8 (C-9), 56.7 (C-7), 60.3 (C-3), 80.8 (C-4), 81.8 (C-1), 127.7 (C-5), 150.4 (C6), 216.0 (C-2). HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si} 334.2328$, found 334.2306
$\mathbf{5 c}\left(\mathrm{R}=n\right.$-hexyl): a yellow oil. $R_{f}=0.43$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=15: 1$). IR (film) $1775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.87(3 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{H}-$
$\left.6^{\prime}\right), 0.89$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{SitBu}$), 1.24-1.34 (6H, m, H-2', H-3', H-4', and H-5'), 1.44-1.52 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and H-10), 1.64-1.72 (3H, m, H-8, H-9, and H-10), 1.96-2.01 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ '), 2.04-2.11 (1 H , m, H-1'), 2.14-2.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 3.03 ($1 \mathrm{H}, \mathrm{br}$ s, H-7), 3.03 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.8 \mathrm{~Hz}, \mathrm{H}-3$), 3.07 $(1 \mathrm{H}, \mathrm{d}, J=17.8 \mathrm{~Hz}, \mathrm{H}-3), 5.50(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.0$ (SiMe), -2.6 (SiMe), 14.3 (C-6'), 18.2 (SiC), 22.8 (C-5'), 25.9 (SitBu), 26.6 (C-10), 26.7 (C-8), 27.8 (C-1'), 28.6 (C-9), 29.3, 29.9, 30.8, 56.7 (C-7), 60.3 (C-3), 80.8 (C-4), 81.8 (C-1), 127.7 (C-5), 150.4 (C-6), $216.0(\mathrm{C}-2)$. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si} 362.2641$, found 362.2651. $\mathbf{5 d}(\mathrm{R}=t-\mathrm{Bu})$: colorless oil, $R_{f}=0.38$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=19: 1$). IR (film) $1775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.90(9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t B u), 1.08$ ($9 \mathrm{H}, \mathrm{s}$, $\mathrm{tBu})$, 1.37-1.44 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.64-1.77 (3H, m, H-9 and H-10), $1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.11(1 \mathrm{H}$, $\mathrm{m}, J=6.4 \mathrm{~Hz}, \mathrm{H}-10), 3.06(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-3), 3.09(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-3), 3.12(1 \mathrm{H}, \mathrm{t}$, $J=8.3, \mathrm{H}-7), 5.54(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-2.8(\mathrm{SiMe}),-2.5(\mathrm{SiMe}), 18.2$ (SiC), 25.9 ($\mathrm{Sit} t \mathrm{Bu}$), 27.4 (C-10), 28.2 (C-9), 30.5 ($\mathrm{CMe} e_{3}$), 34.4 (C-8), 55.6 (C-7), 60.8 (C-3), 79.3 (C-4), 81.3 (C-1), 126.1 (C-5), 159.2 (C-6), 216.2 (C-2). HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}$ 334.2328 , found 334.2299

6 ($\mathrm{R}=\mathrm{CH}_{3}$): a colorless prism, $\mathrm{mp} 105-107^{\circ} \mathrm{C} . R_{f}=0.12$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=2: 1$). IR (KBr) $1715,1655 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.48-1.65(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and H-9), 1.74-1.88 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-10$), $2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.20-2.26(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-10), 2.72-2.78(1 \mathrm{H}$, ddd, $J=13.8,10.0,10.0 \mathrm{~Hz}, \mathrm{H}-1), 2.89-2.95(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 3.53(1 \mathrm{H}, \mathrm{dd}, J=16.0,1.5 \mathrm{~Hz}, \mathrm{H}-$ 3), $3.90(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-3), 6.06(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.2(\mathrm{C}-$ 9), $24.4\left(\mathrm{CH}_{3}\right), 25.3(\mathrm{C}-8), 32.2(\mathrm{C}-10), 48.0(\mathrm{C}-7), 57.3(\mathrm{C}-1), 60.0(\mathrm{C}-3), 129.8(\mathrm{C}-5), 160.3$ (C-6), 194.4 (C-4), 204.3 (C-2). Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{C} 74.33$, H 7.92. found C 74.13, H 7.92.
$6 \mathbf{b}(\mathrm{R}=n-\mathrm{Bu})$: a colerless oil. $R_{f}=0.20$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=3: 1$). IR (film) $1715,1655 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$ '), 1.31-1.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ '), 1.43-1.64 ($4 \mathrm{H}, \mathrm{br} \mathrm{m}$, $\mathrm{H}-2$ ', $\mathrm{H}-9$, and $\mathrm{H}-10$), 1.72-1.87 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-9$), 2.21-2.29 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ', H-8, and H10), 2.34-2.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ '), 2.75-2.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), $2.90-2.96$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), 3.55 ($1 \mathrm{H}, \mathrm{dd}, J$ $=16.2,1.5 \mathrm{~Hz}, \mathrm{H}-3), 3.88(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}, \mathrm{H}-3), 6.05(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 14.1$ ($\left.\mathrm{C}-4^{\prime}\right), 22.7$ (C-3'), 23.2 (C-9), 25.3 (C-10), 30.6 (C-2'), 32.0 (C-8), 37.2 (C-1'), 47.6 (C-7), 57.5 (C-1), 59.9 (C-3), 128.6 (C-5), 164.0 (C-6), 195.1 (C-4), 204.4 (C-2). HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} 220.1463$, found 220.1450 .

6c ($\mathrm{R}=n$-hexyl): a colorless oil. $R_{f}=0.21$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=2: 1$). IR (film) $1715,1655 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{H}-6 '), 1.25-1.40(7 \mathrm{H}, \mathrm{m}), 1.40-1.67$ ($4 \mathrm{H}, \mathrm{m}$), 1.75-1.87 (2H, m, H-8 and H-10), 2.20-2.30 (3H, m, H-8, H-10, and H-1'), 2.32-2.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ '), 2.74-2.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), 2.89-2.96 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), $3.36(1 \mathrm{H}, \mathrm{dd}, J=16.2,1.5 \mathrm{~Hz}$,
$\mathrm{H}-3), 3.99(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}, \mathrm{H}-3), 6.05(1 \mathrm{H}$, app q, $J=1.3 \mathrm{~Hz}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 14.2$ (C-6'), 22.7, 23.2, 25.3 (C-8), 28.5, 29.3, 31.8 (C-10), 32.0, 37.5 (C-1'), 47.7 (C-1), 57.5 (C-7), 59.9 (C-3), 128.6 (C-5), 163.9 (C-6), 195.0 (C-4), 204.4 (C-2). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$ 248.1776, found 248.1797.

6d ($\mathrm{R}=t$ - Bu): colorless oil, $R_{f}=0.11$ (hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$). IR (film) $1710,1655 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.11\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.74-1.85(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-10), 1.91-$ $1.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 2.00-2.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.18-2.27(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-9), 2.91-2.99(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-7), 3.32(1 \mathrm{H}, \mathrm{dt}, J=15.8,1.7 \mathrm{~Hz}, \mathrm{H}-3), 4.05(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-3), 5.97$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.8(\mathrm{C}-10), 28.4(\mathrm{CMe} 3$), $30.3(\mathrm{C}-9), 37.4(\mathrm{C}-8)$, 43.2 (C-7), 54.9 (C-1), 56.5 (C-3), 125.1 (C-5), 170.2 (C-6), 194.2 (C-4), 206.1 (C-2). HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} 220.1463$, found 220.1461
Reaction of 1 with Lithium Enolate of 1-Acetyl-1-cyclohexene. Reaction was carried out in the same way as described for the $[3+4]$ annulation leading to cycloheptenediones $\mathbf{2}$.
$\mathbf{8 d}(\mathrm{R}=t-\mathrm{Bu})$: a pale yellow oil, $R_{f}=0.41$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=19: 1$). IR (film) $1775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 1.01(9 \mathrm{H}, \mathrm{m}, \mathrm{Si} t B u), 1.03$ $(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}), 1.10-1.17(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 1.50-1.65(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}, \mathrm{H}-9$ and $\mathrm{H}-11), 1.80-1.83(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-10), 1.85-1.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 1.90-1.94(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-9), 2.27(1 \mathrm{H}$, dddd, $J=$ $12.4,12.4,12.4,3.4 \mathrm{~Hz}, \mathrm{H}-8), 2.63(1 \mathrm{H}, \mathrm{ddd}, J=12.4,3.0,3.0 \mathrm{~Hz}, \mathrm{H}-7), 2.87(1 \mathrm{H}, \mathrm{d}, J=15.8$ $\mathrm{Hz}, \mathrm{H}-3), 3.28(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-3), 5.46(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 125\right.$ $\mathrm{MHz}) \delta-2.8(\mathrm{SiMe}),-2.7(\mathrm{SiMe}), 18.2(\mathrm{SiC}), 22.7(\mathrm{C}-11), 26.0(\mathrm{SitBu}), 26.9(\mathrm{C}-9), 27.0(\mathrm{C}-$ 8), 27.2 (C-9), $28.7\left(\mathrm{CMe}_{3}\right), 33.9\left(\mathrm{CMe}_{3}\right), 53.9$ (C-7), 59.9 (C-3), 73.8 (C-4), 77.9 (C-1), 125.3 (C-5), 159.7 (C-6), 210.7 (C-2). HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si} 348.2485$ found 348.2475.

7a $\left(\mathrm{R}=\mathrm{CH}_{3}\right)$: a colorless prism, $\mathrm{mp} 96-98{ }^{\circ} \mathrm{C}, R_{f}=0.27$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=1: 1$). IR (KBr): $1655,1570 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.39-1.46(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-10), 1.50-1.58$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-11$), 1.79-1.84 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), $1.93-1.97$ ($1 \mathrm{H}, \mathrm{br} \mathrm{dm}, J=12.9 \mathrm{~Hz}, \mathrm{H}-11$), $2.03\left(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.24-2.27(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H}-8), 2.57(1 \mathrm{H}, \mathrm{ddd}, J=11.8,7.1,7.1 \mathrm{~Hz}$, $\mathrm{H}-1), 2.73-2.74$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 3.63 ($1 \mathrm{H}, \mathrm{dd}, J=14.9,1.5 \mathrm{~Hz}, \mathrm{H}-3$), 3.90 ($1 \mathrm{H}, \mathrm{dd}, J=14.9,0.6$ $\mathrm{Hz}, \mathrm{H}-3), 6.03(1 \mathrm{H}, \mathrm{dq}, J=1.3 \mathrm{~Hz}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.4(\mathrm{C}-11), 26.6(\mathrm{C}-$ 10), $26.6\left(\mathrm{CH}_{3}\right), 27.8$ (C-9), 28.4 (C-8), 46.6 (C-1), 50.6 (C-7), 62.1 (C-3), 129.3 (C-5), 161.1 (C-6), 192.6 (C-4), 204.7 (C-2). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 74.97$; H, 8.39, found C, 75.28; H, 8.30.

7b $(\mathrm{R}=n-\mathrm{Bu})$: a colorless oil. $R_{f}=0.20$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=2: 1$). IR (film) $1705,1660 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}^{3}$) $\left.\delta 0.92(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}-4)^{\prime}\right), 1.29-1.60(9 \mathrm{H}, \mathrm{m}), 1.84-1.86(1 \mathrm{H}$, m), $1.94(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=13.4 \mathrm{~Hz}), 2.23\left(2 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 2.35(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=13.4 \mathrm{~Hz})$, $2.52(1 \mathrm{H}, \mathrm{dt}, J=12.1,3.2 \mathrm{~Hz}, \mathrm{H}-1), 2.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-7), 3.63(1 \mathrm{H}, \mathrm{dd}, J=15.0,1.7 \mathrm{~Hz}, \mathrm{H}-3)$,
$\left.4.00(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{H}-3), 6.02(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0(\mathrm{C}-4)^{\prime}\right)$, 22.2, 22.6, 26.9, 28.1, 29.2, 30.7, 39.1, 45.9 (C-1), 50.4 (C-7), 62.5 (C-3), 128.2 (C-5), 165.6 (C-6), 192.8 (C-4), $205.0(\mathrm{C}-2)$. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} 234.1620$, found 234.1611.
$7 \mathrm{c}\left(\mathrm{R}=n\right.$-hexyl): a colorless oil. $R_{f}=0.16$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=3: 1$). IR (film) $1705,1660 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(3 \mathrm{H}, \mathrm{t}, J=4.0 \mathrm{~Hz}, \mathrm{H}-6$ '), 1.27-1.60 (13H, m), 1.84-1.87 $(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.92-1.95(\mathrm{H}-1$, br d, $\left.J=13.3 \mathrm{~Hz}), 2.23(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1)^{\prime}\right), 2.35(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.3$ $\mathrm{Hz}), 2.50-2.54(1 \mathrm{H}, \mathrm{dt}, J=12.4,3.9 \mathrm{~Hz}, \mathrm{H}-1), 2.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-7), 3.63(1 \mathrm{H}, \mathrm{dd}, J=14.9,1.5$ $\mathrm{Hz}, \mathrm{H}-3), 3.99(1 \mathrm{H}, \mathrm{d}, J=14.9 \mathrm{~Hz}, \mathrm{H}-3), 6.01(1 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}) $\delta 14.2$ (C-6'), 22.2, 22.7, 26.9, 28.1, 28.5, 29.1, 29.2 29.2, 31.7, 39.4 (C-1'), 45.9 (C1), 50.4 (C-7), 62.5 (C-3), 128.2 (C-5), 165.6 (C-6), 192.7 (C-4), 205.0 (C-2).
$7 \mathbf{d}(\mathrm{R}=t-\mathrm{Bu})$: colorless prism, $\mathrm{mp} 152-155{ }^{\circ} \mathrm{C}, R_{f}=0.08$ (hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$). IR (KBr) $1650,1575 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.15(9 \mathrm{H}, \mathrm{s}, \mathrm{Sit}$ Bu), $1.24-1.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9)$, 1.39-1.48 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 1.61-1.68 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-9$), $1.77(1 \mathrm{H}, \mathrm{ddd}, J=12.7,4.1,4.1$ $\mathrm{Hz}, \mathrm{H}-11), 1.89(2 \mathrm{H}$, br m, H-10 and H-11), $2.30(1 \mathrm{H}, \mathrm{br}$ d, $J=11.6 \mathrm{~Hz}, \mathrm{H}-8), 2.64(1 \mathrm{H}$, br s, H-7), $2.71(1 \mathrm{H}, \mathrm{ddd}, J=12.4,4.3,4.3, \mathrm{H}-1), 3.68(1 \mathrm{H}, \mathrm{dd}, J=16.4,1.1 \mathrm{~Hz}, \mathrm{H}-3), 4.23(1 \mathrm{H}, \mathrm{d}$, $J=16.5 \mathrm{~Hz}, \mathrm{H}-3), 6.08(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 21.8(\mathrm{C}-9), 26.4(\mathrm{C}-10)$, $28.5\left(\mathrm{CH}_{3}\right), 30.3(\mathrm{C}-11), 31.5(\mathrm{C}-8), 39.2\left(\mathrm{CMe}_{3}\right), 39.9(\mathrm{C}-7), 50.2(\mathrm{C}-1), 62.5(\mathrm{C}-3), 126.2$ (C-5), 172.2 (C-6), 193.7 (C-4), $207.4(\mathrm{C}-2)$. Anal. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ calcd for C 76.88, H 9.46, found C 77.02, H 9.80.
7e $\left(\mathrm{R}=c-\mathrm{C}_{3} \mathrm{H}_{5}\right.$): a pale yellow needle. $\mathrm{mp}=92-94{ }^{\circ} \mathrm{C}, R_{f}=28$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=1: 1$). IR (KBr) $1655,1555 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 0.59-0.64\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right), 0.69-0.75$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), 0.88-1.00 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$ and H-3'), 1.34-1.51 (4H, m, H-1', H-8, H-9, and H-10), $1.54-1.64(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9,11), 1.83-1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.04-2.09(1 \mathrm{H}$, br d, $J=13.7 \mathrm{~Hz}, \mathrm{H}-11)$, $2.30-2.33(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=13.7, \mathrm{H}-8), 2.62-2.66(1 \mathrm{H}, \mathrm{dt}, J=12.0,3.4 \mathrm{~Hz}, \mathrm{H}-1), 2.70-2.71(1 \mathrm{H}$, br m, H-7), $3.61(1 \mathrm{H}, \mathrm{dd}, J=15.2,1.7 \mathrm{~Hz}, \mathrm{H}-3), 3.94(1 \mathrm{H}, \mathrm{d}, J=15.2, \mathrm{H}-3), 5.74(1 \mathrm{H}, \mathrm{d}, J=$ $1.7 \mathrm{~Hz}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69\left(\mathrm{C}-2^{\prime}\right), 10.8(\mathrm{C}-3 '), 19.3(\mathrm{C}-1 '), 22.2(\mathrm{C}-9)$, 26.7 (C-10), 28.5 (C-8), 28.9 (C-11), 46.5 (C-1), 50.5 (C-7), 62.2 (C-3), 123.5 (C-5), 167.7 (C-6), 192.4 (C-4), 204.9 (C-2). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{C} 77.03$, H 8.31, found C 77.23, H 8.60.

1-(tert-Butyldimethylsilyl)-3-alkyl-3-bromo-2-propen-1-one (9). The following procedure for $\mathbf{9 a}(\mathrm{R}=\mathrm{Me})$ is representative: These compounds were prepared by a modified procedure of Cunico as described for the corresponding trimethylsilyl derivative. A solution of (1-(ethoxy)ethenyl)-tert-butyldimethylsilane ($10.00 \mathrm{~g}, 53.7 \mathrm{mmol}$), $\mathrm{CBr}_{4}(35.5 \mathrm{~g}, 107 \mathrm{mmol}$), and pyridine ($1.7 \mathrm{~mL}, 21.5 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(45 \mathrm{~mL})$ was irradiated with a sunlamp for 8 h before addition of $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. The mixtue was extracted with pentane ($50 \mathrm{~mL} \times 3$). The
combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, and concentrated. The residual oil was subjected to column chromatography (silica gel, 240 g ; elution with $6: 1$ pentane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give $9(\mathrm{R}=\mathrm{Br})(9.03 \mathrm{~g}, 51 \%)$. red oil. $R_{f}=0.31$ (hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=5: 1$). IR (film) $1630 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.20\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2}\right), 0.94(9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t \mathrm{Bu}), 7.62(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2) .{ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ - 7.2 (SiMe), 17.2 (SiC), 26.6 (SitBu), 97.9 (C-2), 136.7 (C-3), 232.6 (C-1). HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{OBr}_{2} \mathrm{Si} 329.9337$, found 329.9298.

To a cooled ($-80^{\circ} \mathrm{C}$) suspension of anhydrous $\mathrm{CuCN}(455 \mathrm{mg}, 4.98 \mathrm{mmol})$ in THF (42 mL) was added dropwise a solution of $\mathrm{MeLi}\left(1.25 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 4.0 \mathrm{~mL}, 4.98 \mathrm{mmol}\right)$. The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$. After the mixture became a clear solution, the solution was cooled to $-80^{\circ} \mathrm{C}$. To this solution was added dropwise a solution of $9(\mathrm{R}=\mathrm{Br})$ $(1.50 \mathrm{~g}, 3.32 \mathrm{mmol})$ in THF (66 mL). The reaction mixture was stirred at the same temperature for 1 h , and then allowed warm to $-30^{\circ} \mathrm{C}$ before addition of $\mathrm{AcOH}(0.29 \mathrm{~mL}$, $4.98 \mathrm{mmol})$ in THF (8 mL). The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, and then extracted with pentane ($100 \mathrm{~mL} x \mathrm{3}$). The combined organic phases were washed with saturated brine, dried, and concentrated. The residual oil was filtered through a pad of Florisil (pentane), and then subjected to column chromatography (silica gel, 100 g ; elution with 19:1 hexane- $\mathrm{Et}_{2} \mathrm{O}$) to give $9 \mathbf{a}(\mathrm{R}=\mathrm{Me})(730 \mathrm{mg}, 57 \%)$.
9a ($\mathrm{R}=\mathrm{Me}$): a yellow oil, $R_{f}=0.32$ (hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=5: 1$). IR (film) $1640,1560 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.19\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2}\right), 0.93(9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t B u), 2.67(3 \mathrm{H}, \mathrm{t}, J=1.1 \mathrm{~Hz}$, $\mathrm{H}-4), 7.11(1 \mathrm{H}, \mathrm{q}, J=1.1, \mathrm{H}-2) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-7.1(\mathrm{SiMe} 2), 17.1(\mathrm{SiC}), 26.6$ (SitBu), 27.3 (C-4), 133.6 (C-2), 139.8 (C-1), 234.7 (C-1). Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{OBrSi},: \mathrm{C}$, 45.63 ; H, 7.27, found C, 45.44; H, 7.52.

9b $\left(\mathrm{R}=n\right.$ - Bu): a yellow oil. $R_{f}=0.38$ (hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=7: 1$). IR (film) $1645,1555 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} e_{2}\right), 0.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2}\right), 0.90(3 \mathrm{H}, \mathrm{t}, J=10.5$, H-7), $1.33(2 \mathrm{H}, \mathrm{sex}, J=7.7 \mathrm{~Hz}, \mathrm{H}-6), 1.55(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.92(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}-4), 7.11$ $(1 \mathrm{H}, \mathrm{t}, J=0.4 \mathrm{~Hz}, \mathrm{H}-2) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-6.8\left(\mathrm{SiMe}_{2}\right), 14.3(\mathrm{C}-7), 17.3(\mathrm{SiC})$, 22.3 (C-6), 26.9 (SitBu), 31.3 (C-5), 38.8 (C-4), 133.9 (C-2), 146.8 (C-3), 234.5 (C-1). HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}^{81} \mathrm{BrSi}$ 306.0837, found 306.0833.

9c (R = n-hexyl): an yellow oil. $R_{f}=0.50$ (hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=6: 1$). IR (film) $1645,1550 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.18\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si} e_{2}\right), 0.87(3 \mathrm{H}, \mathrm{t}, J=7.5, \mathrm{H}-9), 0.92(9 \mathrm{H}, \mathrm{s}$, $\mathrm{Si} t \mathrm{Bu}), 1.25-1.32$ (6H, m, H-5), 1.54-1.58 (2H, m), 2.92 (2H, t, $J=7.5, \mathrm{H}-4), 7.11$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 2). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-7.1$ ($\mathrm{SiMe} e_{2}$), 14.2 (C-9), 17.1 (SiC), 22.7, 26.7 (SitBu), 28.6, 28.9, 31.7, 38.7 (C-4), 133.7 (C-2), 146.5 (C-3), 234.3 (C-1). HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OBrSi}$, 332.1171, found 332.1211.

9d ($\mathrm{R}=t-\mathrm{Bu}$): an yellow oil. $R_{f}=0.37$ (hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=6: 1$). IR (film) $1640,1620 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.20(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} 2), 0.94(9 \mathrm{H}, \mathrm{s}, \mathrm{SitBu}), 1.19(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 6.62$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-6.6\left(\mathrm{SiMe} e_{2}\right), 17.0(\mathrm{SiC}), 26.6(\mathrm{SitBu}), 30.8(t-$ $\mathrm{Bu}), 41.3$ (C-4), 138.1 (C-2), 144.8 (C-3), 239.4 (C-1). HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}^{81} \mathrm{BrSi}$ 306.0837, found 306.0848.

9e $\left(\mathrm{R}=c-\mathrm{C}_{3} \mathrm{H}_{5}\right)$: an yellow oil. $R_{f}=0.33$ (hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=5: 1$). IR (film) $1535 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.20\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2}\right), 0.84(2 \mathrm{H}, \mathrm{m}), 0.87(9 \mathrm{H}, \mathrm{s}, \mathrm{SitBu}), 1.10(2 \mathrm{H}$, $\mathrm{m}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-6.8\left(\mathrm{SiMe}_{2}\right), 10.9,17.4$, 17.9, 26.9 ($\mathrm{Si} t \mathrm{Bu}$), 133.2 (C-2), 151.8 (C-3), 234.0 (C-1). HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{BrO}$ 272.0776, found $\mathrm{C}_{13} \mathrm{H}_{22}{ }^{79} \mathrm{BrO}$ 273.0857.

Reaction of 9 with Lithium Enolate of 1-Acetyl-1-cyclopentene. Reaction was carried out in the same way as described for the reaction of the corresponding derivative $\mathbf{2}$.
$\mathbf{5 e}\left(\mathrm{R}=c-\mathrm{C}_{3} \mathrm{H}_{5}\right)$: a yellow oil. $R_{f}=0.33$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=16: 1$). IR (film) $1775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si} M e), 0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.42-0.49(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{l}$ and H$\left.3^{\prime}\right), 0.66-0.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right), 0.74-0.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 0.87(9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t B u), 1.23-1.28(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-1$ '), 1.48-1.52 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 1.58-1.73 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-9$, and $\mathrm{H}-10$), 2.15-2.19 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 9), $3.00(1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz}, \mathrm{H}-3), 3.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.6 \mathrm{~Hz}, \mathrm{H}-3), 3.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 5.33$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$). $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.0(\mathrm{SiMe}),-2.6(\mathrm{SiMe}), 7.0(\mathrm{C}-2)^{\prime}\right), 7.9(\mathrm{C}-3$ '), 10.8 (C-1'), 18.1 ($\mathrm{Si} C$), 25.8 ($\mathrm{Si} t B u$), 26.6 (C-8), 28.5 (C-9), 31.4 (C-10), 56.5 (C-7), 60.3 (C3), 80.4 (C-4), 81.9 (C-1), 124.8 (C-5), 152.4 (C-6), 215.6 (C-2). HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$ 318.2015, found 318.2036.

Reaction of 9 with Lithium Enolate of 1-Acetyl-1-cyclohexene. Reaction was carried out in the same way as described for the reaction of the chloro derivative $\mathbf{2}$.
8a ($\mathrm{R}=\mathrm{Me}$): colerless oil, $R_{f}=0.31$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=12: 1$). IR (film) $1780 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.89(9 \mathrm{H}, \mathrm{s}, \mathrm{Sit} B u), 0.86-0.95$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), $1.12-1.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.30-1.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 1.46-1.52(1 \mathrm{H}, \mathrm{ddd}, J=13.7$, $13.7,4.7 \mathrm{~Hz}, \mathrm{H}-11)$, 1.62-1.65 ($2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.7$, $\mathrm{H}-9$ and $\mathrm{H}-10$), $1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.99-$ $2.05(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.18-2.22(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=13.7 \mathrm{~Hz}, \mathrm{H}-11), 2.34(1 \mathrm{H}, \mathrm{dd}, J=11.1,6.6 \mathrm{~Hz}, \mathrm{H}-$ 7), 2.93 ($1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}, \mathrm{H}-4$), $3.28(1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}, \mathrm{H}-4), 5.43(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-2.8(\mathrm{SiMe}),-2.5(\mathrm{SiMe}), 15.6\left(\mathrm{CH}_{3}\right), 18.3(\mathrm{SiC}), 26.1(\mathrm{SitBu}), 23.1(\mathrm{C}-$ 10), 23.9 (C-9), 24.7 (C-11), $26.1\left(\mathrm{CH}_{3}\right), 30.6$ (C-8), 47.7 (C-7), 59.0 (C-3), 73.1 (C-4), 81.0 (C-1), 127.6 (C-5), 150.2 (C-6), 215.5 (C-2). HRMS : calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si} 306.5151$, found 306.2007.
$\mathbf{8 b}(\mathrm{R}=n-\mathrm{Bu})$: a colorless oil. $R_{f}=0.40$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=19: 1$). IR (film) $1780 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.89\left(3 \mathrm{H}, \mathrm{t}, J=7.0, \mathrm{C}-4^{\prime}\right)$,
0.90 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t \mathrm{Bu}$), 1.14-1.48 (7H, m), 1.49-1.55 (1H, m, H-11), 1.63-1.65 (2H, m), 1.96-2.10 (3H, m, H-3'and H-8), 2.21 ($1 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, \mathrm{H}-11$), 2.42 ($1 \mathrm{H}, \mathrm{dd}, J=11.4,6.6 \mathrm{~Hz}, \mathrm{H}-7$), $2.93(1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}, \mathrm{H}-3), 3.30(1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}, \mathrm{H}-3), 5.44(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-3.1 ($\mathrm{Si} M e$), -2.7 (SiMe), 14.1 (C-4'), 18.1, 22.6, 22.9, 23.9, 24.6, 25.9 (SitBu), 26.7, 29.1, 29.8, 30.7, 46.1 (C-7), 58.9 (C-3), 72.5 (C-4), 80.5 (C-1), 126.0 (C-5), 154.7 (C-6), 215.7 (C-2). HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si} 348.2485$, found 248.2470.
$8 \mathbf{c}\left(\mathrm{R}=n\right.$-hexyl): a pale yellow oil. $R_{f}=0.35$ (hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=3: 1$). IR (film) $1780 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.87(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, H-6'), 0.90 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t B u$), 1.11-1.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$), 1.22-1.32 ($8 \mathrm{H}, \mathrm{br}$ m, H-2', H-3', H-4', and H-5'), 1.33-1.41 (2H, m), 1.46-1.53 (1H, ddd, $J=15.3,13.2,4.2 \mathrm{~Hz}$), 1.63-1.66 (2H, m), $1.95-2.08\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8\right.$ and $\left.\mathrm{H}-11^{\prime}\right), 2.20(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 2.40(1 \mathrm{H}, \mathrm{dd}, J=11.1,6.6 \mathrm{~Hz}, \mathrm{H}-$ 7), $2.92(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}-3), 3.29(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}-3), 5.43(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-3.1 (SiMe), -2.7 (SiMe), 14.3 (C-6'), 18.0 (SiC), 22.8, 22.9, 23.8, 24.5, 25.8 (SitBu), 27.6, 29.2, 29.4, 30.7, 31.8, 46.1 (C-7), 58.9 (C-3), 72.5 (C-4), 80.5 (C-1), 126.0 (C-5), 154.7 (C-6), 215.2 (C-2). HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ 319.2093, found 319.2084.

8e $\left(\mathrm{R}=c-\mathrm{C}_{3} \mathrm{H}_{5}\right)$: a yellow oil. $R_{f}=0.35$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=16: 1$). IR (film) $1780 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.43-0.45(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ ' and H-3'), 0.65-0.68 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$), 0.72-0.76 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), 0.88 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SitBu}$), 0.98-1.03 (1 H , dddd, $J=11.1,11.1,11.1,3.4 \mathrm{~Hz}, \mathrm{H}-8), 1.15-1.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9\right.$ and $\left.\mathrm{H}-1{ }^{\prime}\right)$, 1.31-1.39 ($1 \mathrm{H}, \mathrm{m}$, H-10), 1.46-1.53 (1 H, ddd, $J=13.0,13.0,4.1 \mathrm{~Hz}, \mathrm{H}-11$), 1.60-1.66 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and H-10), 2.06-2.12 (1 H , br d, H-8), 2.18-2.23 ($1 \mathrm{H}, \mathrm{br}$ d, $J=13.7 \mathrm{~Hz}, \mathrm{H}-11$), 2.46 ($1 \mathrm{H}, \mathrm{dd}, J=11.1,6.4$ $\mathrm{Hz}, \mathrm{H}-7), 2.89(1 \mathrm{H}, \mathrm{d}, J=16.3 \mathrm{~Hz}, \mathrm{H}-3), 3.27(1 \mathrm{H}, \mathrm{d}, J=16.3 \mathrm{~Hz}, \mathrm{H}-3), 5.24(1 \mathrm{H}, \mathrm{d}, J=0.7$ $\mathrm{Hz}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.1$ (SiMe), -2.7 (SiMe), 6.9 (C-3'), 8.3 (C-2'), 10.6 (C-1'), 18.0 (SiC), 22.9 (C-10), 23.8 (C-9), 24.5 (C-11), 25.8 (SitBu), 31.3 (C-8), 47.0 (C-7), 58.9 (C-3), 72.6 (C-4), 80.2 (C-1), 122.9 (C-5), 156.7 (C-6), 214.9 (C-2). HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si} 332.2172$, found 332.2143 .
Low-temperature Quenching of the raction of 1a with 3. Reaction was carried out in the same way as described for the above reaction of $\mathbf{1}$ with $\mathbf{3}$ except the quenching temperature. 10: a pale yellow oil, $R_{f}=0.17$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=19: 1$). IR (film) $1685 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.08\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.95(9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t \mathrm{Bu}), 0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.24-1.32(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-9), 1.43-1.57(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-10), 1.62-1.74(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{H}-$ 7), $288(1 \mathrm{H}, \mathrm{dd}, J=21.4,2.4 \mathrm{~Hz}, \mathrm{H}-3), 297(1 \mathrm{H}, \mathrm{d}, J=21.4 \mathrm{~Hz}, \mathrm{H}-3), 3.04-3.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 10), $5.13(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-4.5(\mathrm{SiMe}),-4.5(\mathrm{SiMe}), 14.7$ $\left(\mathrm{CH}_{3}\right), 18.1$ (SiC), 24.1 (C-10), 25.7 (Sit Bu), 26.2 (C-9), 27.0 (C-8), 34.2 (C-1), 42.5 (C-3),
48.1 (C-7), 49.7 (C-1), 111.8 (C-5), 144.7 (C-4), 203.4 (C-2). HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$ 292.1859, found 292.1859.

11: a pale yellow oil, $R_{f}=0.24$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=15: 1$). IR (film) $1655 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2}\right), 0.91(9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t B u), 1.27\left(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.70-$ $1.82(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 2.50-2.68(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-10), 2.71-2.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 3.14-3.22(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-5), 3.35(1 \mathrm{H}, \mathrm{dd}, J=15.1,1.1 \mathrm{~Hz}, \mathrm{H}-2), 3.43(1 \mathrm{H}, \mathrm{d}, J=15.1 \mathrm{~Hz}, \mathrm{H}-2), 5.02(1 \mathrm{H}, \mathrm{d}, J=$ $6.0 \mathrm{~Hz}, \mathrm{H}-4) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.4(\mathrm{SiMe}),-4.4(\mathrm{SiMe}), 18.1(\mathrm{SiC}), 18.5\left(\mathrm{CH}_{3}\right)$, 20.8 (C-10), 25.8 (SitBu), 33.2 (C-8), 39.2 (C-10), 51.0 (C-3), 112.5 (C-5), 136.7 (C-7), 148.0 (C-1), 164.9 (C-4), 192.9 (C-2). HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si} 292.1859$, found 292.1850.
12: pale yellow oil, $R_{f}=0.45$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=15: 1$). IR (film) $1715 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.16(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e), 0.93(9 \mathrm{H}, \mathrm{s}, \mathrm{SitBu}), 1.65-1.75(3 \mathrm{H}, \mathrm{m}$, H-9 and H-10), $1.76\left(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.25-2.29(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.32-2.38(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-10), 3.03(1 \mathrm{H}, \mathrm{dd}, J=18.6,0.9 \mathrm{~Hz}, \mathrm{H}-3), 3.17-3.22(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-1), 5.49(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-3) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.5(\mathrm{Si} M e),-4.2(\mathrm{SiMe}), 18.2(\mathrm{SiC}), 20.0\left(\mathrm{CH}_{3}\right), 25.8$ (SitBu), 26.6, 31.2, 50.3 (C-3), 57.0 (C-1), 114.2 (C-5), 125.4 (C-4), 133.9, 146.8, 208.3 (C2). HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si} 292.1859$, found 292.1866.

13: a pale yellow oil, $R_{f}=0.14$ (hexane : $\mathrm{Et}_{2} \mathrm{O}=15: 1$). IR (film) $1640 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.21\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2}\right), 0.94(9 \mathrm{H}, \mathrm{s}, \mathrm{Si} t \mathrm{Bu}), 1.43-1.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.60-1.68$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.70-1.77(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$ and $\mathrm{H}-9), 1.96-2.02(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.02(3 \mathrm{H}, \mathrm{dd}, J=$ $\left.1.3,1.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.25-2.33(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.52-2.58(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 2.64-2.72(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7)$, $5.63(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{H}-3), 5.75(1 \mathrm{H}, \mathrm{dq}, J=1.7 \mathrm{~Hz}, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 4.4 ($\mathrm{Si} M e$), $-4.2(\mathrm{Si} M e), 18.3(\mathrm{SiC}), 24.9\left(\mathrm{CH}_{3}\right), 25.5(\mathrm{C}-9), 25.7(\mathrm{C}-10), 25.7$ ($\mathrm{Si} t B u$), 30.8 (C-8), 44.8 (C-7), 53.5 (C-1), 113.6 (C-3), 124.3 (C-5), 154.7 (C-6), 163.9 (C-4), 200.2 (C-2). HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$ 292.1859, found 292.1858 .

Synthesis of the Tricyclic Skeleton of Cyathins Using Brook RearrangementMediated [3 + 4] Annulation

Kei Takeda,* Daisuke Nakane, and Mika Takeda

Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University,

2630 Sugitani, Toyama 930-0194, Japan

takedak@ms.toyama-mpu.ac.jp

Abstract The tricyclic core of cyathins has been synthesized using a Brook rearrangement-mediated $[3+4]$ annulation that we previously developed.

Cyathins, ${ }^{1}$ isolated from bird nest fungi, and other members ${ }^{2,3,4}$ of this family, including erinacins ($\mathbf{1 , 2})^{5}$, which are collectively called cyathins, continue to be of interest because of their unusual 5-6-7 tricyclic ring system coupled with their important biological activities (Figure 1). Recently, erinacine E (2), one of the complex members of the cyathin family, has been shown to have potent nerve growth factor (NGF) synthesis-stimulating activity ${ }^{5}$ and to be a Kopioid receptor agonist. ${ }^{6}$ Synthetic efforts have been described by several groups, ${ }^{7}$ and two total syntheses of allocyathin $B_{2}(3)$ have been reported. ${ }^{8,9}$

Figure 1

Erinacin $A(R=1 \beta$-xylose $)(1)$
Allocyathin $\mathrm{B}_{2}(\mathrm{R}=\mathrm{H})(\mathbf{3})$

Erinacin E (2)

We have recently developed a Brook rearrangement-mediated [3+4] annulation for the stereoselective synthesis of seven-membered carbocycles by the reaction of α, β-unsaturated acylsilanes with lithium enolate of alkenyl methyl ketones. ${ }^{10}$ To demonstrate the effectiveness of the methodology for the synthesis of functionalized cycloheptenones, we decided to apply this method to the synthesis of the tricyclic skeleton of the cyathin ring system. As a target we selected the tricyclic compounds $\mathbf{4}$ and $\mathbf{5}$ bearing the appropriate functionalities necessary for their conversion to natural products, and we addressed two retrosynthetic pathways defined as A and B that use the 5-6 ring systems $\mathbf{6}$ and $\mathbf{8}$ as three-carbon and four-carbon units in the key $[3+4]$ annulation, respectively (Scheme 1).

Scheme 1

Path A. Acylsilane $\mathbf{1 3}$ was prepared by a four-step sequence starting with known enone $\mathbf{1 0}^{11}$ (Scheme 2). When $\mathbf{1 0}$ was reacted with $\mathrm{Me}_{3} \mathrm{SiCN}$ in the presence of ZnI_{2} followed by elimination of silanol with $\mathrm{POCl}_{3},{ }^{12}$ unsaturated nitrile 11 was obtained in 65% yield. Reduction of $\mathbf{1 1}$ with DIBAL followed by an acid quench afforded aldehyde $\mathbf{1 2}$ in 76% yield. Conversion of $\mathbf{1 2}$ into acylsilane $\mathbf{1 3}$ was carried out by reaction with dimethyl(phenyl)silyllithium ${ }^{13}$ followed by oxidation of the generated α-silylalcohol. Oxidation with $\mathrm{DMSO} /(\mathrm{COCl})_{2}, \mathrm{PCC}$, and MnO_{2} resulted in a low yield of $\mathbf{1 4}$ with the concomitant formation of 12. The best result was obtained when 1 equiv. of $n-\operatorname{Pr}_{4} \mathrm{NRuO}_{4}$ (TPAP) ${ }^{14}$ was used to provide 13 in 57% yield along with 14% of $\mathbf{1 2}$. The use of a catalytic amount of TPAP and/or a longer reaction time resulted in increased formation of $\mathbf{1 2}$.

Scheme 2

As a four-carbon unit in the $[3+4]$ annulation, we initially examined several vinyl methyl ketone derivatives 7 which have a leaving group such as phenylthio, phenylsulfonyl groups at the β-position, anticipating that facile elimination of LiX would occur to lead to an enone derivative in the annulation product. Not unexpectedly, significant decomposition of the substrate occurred during the formation of the enolate. Next, we turned to the use of lithium enolate of 4-methoxy-3-buten-2-one. When the lithium enolate was added to a THF solution of $\mathbf{1 3}$ at $0^{\circ} \mathrm{C}$ and the solution was then warmed to room temperature, tricycliclic ketone $\mathbf{1 4}$ was obtained as an epimeric mixture at $\mathrm{C}(9)$ in 47% yield along with recovery of $\mathbf{1 3}$ (14\%) (Scheme 3).

Scheme 3

The structures were assigned by analogy with structurally related compounds, ${ }^{10 \mathrm{c}}$ and the 5,10 -cis stereochemistry of 14 was based on the $J_{5,10}$ (ca. 0 Hz for both isomers) and NOESY experiments.
Path B. Bicyclic methyl ketone $\mathbf{1 6}$ was prepared from $\mathbf{1 0}$ via a two-step sequence: (1) addition of ethynylmagenisum bromide, and (2) Rupe rearrangement ${ }^{15}$ (Scheme 4).

Scheme 4

The key $[3+4]$ annulation proceeded smoothly when 16 was added to a solution of acryloylsilane $\mathbf{1 7 a}$ at $-80^{\circ} \mathrm{C}$ and allowed to warm to $0{ }^{\circ} \mathrm{C}$ to afford 20 a as a single diastereomer in 60% yield (Scheme 5). The $6,5,10$-cis stereochemistry was assigned on the basis of $J_{5,6}=7.3 \mathrm{~Hz}, J_{5,10}=6.6 \mathrm{~Hz}$ and of a NOESY correlation between H-6 and H-10. The relative stereochemisty of $\mathrm{Me}-15$ was tentatively assigned as trans to $\mathrm{H}-5$ and $\mathrm{H}-6$ since no NOESY correlation between the $9-\mathrm{Me}$ and $\mathrm{H}-5$ was observed. The observed stereoselectivity can be rationalized by a concerted pathway of the anionic oxy-Cope rearrangement of the cis-1,2-divinylcyclopropanediolate intermediate 19 which was stereoselectively derived from the 1,2 -adduct $\mathbf{1 8}$ by the Brook rearrangement, followed by internal trapping of the generated carbanion by the ketone carbonyl. ${ }^{10 \mathrm{c}}$ The stereoselectivity, which is different from that in the reaction of $\mathbf{1 3}$, remains unclear at the present time. Although the trimethylsilyl group at C-10 could be removed by exposure to NBS followed by $n-\mathrm{Bu}_{4} \mathrm{NF}$ to give an enone derivative, ${ }^{10 \mathrm{c}}$ the reaction turned out to produce a low yield and to have poor reproducibility. We then decided to use trimethylsilyl derivative $\mathbf{1 7 b}$, anticipating a more facile conversion into the enone derivative. The [3+4] annulation using $\mathbf{1 7 b}$ proceeded in a similar manner to give $\mathbf{2 0 b}$ as a single isomer in 50% yield. Oxidative desilylation of $\mathbf{2 0 b}$ was realized after DIBAL reduction to alcohol 21 to afford enone 22 in 79% yield. The configuration of 9-Me was assigned on the basis of a NOESY correlation between $9-\mathrm{Me}$ and $\mathrm{H}-10$ and of comparison of ${ }^{1} \mathrm{H}$ NMR of its O-silylated derivative $\mathbf{2 3}$ with that of 6 -methyl derivative of $\mathbf{2 3}$, which is known. ${ }^{\text {b }}$

Scheme 5

In summary, we have demonstrated the synthetic utility of our Brook rearrangementmediated $[3+4]$ annulation by application to the synthesis of the tricyclic ring system of cyathins.

Acknowledgment This research was partially supported by a grant-in-aid for Scientific Research (No. 10671986) from the Japanese Ministry of Education, Sciences, Sports and Culture.

Supporting Information Available: Full experimental details and characterization data for all new compounds described in the text (5 pages).
(1) (a) Allbutt, A. D.; Ayer, W. A.; Brodie, H. J.; Johri, B. N.; Taube, H. Can. J. Microbiol. 1971, 17, 1401-1407. (b) Ayer, W. A.; Taube, H. Tetrahedron Lett. 1972, 1917-1920. (c) Ayer, W. A.; Taube, H. Can. J. Chem. 1973, 51, 3842-3854. (d) Ayer, W. A.; Carstens, L. L. Can. J. Chem. 1973, 51, 3157-3160. (e) Ayer, W. A.; Browne, L. M.; Mercer, J. R.; Taylor, D. R.; Ward, D. E. Can. J. Chem. 1978, 56, 717-721. (f) Ayer, W. A.; Lee, S. P. Can. J. Chem. 1979, 57, 3332-3337. (g) Ayer, W. A.; Yoshida, T.; van Schie, D. M. J. Can. J. Chem. 1978, 56, 2113-
2120. (h) Ayer, W. A.; Nakashima, T. T.; Ward, D. E. Can. J. Chem. 1978, 56, 2197-2199. (i) Ayer, W. A.; Lee, S. P.; Nakashima, T. T. Chem. J. Can. 1979, 57, 3338-3343.
(2) Shibata, H.; Tokunaga, T.; Karasawa, D.; Hirota, A. Agric. Biol. Chem. 1989, 53, 33733375.
(3) Toyota, M.; Nakaisi, E.; Asakawa, Y. Phytochemistry 1996, 43, 1057-1064.
(4) (a) Ohta, T.; Kita, T.; Kobayashi, N.; Obara, Y.; Nakahata, N.; Ohizumi, Y.; Takaya, Y.; Oshima, Y. Tetrahedron Lett. 1998, 39, 6229-6232. (b) Kita, T.; Takaya, Y.; Oshima, Y.; Ohta, T.; Aizawa, K.; Hirano, T.; Inakuma, T. Tetrahedron 1998, 54, 11877-11886. (c) Obara, Y.; Nakahata, N.; Kita, T.; Takaya, Y.; Kobayashi, H.; Hosoi, S.; Kiuchi, F.; Ohta, T.; Oshima, Y.; Ohizumi, Y. Eur. J. Pharmacol. 1999, 370, 79-84.
(5) (a) Kawagishi, H.; Shimada, A.; Shirai, R.; Okamoto, K.; Ojima, F.; Sakamoto, H.; Ishiguro, Y.; Furukawa, S. Tetrahedron Lett. 1994, 35, 1569-1572. (b) Kawagishi, H.; Shimada, A.; Shizuki, K.; Mori, H.; Okamoto, K.; Sakamoto, H.; Furukawa, S. Heterocycl. Commun. 1996, 2, 51-54. (c) Kawagishi, H.; Shimada, A.; Hosokawa, S.; Mori, H.; Sakamoto, H.; Ishiguro, Y.; Sakemi, S.; Bordner, J.; Kojima, N.; Furukawa, S. Tetrahedron Lett. 1996, 37, 7399-7402. (d) Hecht, H.-J.; Höfle, G.; Steglich, W.; Anke, T.; Oberwinkler, F. J. Chem. Soc., Chem. Commun. 1978, 665-666.
(6) Saito, T.; Aoki, F.; Hirai, H.; Inagaki, T.; Matsunaga, Y.; Sakakibara, T.; Sakemi, S.; Suzuki, Y.; Watanabe, S.; Suga, O.; Sujaku, T.; Smogowica, A. A.; Truesdell, S. J.; Wong, J. W.; Nagahisa, A.; Kojima, Y.; Kojima, N. J. Antibiot. 1998, 51, 983-990.
(7) (a) Ayer, W. A.; Ward, D. E.; Browne, L. M.; Delbaere, L. T. J.; Hoyano, Y. Can. J. Chem. 1981, 59, 2665-2672. (b) Ward, D. E. Can. J. Chem. 1987, 65, 2380-2384. (c) Dahnke, K. R.; Paquette, L. A. J. Org. Chem. 1994, 59, 885-899. (c) Magnus, P.; Shen, L. Tetrahedron, 1999, 55, 3553-3560. (d) Wright, D. L.; Whitehead, C. R.; Hampton, E. Org. Lett. 1999, 1, 15351538. (e) Piers, E.; Gilbert, M.; Cook, K. L. Org. Lett. 2000, 2, 1407-1410.
(8) Snider, B. B.; Vo, N. H.; O'Neil, S. V.; Foxman, B. M. J. Am. Chem. Soc. 1996, 118, 76447645. (b) Snider, B. B.; Vo, N. H.; Steven V.; O'Neil, S. V. J. Org. Chem. 1998, 63, 4732-4740
(9) Tori, M.; Toyoda, N.; Sono, M. J. Org. Chem. 1998, 63, 306-313.
(10) (a) Takeda, K.; Takeda, M.; Nakajima, A.; Yoshii, E. J. Am. Chem. Soc. 1995, 117, 6400-
6401. (b) Takeda, K.; Nakajima, A.; Yoshii, E. Synlett 1996, 753-754. (c) Takeda, K.; Nakajima, A.; Takeda, M.; Okamoto, Y.; Sato, T.; Yoshii, E.; Koizumi, T.; Shiro, M. J. Am. Chem. Soc. 1998, 120, 4947-4959. (d) Takeda, K.; Nakajima, A.; Takeda, M.; Yoshii, E.; Zhang, J.;
Boeckman, Jr., R. K. Org. Synth. 1999, 76, 199-213.
(11) Snider, B. B.; Rodini D. J.; van Straten, J. J. Am. Chem. Soc. 1980, 102, 5872-5880.
(12) Oda, M. Chem. Lett. 1979, 1427-1430.
(13) Ager, D. J.; Fleming, I.; Patel, S. K. J. Chem. Soc. Perkin I 1981, 2520-2526.
(14) (a) Griffith, W. P.; Ley, S. V.; Whitecombe, G. P.; White, A. D. J. Chem. Soc., Chem.

Commun. 1987, 1625-1627. (b) Griffth, W. P.; Ley, S. V. Aldrichimica Acta 1990, 23, 13-19.
(c) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639-666.
(15) Swaminathan, S.; Narayanan, K. V. Chem. Rev. 1971, 71, 429-438.

Synthesis of the Tricyclic Skeleton of the Cyathin Diterpene Using the Brook Rearrangement-Mediated [3 + 4] Annulation

Kei Takeda,* Daisuke Nakane, and Mika Takeda
Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University 2630 Sugitani, Toyama 930-0194, Japan

Supporting Information

General: IR spectra were recorded on a Perkin-Elmer FT1640 spectrometer. ${ }^{1}$ H NMR spectra were taken on Varian UnityPlus $500(500 \mathrm{MHz})$ in CDCl_{3} with reference to $\mathrm{CHCl}_{3}(\delta 7.26)$ unless otherwise noted. ${ }^{13} \mathrm{C}$ NMR spectra were measured with Varian UnityPlus 500 (125 MHz) in CDCl_{3} with reference to the CDCl_{3} triplet ($\delta 77.2$) unless otherwise noted. Resonance patterns were described as $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, sep $=$ septet, $\mathrm{m}=$ multiplet, and $\mathrm{br}=$ broad. The assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra is based on $\mathrm{H}-\mathrm{H}$ decoupling and HMQC experiments. Low- and high-resolution mass spectra (EI-MS) were obtained with a JEOL JMS-D-300 spectrometer combined with a JEOL JMA-2000 data processing system. For routine chromatography, the following adsorbents were used: FujiDavison silica gel BW-200 (150-325 mesh) for column chromatography; Merck precoated
 silica gel 60 F-254 plates for analytical thin-layer chromatography. All moisture sensitive reactions were performed under a positive pressure of nitrogen. Anhydrous MgSO_{4} was used for drying all organic solvent extracts in workup, and the removal of the solvents was performed with a rotary evaporator. Dry solvents and reagents were obtained by using standard procedures. Melting points (uncorrected) were determined by using a Yanagimoto micro-melting point apparatus. Elemental combustion analysis was performed at the Microanalysis Laboratory of this University.

6-Methyl-9-(1-methylethyl)bicyclo[4.3.0]nona-2,9-diene-3-carbonitrile (11)

To a solution of $\mathbf{1 0}(1.84 \mathrm{~g}, 9.54 \mathrm{mmol})$ in benzene $(4 \mathrm{~mL})$ was added $\mathrm{Me}_{3} \mathrm{SiCN}(1.65 \mathrm{~mL}$,
 $12.4 \mathrm{mmol})$ and $\mathrm{ZnI}_{2}(75 \mathrm{mg})$ at room temperature. The solution was stirred at room temperature for 1 h before addition of pyridine (15 mL) and $\mathrm{POCl}_{3}(2.59 \mathrm{~mL}, 28.6 \mathrm{mmol})$. After being stirred at the same temperature for 1 h , the mixure was poured into $\mathrm{Et}_{2} \mathrm{O}$-ice-satd. NaHCO_{3} solution. Phases were separted, and the organic phase was extracted with
$\mathrm{Et}_{2} \mathrm{O}$. Combined organic phase was successively washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated brine, then dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 30 g ; elution with 2:1 hexane-AcOEt) to give $11(1.24 \mathrm{~g}, 65 \%)$. colorless needles (hexane), R_{f} $=0.41$ (hexane: $\mathrm{AcOEt}=15: 1$). $\mathrm{mp} 60^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}) 2195 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 0.90(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$,
 $1.00(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}), 1.03(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe})$, $1.38-1.51(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and $\mathrm{H}-7), 1.76-1.82(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and $\mathrm{H}-7)$, 2.27-2.34 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-8$), 2.39-2.51 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-8$), $2.81\left(1 \mathrm{H}, \mathrm{sep}, J=6.8 \mathrm{~Hz}, \mathrm{C} H \mathrm{Me}_{2}\right), 7.02(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-2)$. ${ }^{13} \mathrm{C}$ NMR $\delta 21.2,21.7$, and $21.8\left(\mathrm{CHMe}{ }_{2}\right.$ and $\left.6-\mathrm{Me}\right), 25.7$ and 29.2 (C-5 and C-7), $27.2\left(\mathrm{CHMe}_{2}\right) 34.9$ and 38.8 (C-4 and C-8), 107.8 (C-1, C-3, and C-9), 121.1 (CN), 134.9 (C-2), 135.4 and 152.4 (C-1 and C-9). HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}$ 201.1517, found 201.1519.

6-Methyl-9-(1-methylethyl)bicyclo[4.3.0]nona-2,9-diene-3-carboaldehyde (12)

To an ice-cooled solution of $\mathbf{1 1}(0.42 \mathrm{~g}, 2.1 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(12 \mathrm{~mL})$ was added DIBAL (0.94 M hexane solution, $2.68 \mathrm{~mL}, 2.52 \mathrm{mmol}$). After being stirred at the same temperature for 1 h , the reaction mixture was quenced with addtion of MeOH , and filtered through a pad of Celite and concentrated. The residue was dissolved in THF (10 mL) in ice-water bath, and 10% aqueous $(\mathrm{COOH})_{2}(10 \mathrm{~mL})$ solution was added. The mixture was stirred at the same temperature for 30 min , and poured into $\mathrm{Et}_{2} \mathrm{O}$-water. Phases were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Combined organic phases were successively washed with water and saturated brine, dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 15 g ; elution with $2: 1$ hexane-AcOEt) to give $\mathbf{1 2}$ ($326 \mathrm{mg}, 76 \%$). a pale yellow oil, $R_{f}=0.41$ (hexane: $\mathrm{AcOEt}=12: 1$). IR (film) 2955, 2920, $1675 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR $\delta 0.91(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.05(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}), 1.07(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe})$, $1.34(1 \mathrm{H}, \mathrm{ddd}, J=12.6,12.6,5.6 \mathrm{~Hz}, \mathrm{H}-5), 1.52(1 \mathrm{H}, \mathrm{ddd}, J=10.6,10.6,10.6 \mathrm{~Hz}, \mathrm{H}-7)$, 1.79-1.86 (2H, m, H-5 and H-7), 2.20-2.29 (1H, m, H-4), 2.38 ($1 \mathrm{H}, \mathrm{dd}, J=17.7,9.0 \mathrm{~Hz}, \mathrm{H}-8$), 2.49-2.57 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 2.49-2.57 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 2.96 ($1 \mathrm{H}, \mathrm{sep}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe})_{2}$), 7.16 $(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \mathrm{H}-2), 9.49(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) .{ }^{13} \mathrm{C}$ NMR $\delta 20.2,21.3,21.8,22.0,27.5,29.7$, $34.8,39.0,45.6,137.7,137.9,139.3,155.0,194.5$. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O} 204.1514$, found 204.1498.

6-Methyl-9-(1-methylethyl)bicyclo[4.3.0]nona-2,9-diene-1carbonyl(dimethyl)phenylsilane (13)

To a cooled $\left(-80^{\circ} \mathrm{C}\right)$ solution of $\mathrm{PhMe}_{2} \mathrm{SiLi}(0.62 \mathrm{M}$ in THF, $11.8 \mathrm{~mL}, 7.32 \mathrm{mmol})$ in THF $(19 \mathrm{~mL})$ was added dropwise $\mathbf{1 2}(1.00 \mathrm{~g}, 4.89 \mathrm{mmol})$. The solution was stirred at the same temperature for 1 h , and then quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture
was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic phases were washed with saturated brine, dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 100 g ; elution with 20:1 hexane-AcOEt) to give silylcarbinol ($775 \mathrm{mg}, 47 \%$).
This material was dissoolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and N -methylmorpholine- N -oxide (399 mg , 3.4 mmol) and TPAP ($800 \mathrm{mg}, 2.28 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 5 min , filtered through a pad of silica gel (45 g) eluting with hexane-AcOEt (24:1), and the solvent was concentrated. The residual oil was subjected to column chromatography (silica gel, 50 g ; elution with 25:1 hexane-AcOEt) to give $\mathbf{1 3}(440 \mathrm{mg}, 46 \%)$. a pale yellow needles, $R_{f}=0.47$ (hexane:AcOEt $=12: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 1.25(1 \mathrm{H}, \mathrm{ddd}, J=12.7$, $12.7,5.6 \mathrm{~Hz}, \mathrm{H}-5), 1.42$ ($1 \mathrm{H}, \mathrm{ddd}, J=10.5,10.5,10.5 \mathrm{~Hz}, \mathrm{H}-7$), 1.70-1.78 ($2 \mathrm{H}, \mathrm{H}-5$ and H-7), 2.09-2.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), $2.25(1 \mathrm{H}, \mathrm{dd}, J=17.8,8.8 \mathrm{~Hz}, \mathrm{H}-8), 2.32(1 \mathrm{H}$, sep, $J=6.8 \mathrm{~Hz}$, CHMe $)_{2}$, 2.38-2.47 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 2.46-2.52 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), $7.14(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-2), 7.36-$ $7.40(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR $\delta-2.6$ and $-2.7\left(\mathrm{SiMe}_{2}\right), 20.3(\mathrm{C}-4), 21.2,21.8$, and 22.0 ($6-\mathrm{Me}, \mathrm{CHMe}$), 27.2 (CHMe_{2}), 29.7 (C-8), 35.1 (C-5), 39.0 (C-7), 45.0 (C-6), 128.3, 129.6, 134.1, 136.4 (C-2), 137.6, 138.1, 142.0, 153.6, 233.8 (C=O). HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{OSi} 338.2066$, found 338.2057 .

[$3+4$] annulation of 13 with lithium enolate of 4-methoxy-3-buten-2-one

To a stirred and cooled $\left(-80^{\circ} \mathrm{C}\right)$ solution of lithium diisopropylamide (LDA) prepared from diisopropylamine ($216 \mu \mathrm{~L}, 156 \mathrm{mg}, 1.54$ $\mathrm{mmol})$ and n-BuLi (1.47 M in hexane, $1.05 \mathrm{~mL}, 1.54 \mathrm{mmol}$) in THF $(1 \mathrm{~mL})$ was added dropwise a solution of 4-methoxy-3-buten-2-one $(130 \mu \mathrm{~L}, 128 \mathrm{mg}, 1.28 \mathrm{mmol})$ in THF (1 mL). After stirring at $-80^{\circ} \mathrm{C}$ for 30 min , the solution was added dropwise via a cannula to a cooled $\left(-80^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 3}(440 \mathrm{mg}, 1.30 \mathrm{mmol})$ in THF (3.8 mL). The reaction mixture was allowed to warm to room temperature over 1 h , and then quenched by addition of $\mathrm{AcOH}(88 \mu \mathrm{~L})$ in THF (1 mL). The mixture was concentrated, and the residue was subjected to column chromatography (silica gel, 80 g ; elution with $12: 1$ hexane-AcOEt) to give $\mathbf{1 4}(265 \mathrm{mg}, 47 \%)$ as a $1: 1$ mixture of diastereomers along with $\mathbf{1 3}$ (62 $\mathrm{mg}, 14 \%$). The mixture could be separated by subjecting MPLC (elution with $12: 1$ hexaneAcOEt) to give 14a (less polar) and 14b (more polar). 14a: a colorless oil, $R_{f}=0.36$ (hexane:AcOEt=12:1). IR (film) $1710 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 0.47$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.48 ($3 \mathrm{H}, \mathrm{s}$, SiMe), $0.94(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}), 0.94(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}), 1.06\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right)$, $1.01(1 \mathrm{H}, \mathrm{dm}, \mathrm{H}-1$ or $\mathrm{H}-2)$, $1.38(1 \mathrm{H},(1 \mathrm{H}$. ddd. $J=11.1,11.1,11.1 \mathrm{~Hz}, \mathrm{H}-8), 1.64(1 \mathrm{H}$, ddd, $J=12.4 .3 .6,3.6 \mathrm{~Hz}, \mathrm{H}-1$ or $\mathrm{H}-2), 1.72(1 \mathrm{H}, \mathrm{dd}, J=11.1,3.6 \mathrm{~Hz}, \mathrm{H}-8), 2.05-2.16(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 7 and H-1 or H-2), 2.24-2.32 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), $2.48(1 \mathrm{H}, \mathrm{sep}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}$), $2.68(1 \mathrm{H}$, dd, $J=10.8,6.6 \mathrm{~Hz}, \mathrm{H}-11), 2.74(1 \mathrm{H}, \mathrm{dd}, J=10.8,6.6 \mathrm{~Hz}, \mathrm{H}-11), 2.76(1 \mathrm{H}, \mathrm{d}, J=19.0 \mathrm{~Hz}, \mathrm{H}-$
13), $3.18(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 3.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.47(1 \mathrm{H}, \mathrm{dd}, J=19.0,3.4 \mathrm{~Hz}, \mathrm{H}-13), 3.55(1 \mathrm{H}$, ddd, $J=6.6,6.6,2.8 \mathrm{~Hz}, \mathrm{H}-10), 7.36-7.43(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.59-7.61(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR δ -0.86 and $-0.66\left(\mathrm{SiMe}_{2}\right), 21.2,21.7$, and 21.8 ($9-\mathrm{Me}$ and $\mathrm{CHMe} e_{2}$), 23.0 ($\mathrm{C}-1$ or $\mathrm{C}-2$), 26.9 (CHMe 2), 27.1 (C-7), 38.9 (C-1 or C-2), 40.5 (C-5), 41.9 (C-8), 45.9 (C-9), 47.2 (C-11), 50.2 (C-13), $57.6\left(\mathrm{OCH}_{3}\right), 86.0(\mathrm{C}-10), 119.9(\mathrm{C}-6), 128.2,130.1,133.6,137.2,137.8,138.9$, 142.4 (C-14), 207.0 (C-12). HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si} 438.2590$, found 438.2574. 14b: a colorless oil, $R_{f}=0.36$ (hexane: $\mathrm{AcOEt}=12: 1$). IR (film) $1710 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 0.48(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiMe}_{2}\right), 0.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.90(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe})$, $1.38(1 \mathrm{H}$, br ddd, $J=10.9,10.9,10.9 \mathrm{~Hz}, \mathrm{H}-8), 1.51(1 \mathrm{H}$, ddd, $J=12.1,6.2,1.7 \mathrm{~Hz}, \mathrm{H}-1$ or $\mathrm{H}-2), 1.54-1.64(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-1$ or $\mathrm{H}-2), 2.07(1 \mathrm{H}, \mathrm{ddd}, J=15.4,8.5,1.5 \mathrm{~Hz}, \mathrm{H}-7)$, 2.25-2.32 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 2.35-2.48 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ or $\mathrm{H}-2$), $2.52(1 \mathrm{H}, \mathrm{sep}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}$), $2.68(1 \mathrm{H}, \mathrm{dd}, J=10.5,7.1 \mathrm{~Hz}, \mathrm{H}-11), 2.73(1 \mathrm{H}, \mathrm{dd}, J=10.5,7.1 \mathrm{~Hz}, \mathrm{H}-11), 2.75(1 \mathrm{H}, \mathrm{d}, J=$ $19.5 \mathrm{~Hz}, \mathrm{H}-13), 3.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.26(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 3.42(1 \mathrm{H}, \mathrm{ddd}, J=19.5,3.0,3.0 \mathrm{~Hz}$, $\mathrm{H}-13), 3.81(1 \mathrm{H}, \mathrm{ddd}, J=7.1,7.1,2.6 \mathrm{~Hz}, \mathrm{H}-10), 7.35-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.60-7.62(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\delta-0.68$ and $-0.4\left(\mathrm{SiMe}_{2}\right), 21.1,21.4$, and 21.9 ($\left.9-\mathrm{Me}, \mathrm{CHMe} 2\right), 23.4(\mathrm{C}-1$ or $\mathrm{C}-2), 27.3$ (C-7), $27.3\left(\mathrm{CHMe}_{2}\right.$), 32.7 (C-1 or C-2), 39.1 (C-8), 39.5 (C-5), 45.9 (C-9), 46.9 (C-11), $50.3(\mathrm{C}-13), 57.8\left(\mathrm{OCH}_{3}\right), 84.8(\mathrm{C}-10), 117.8(\mathrm{C}-6), 128.2,130.2,133.5,137.4,137.7$, 138.8, 140.7 (C-14), $208.2(\mathrm{C}-12)$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si} 438.2590$, found 438.2582.

1-Ethynyl-6-methyl-9-(1-methylethyl)bicyclo[4.3.0]non-1-en-3-ol (15)

To an ice-cooled solution of ethynylmagnesium bromide (0.5 M in THF, $8.7 \mathrm{~mL}, 4.3 \mathrm{mmol})$ in THF (2 mL) was added $11(695 \mathrm{mg}, 3.60 \mathrm{mmol})$ in THF (1 mL). The mixture was stirred at room temperature for 20 h before quenching saturated aqueous NaHCO_{3} solution (30 mL). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Combined organic phases were washed with saturated brine, dried, concentrated. The residual oil was distilled $\left(150-200{ }^{\circ} \mathrm{C} / 4 \mathrm{mmHg}\right.$, bulb-to-bulb) to give $\mathbf{1 5}$ ($625 \mathrm{mg}, 79 \%$) which solidfied after standing. a colorless needels, $R_{f}=0.34$ (hexane: $\mathrm{AcOEt}=$ 5:1). IR (KBr) 3290, 2955, $2100 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 0.73$ and $0.96\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe} e_{2}\right)$, $1.05(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 1.16(1 \mathrm{H}, \mathrm{br}$ ddd, $J=11.2,11.2,11.2 \mathrm{~Hz}, \mathrm{H}-7), 1.49-1.61(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and H-4 or H-5), $1.67(1 \mathrm{H}$, ddd, $J=13.7,13.7,3.0 \mathrm{~Hz}, \mathrm{H}-8), 1.74-1.85(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-4$ or H-5), 1.97-2.06 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHMe} \mathrm{C}_{2}$ or $\mathrm{H}-4$ or $\mathrm{H}-5$), $2.07(1 \mathrm{H}, \mathrm{s}, \mathrm{HC} \equiv \mathrm{C}), 2.16(1 \mathrm{H}, \mathrm{dm}, J=$
 $14.7 \mathrm{~Hz}, \mathrm{H}-4$ or $\mathrm{H}-5), 2.50(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.51-2.60(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 5.23$ $(1 \mathrm{H}, \mathrm{br}$ dd, $J=1.8,1.8 \mathrm{~Hz}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR $\delta 15.8(\mathrm{CHMe}), 22.2\left(\mathrm{CHMe}{ }_{2}\right.$ and C-4 or C-5), 24.7 (6-Me), $29.1\left(\mathrm{CHMe}_{2}\right), 35.6$ (C-8 and C-4 or C-5), 35.8 (HC $\equiv \mathrm{C}), 37.6$ (), 40.1 (C-4, C-5), 42.4 (C-6), 44.9 (C-9), 68.3 (C-3), $71.8,87.9(\mathrm{HC} \equiv C), 119.8(\mathrm{C}-2), 123,6,134.1,152.2,154.2 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}$ 218.34. Anal. calcd for
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}: 82.52 ; \mathrm{H}: 10.16$; found: C, 82.70; H, 10.25 .

3-Acetyl-6-methyl-9-(1-methylethyl)bicyclo[4.3.0]nona-2,9-diene (16)

Ethynylalcohol 15 ($1.00 \mathrm{~g}, 4.60 \mathrm{mmol}$) was dissolved in $\mathrm{HCOOH}(10 \mathrm{~mL})$ and refluxed for 15 min . The mixture was poured into saturated aqueous NaHCO_{3}, and extracted with pentane. Combined organic phases were succesively washed with saturated aqueous NaHCO_{3} and saturated brine, dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 80 g ; elution with $8: 1$ hexane-AcOEt) to give $\mathbf{1 6}$ ($419 \mathrm{mg}, 42 \%$). a colorless plate, $R_{f}=0.47$ (hexane: $\mathrm{AcOEt}=5: 1$). $\mathrm{mp} 42-43{ }^{\circ} \mathrm{C}$ (hexane). IR $(\mathrm{KBr}) 1700$, $1625 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 0.89(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.04$ and 1.07 (each $3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH} M e_{2}$), 1.32 ($1 \mathrm{H}, \mathrm{dd}, J=12.6,12.6,5.6 \mathrm{~Hz}, \mathrm{H}-5$), 1.48 (1 H , ddd, $J=12.0,9.2,9.2 \mathrm{~Hz}, \mathrm{H}-8$), 1.79 (1 H , dd, $J=12.0,7.1 \mathrm{~Hz}, \mathrm{H}-8), 1.82(1 \mathrm{H}, \mathrm{ddd}, J=12.6,5.8,1.5 \mathrm{~Hz}, \mathrm{H}-5), 2.21-2.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4)$, $2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 2.35(1 \mathrm{H}, \mathrm{dd}, J=16.9,9.6 \mathrm{~Hz}, \mathrm{H}-7), 2.47-2.56(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.58(1 \mathrm{H}$, dd, $J=18.6,5.6 \mathrm{~Hz}, \mathrm{H}-4), 2.94\left(1 \mathrm{H}, \operatorname{sep}, J=6.8 \mathrm{~Hz}, \mathrm{C} H \mathrm{Me}_{2}\right), 7.29(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-$ 2). ${ }^{13} \mathrm{C}$ NMR $\delta 21.3,21.8,21.9$, and 22.1 ($6-\mathrm{Me}, \mathrm{C}-4, \mathrm{CHMe}$), 25.7 (MeCO), 27.2 (CHMe_{2}), 29.6 (C-7), 35.3 (C-5), 39.0 (C-8), 44.7 (C-6), 130.3 (C-2), 136.4, 137.6, and 152.7 (C-1, C-3, and C-9), $199.7(\mathrm{C}=\mathrm{O})$. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O} \mathrm{C}: 82.52$; $\mathrm{H}: 10.16$. found: $\mathrm{C}, 82.63$; H , 10.27.
[$3+4$] annulation of 16 with acryloylsilanes (17a,b)

This procedure is representative of reactions of $\mathbf{1 6}$ with $\mathbf{1 7 a}$. To a stirred and cooled $\left(-80^{\circ} \mathrm{C}\right)$ solution of LDA from diisopropylamine ($86 \mu \mathrm{~L}, 62 \mathrm{mg}, 0.62 \mathrm{mmol}$) and $n-\mathrm{BuLi}(1.61$ M in hexane, $0.385 \mathrm{~mL}, 0.62 \mathrm{mmol})$ in THF (0.5 mL) was added dropwise a solution of $\mathbf{1 6}(122 \mathrm{mg}, 0.56 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$. After stirring at $-80^{\circ} \mathrm{C}$ for 30 min , the solution was added dropwise via a cannula to a cooled $\left(-80^{\circ} \mathrm{C}\right)$ solution of $17 \mathbf{a}(223 \mathrm{mg}, 1.21 \mathrm{mmol})$ in THF (5.8 mL). The reaction mixture was allowed to warm to 0 ${ }^{\circ} \mathrm{C}$, and then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Combined organic phases were washed with saturated brine, dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 30 g ; elution with 20:1 hexane-AcOEt) to give 20a ($155 \mathrm{mg}, 60 \%$). a pale yellow oil, $R_{f}=0.39$ (hexane:AcOEt = 11:1). IR (film) 1700, 1645, $1250 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta-0.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right.$), 0.11 and 0.15 (each, $3 \mathrm{H}, \mathrm{SiMe}_{3}$), 0.90 and 0.96 (each $3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}_{2}$), $0.91(9 \mathrm{H}, \mathrm{s}$, $t-\mathrm{Bu}), 1.16-1.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 1.18(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 1.54-1.64(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-7$, and $\mathrm{H}-8), 1.92$ ($1 \mathrm{H}, \mathrm{ddd}, J=8.1,6.8,0.7 \mathrm{~Hz}, \mathrm{H}-10$), $2.17(1 \mathrm{H}, \mathrm{ddd}, J=16.0,9.4,6.4 \mathrm{~Hz}, \mathrm{H}-2), 2.25(1 \mathrm{H}$, ddd, $J=16.0,9.2,6.0 \mathrm{~Hz}, \mathrm{H}-2), 2.45(1 \mathrm{H}, \mathrm{ddd}, J=13.2,6.8,4.3 \mathrm{~Hz}, \mathrm{H}-6), 2.53(1 \mathrm{H}$, dddd, J $=13.2,13.2,13.2,4.1 \mathrm{~Hz}, \mathrm{H}-7), 2.74\left(1 \mathrm{H}\right.$, sep, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CHMe}_{2}\right), 2.98(1 \mathrm{H}, \mathrm{d}, J=19.7 \mathrm{~Hz}$,
$\mathrm{H}-13), 3.30(1 \mathrm{H}, \mathrm{dm}, J=19.7 \mathrm{~Hz}, \mathrm{H}-13), 3.43$ ($1 \mathrm{H}, \mathrm{ddm}, J=6.8,6.8 \mathrm{~Hz}, \mathrm{H}-5$), 4.91 (1 H , dd, $J=8.1,2.1 \mathrm{~Hz}, \mathrm{H}-11) .{ }^{13} \mathrm{C}$ NMR $\delta-4.47$ and-3.61 $\left(\mathrm{SiMe}_{2}\right),-1.08\left(\mathrm{SiMe}_{3}\right), 18.1\left(C-\mathrm{Bu}^{\mathrm{t}}\right), 20.4$ and $22.1(\mathrm{CHMe}), 22.7(\mathrm{C}-7), 25.1(9-\mathrm{Me}), 25.8\left(\mathrm{Bu}^{\mathrm{t}}\right), 27.0\left(\mathrm{CHMe}_{2}\right), 27.5(\mathrm{C}-2), 28.0(\mathrm{C}-$ 10), 38.7 (C-8), 40.3 (C-1), 46.7 (C-9), 49.2 (C-13), 58.7 (C-6), 108.5 (C-11), 138.6 and 142.9 (C-3 and C-4), 148.5 (C-12), 214.7 (C-14). HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{Si}_{2} 460.3190$, found 460.3180 .

20b: colorless needles, $R_{f}=0.33$ (hexane: $\mathrm{Et}_{2} \mathrm{O}=17: 1$), mp $103{ }^{\circ} \mathrm{C}$. IR (KBr) $1700,1630 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta-0.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.19\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OSiMe}_{3}\right), 0.90(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}), 0.95$ $(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}), 1.19\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 1.17-1.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.54-1.65(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $1, \mathrm{H}-7$, and $\mathrm{H}-8$), 1.93 ($1 \mathrm{H}, \mathrm{dd}, J=8.1,6.6 \mathrm{~Hz}, \mathrm{H}-10$), 2.18 (1 H , ddd, $J=16.0,9.4,6.4 \mathrm{~Hz}$, $\mathrm{H}-2), 2.26(1 \mathrm{H}$, ddd, $J=16.0,9.4,6.0 \mathrm{~Hz}, \mathrm{H}-2), 2.45(1 \mathrm{H}, \mathrm{ddd}, J=13.3,7.3,4.7 \mathrm{~Hz}, \mathrm{H}-6)$, $2.55(1 \mathrm{H}$, dddd, $J=13.3,13.3,13.3,4.3 \mathrm{~Hz}, \mathrm{H}-7), 2.75(1 \mathrm{H}, \mathrm{sep}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}), 3.00$ ($1 \mathrm{H}, \mathrm{d}, J=19.7 \mathrm{~Hz}, \mathrm{H}-13$), $3.31(1 \mathrm{H}, \mathrm{d}, J=19.7 \mathrm{~Hz}, \mathrm{H}-13), 3.44$ ($1 \mathrm{H}, \mathrm{dd}, J=7.3,6.6 \mathrm{~Hz}, \mathrm{H}-$ 5), $4.94(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}, \mathrm{H}-11) .{ }^{13} \mathrm{C}$ NMR $\delta-1.1\left(\mathrm{SiMe}_{3}\right), 0.7\left(\mathrm{OSiMe}_{3}\right), 20.4$ and 22.1
 ($\mathrm{CHMe} e_{2}$, $22.8(\mathrm{C}-7), 25.2(9-\mathrm{Me}), 27.0\left(\mathrm{CHMe}_{2}\right), 27.5(\mathrm{C}-10)$, 28.1 (C-2), 38.8 (C-5), 40.3 (C-1 and C-8), 46.8 (C-9), 49.2 (C13), 58.7 (C-6), 108.7 (C-11), 138.6 and 142.9 (C-3 and C-4), 148.5 (C-12), 214.5 (C-14). HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}_{2}$ 418.2723, found 418.2729.

21

To an ice-cooled solution of $\mathbf{2 0 b}$ ($670 \mathrm{mg}, 1.60 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(14 \mathrm{~mL})$ was added DIBAL (0.95 M in hexane, $2.02 \mathrm{~mL}, 1.92 \mathrm{mmol}$). After being stirred at the same temperature for 10 min , the reaction mixture was quenced with addtion of MeOH , and filtered through a pad of Celite and concentrated. The residual oil was subjected to column chromatography (silica gel, 40 g ; elution with $2: 1$ hexane- $\mathrm{Et}_{2} \mathrm{O}$) to give $21(488 \mathrm{mg}, 72 \%)$. a colorless oil, $R_{f}=0.54$ (hexane: $\mathrm{Et}_{2} \mathrm{O}=1: 1$). IR (film) $3395 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (substantial peak broadening was observed): $\delta 0.03$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}$), $0.17\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OSiMe}_{3}\right.$), $0.93(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}), 0.96$ $(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}), 1.11\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 1.12-1.20(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.47-1.62(3 \mathrm{H}, \mathrm{br} \mathrm{m})$, $1.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.14(1 \mathrm{H}, \mathrm{dm}, J=15.8 \mathrm{~Hz}, \mathrm{H}-2), 2.24(1 \mathrm{H}, \mathrm{ddd}, J=15.8,8.6,6.4 \mathrm{~Hz}, \mathrm{H}-2)$, $2.45(1 \mathrm{H}, \mathrm{dd}, J=18.2,6.2 \mathrm{~Hz}, \mathrm{H}-13), 2.60(1 \mathrm{H}, \mathrm{dm}, J=18.2 \mathrm{~Hz}, \mathrm{H}-13), 2.71-2.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, CHMe_{2}), 3.32-3.27 (1 H , br s, H-5), 3.95-4.08 (1 H , br s, H-14), 4.92-4.96 (1 H , br s, H-11). ${ }^{13} \mathrm{C}$ NMR $\delta 0.68,20.9,22.0,24.2,25.4,26.9,27.3,41.4,47.2,48.5,70.3$ (C-14), 100.9 (C-11), 113.0, 135.3, 141.3 (C-12),. HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}_{2} 420.7760$, found 420.2871 .

To an ice-cooled solution of $\mathbf{2 1}(329 \mathrm{mg}, 0.782 \mathrm{mmol})$ in THF (8.3 mL) was added NBS ($145.7 \mathrm{mg}, 0.821 \mathrm{mmol}$). The reaction mixture was stirred at the same temperature for 10 min before addition of TBAF (1.0 M in THF, $782 \mu \mathrm{~L}, 0.782 \mathrm{mmol}$). After being stirred at the same temperature for 5 min , the mixture was poured into saturated aqueous NaHCO_{3} solution. Phases were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Combined organic phases were succesively washed with water and saturated brine, dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 25 g ; elution with 1:2 hexane- $\mathrm{Et}_{2} \mathrm{O}$) to give 22 ($169 \mathrm{mg}, 79 \%$). a yellow oil, $R_{f}=0.25$ (hexane: $\mathrm{Et}_{2} \mathrm{O}=1: 2$). IR (film) $3430,1650 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 0.93(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHMe}), 0.97(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}$, $\mathrm{CH} M e), 1.02\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 1.29(1 \mathrm{H}, \mathrm{ddd}, J=13.2,13.2,3.7 \mathrm{~Hz}, \mathrm{H}-8), 1.46-1.59(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-1$ and $\mathrm{H}-7$), 1.64-1.73 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-7$), 1.77 ($1 \mathrm{H}, \mathrm{ddd}, J=13.2,3.2,3.2 \mathrm{~Hz}, \mathrm{H}-8$), $1.80-1.86$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), $2.20(1 \mathrm{H}, \mathrm{dd}, J=15.8,8.8 \mathrm{~Hz}, \mathrm{H}-2$), 2.33 ($1 \mathrm{H}, \mathrm{ddd}, J=15.8,8.8,2.1$ $\mathrm{Hz}, \mathrm{H}-2), 2.63\left(1 \mathrm{H}, \mathrm{sep}, J=6.8 \mathrm{~Hz}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.83(1 \mathrm{H}, \mathrm{dd}, J=16.8,1.5 \mathrm{~Hz}, \mathrm{H}-13), 2.96(1 \mathrm{H}$, dd, $J=16.8,8.6 \mathrm{~Hz}, \mathrm{H}-13$), 3.87 (1 H , ddd, $J=8.6,8.6,1.5 \mathrm{~Hz}, \mathrm{H}-14$), 3.92 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 5.89 $(1 \mathrm{H}, \mathrm{dd}, J=12.2,2.6 \mathrm{~Hz}, \mathrm{H}-11), 6.21(1 \mathrm{H}, \mathrm{dd}, J=12.2,3.9 \mathrm{~Hz}, \mathrm{H}-10) .{ }^{13} \mathrm{C}$ NMR $\delta 21.6$ ($\mathrm{CHMe} e_{2}$), 24.1 ($\mathrm{CHMe} e_{2}$), $25.0(\mathrm{C}-7), 26.5$ (CHMe_{2}), 27.9 (C-2), 36.8 (C-5), 40.5 (C-1), 40.9 (C-8), 46.4 (C-6), 47.1 (C-9), 49.9 (C-13), 70.9 (C-14), 130.8 (C-11), 138.4 and 141.7 (C-3 and C-4), 150.6 (C-10), $201.5(\mathrm{C}-12)$. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2} 274.1933$, found 274.1946.

To an ice-cooled solution of $22(62 \mathrm{mg}, 0.226 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1$ mL) was added imidazole ($77 \mathrm{mg}, 1.13 \mathrm{mmol}$) and $i-\mathrm{PrMe}_{2} \mathrm{SiCl}(39$ $\mu \mathrm{L}, 0.248 \mathrm{mmol})$. The solution was stirred at the same temperature for 10 min , and poured into saturated aqueous NaHCO_{3} solution. Phases were separated, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Combined organic phases were succesively washed with water and saturated brine, dried, and concentrated. The residual oil was subjected to column chromatography (silica gel, 7 g ; elution with $8: 1$ hexane- $\mathrm{Et}_{2} \mathrm{O}$) to give 23 ($78 \mathrm{mg}, 92 \%$). a pale yellow oil, $R_{f}=0.33$ (hexane: $\mathrm{Et}_{2} \mathrm{O}=8: 1$). IR (film) $1660 \mathrm{~cm}^{-1}$. ${ }^{1} H-N M R ~ \delta 0.05$ and 0.06 (each $3 H$, s, SiMe), $0.79\left(1 H\right.$, sep, $J=7.3 \mathrm{~Hz}$, SiHMe $_{2}$), 0.92-0.98 ($12 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}, \mathrm{SiCH} \mathrm{Me}_{2}$), 1.01 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), 1.29 ($1 \mathrm{H}, \mathrm{ddd}, J=12.8,12.8,3.7 \mathrm{~Hz}, \mathrm{H}-8$), 1.46-1.53 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-7$), $1.59(1 \mathrm{H}, \mathrm{dddd}, J=13.3,12.8,12.8,3.2 \mathrm{~Hz}, \mathrm{H}-7), 1.71(1 \mathrm{H}$, ddd, $J=10.7,7.7,1.5 \mathrm{~Hz}, \mathrm{H}-1), 1.79(1 \mathrm{H}, \mathrm{ddd}, J=12.8,3.2,3.2 \mathrm{~Hz}, \mathrm{H}-8), 1.79-1.86(1 \mathrm{H}, \mathrm{m}$, H-6), 2.21 (1 H , ddd, $J=15.8,9.4,1.3 \mathrm{~Hz}, \mathrm{H}-2$), 2.34 ($1 \mathrm{H}, \mathrm{ddd}, J=15.8,8.5,1.7 \mathrm{~Hz}, \mathrm{H}-2$), $2.65\left(1 \mathrm{H}\right.$, sep, $\left.J=6.8 \mathrm{~Hz}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.79(1 \mathrm{H}, \mathrm{dd}, J=16.6,2.6 \mathrm{~Hz}, \mathrm{H}-13), 2.85(1 \mathrm{H}, \mathrm{dd}, J=$ $16.6,6.8 \mathrm{~Hz}, \mathrm{H}-13), 3.90(1 \mathrm{H}, \mathrm{ddd}, J=6.8,6.6,2.6 \mathrm{~Hz}, \mathrm{H}-14), 3.95$ ($1 \mathrm{H}, \mathrm{ddd}, J=5.1,3.0,2.7$
$\mathrm{Hz}, \mathrm{H}-5), 5.88(1 \mathrm{H}, \mathrm{dd}, J=12.5,2.7 \mathrm{~Hz}, \mathrm{H}-11), 6.10(1 \mathrm{H}, \mathrm{dd}, J=12.5,3.0 \mathrm{~Hz}, \mathrm{H}-10) .{ }^{13} \mathrm{C}$ NMR $\delta-3.8$ and $-3.5\left(\mathrm{SiMe}_{2}\right), 14.9,17.0,21.5,21.6,24.3(\mathrm{C}-7), 26.6\left(\mathrm{CHMe}_{2}\right), 28.0(\mathrm{C}-2)$, 37.5 (C-5), 40.5 (C-1), 41.4 (C-8), 47.0 (C-6), 47.5 (C-9), 49.4 (C-13), 71.1 (C-14), 130.5 (C11), 139.2 and 140.8 (C-3 and C-4), 149.7 (C-10), 201.4 (C-12). HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}$ 374.2641, found 374.2662.

[^0]: 1. Reich, H. J.; Kelly, M. J.; Olson, R. E.; Holtan, R. C. Tetrahedron 1983, 39, 949-960.
[^1]: 2. Fleming, I.; Henning, R.; Parker, D. C.; Plaut, H. E.; Sanderson, P. E. J. J. Chem. Soc. Perkin 1, 1995, 317-337.
