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Black holes in three-dimensional Einstein-Born-Infeld-dilaton theory
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The three-dimensional static and circularly symmetric solution of the Einstein-Born-Infeld-dilaton system is
derived. The solutions corresponding to low energy string theory are investigated in detail, which include black
hole solutions if the cosmological constant is negative and the mass parameter exceeds a certain critical value.
Some differences between the Born-Infeld nonlinear electrodynamics and the Maxwell electrodynamics are
revealed.

DOI: 10.1103/PhysRevD.64.024009 PACS number~s!: 04.20.Jb, 04.70.2s
av
i
g

ac
t
fl

ou
rg
rd
W

te
i-

m

se

a

ng
i

le
n

ld
an

tio
ee
ity
sic
m

s-
e

ve
em
on

in
pe-
n-
ell
m-

an
ac-

on

n-
I. INTRODUCTION

The black hole is one of the fundamental objects in gr
ity theories. What we shall consider here is a black hole
the Einstein-Born-Infeld-dilaton theory motivated by strin
theory. We have a clear picture of an astrophysical bl
hole as a final product of the gravitational collapse owing
the uniqueness theorem of the stationary asymptotically
black hole solution. On the other hand, there are vari
kinds of black objects in string theory since there eme
many matter fields as in the present case. It seems ha
reveal the general properties of such stringy black holes.
want to approach this problem.

The Born-Infeld nonlinear electrodynamics has attrac
much attention in the context of string theory. It was orig
nally introduced for the purpose of solving various proble
of divergence appearing in the Maxwell theory@1#. It has
later been shown that the Born-Infeld theory naturally ari
in the low energy limit of the open string theory@2,3#.

In the open and the closed bosonic string theory, there
four massless states of strings: the dilaton fieldf, theU(1)
gauge fieldAi , the gravitational fieldgi j , and the Kolb-
Ramond antisymmetric tensor fieldBi j . When one considers
the Born-Infeld electrodynamics motivated by the stri
theory, he might include other massless fields together w
the electromagnetic field. In this paper, we however neg
Bi j for simplicity. Then, the Einstein-Born-Infeld-dilato
system describes interactions among massless fieldsf, Ai ,
andgi j .

Recently, numerical studies of the Einstein-Born-Infe
dilaton system have been done in four-dimensional static
spherically symmetric space-time@4–6#. Here we turn to the
three-dimensional case, and show that the analytic solu
describing the black hole can be obtained. The thr
dimensional gravity is a simple version of general relativ
and gives one useful approach to the black hole phy
@7–9#. Three-dimensional black holes also arise in so
higher dimensional theories@10#. We may anyway get an
insight into the property of the Born-Infeld theory by inve
tigating the three-dimensional black hole as the simplest
ample.

*Email address: yamazaki@tap.scphys.kyoto-u.ac.jp
†Email address: ida@tap.scphys.kyoto-u.ac.jp
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This paper is organized as follows. In Sec. II, we deri
basic equations of the Einstein-Born-Infeld-dilaton syst
for general dilaton couplings, and give an analytic soluti
under appropriate assumptions. In Sec. III, we analyze
detail the solution to the low energy string theory. We es
cially focus on the effects of the nonlinearity of the Bor
Infeld field, where some differences between the Maxw
and the Born-Infeld fields are revealed. In Sec. IV, we su
marize the results.

II. BASIC EQUATIONS AND SOLUTIONS

We first consider the general form of the Lagrangi
which describes nonlinear electrodynamics. We adopt the
tion which is written in string frame as

S5E d3xA2ge22f
„R22L14~]f!21L@F2#…, ~1!

whereF25Fi j F
i j andL is its functional. The action in Ein-

stein frame is given via the conformal transformati
gi j °e4fgi j by

S5E d3xA2g„R22e4fL24~]f!21e4fL@e28fF2#….

~2!

We consider an action with general dilaton coupling co
stantsa, b andg.0:

S5E d3xA2g„R22eafL2g~]f!21ebfL@e22bfF2#….

~3!

The equations of motion of the dilaton fieldf and the elec-
tromagnetic fieldF are

2gf ,i
; i22aLeaf1bebfL22be2bfF2L̇50, ~4!

~e2bfL̇Fi j ! ; j50, ~5!

respectively, whereL̇@x#5dL/dx. The Einstein equation is

Ri j 54f ,if , j1~2eafL2ebfL!gi j

22e2bfL̇~FikF j
k2F2gi j !. ~6!
©2001 The American Physical Society09-1
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We consider the Born-Infeld nonlinear electrodynami
which corresponds to

L@x#54b2F12S 11
x

2b2D 1/2G , ~7!

where b.0 is the Born-Infeld parameter. In the limit o
largeb, this gives Maxwell Lagrangian,L→2x.

The three-dimensional static and circularly symmet
space-time can be written in the form

g52 f ~r !dt21
e2d(r )

f ~r !
dr 21r 2dw2. ~8!

The electromagnetic field is assumed to have the follow
pure electrostatic form:

F5ebf(r )1d(r )E~r !dt`dr . ~9!

Then, Eq.~5! becomes

S rE

A12E2/b2D 8
50, ~10!

where prime denotes derivative with respect tor. This can be
integrated to give

E5h21/2
Q

r
, ~11!

where

h511
Q2

b2r 2
, ~12!

andQ is an integration constant. The constantQ is the elec-
tric charge, namely

Q52
1

4p R
G

e2bfL̇* F, ~13!

for any smooth closed spacelike curveG enclosingr 50. The
equation of motion of the dilaton field~4! becomes

ge2d

r
~r f e2df8!82aLeaf12bb2ebf~12h1/2!50.

~14!

The Einstein equations are

S f 91
f 8

r
2 f 8d8De22d524Leaf18b2ebf

3S 12h1/21
Q2

2b2r 2
h21/2D ,

~15!

d85gr ~f8!2, ~16!
02400
,

g

f 82 f d8

r
e22d522Leaf14b2ebf~12h1/2!. ~17!

Here, we assume the following form of the metric functio
d:

d5n lnS r

r 0
D for r .0, ~18!

wheren andr 0.0 are constants. From Eq.~16!, it turns out
thatn must be positive, and then the dilaton fieldf becomes

f56S n

g D 1/2

lnS r

r 1
D , ~19!

with a positive constantr 1. Then, Eqs.~14! and~17! become

S f

r nD 8
56

r n11

~gn!1/2r 0
2n FaLS r

r 1
D 6aAn/g

22bb2S r

r 1
D 6bAn/g

~12h1/2!G ~20!

and

S f

r nD 8
5

r n11

r 0
2n F22LS r

r 1
D 6aAn/g

14b2S r

r 1
D 6bAn/g

~12h1/2!G , ~21!

respectively. These two equations~20! and ~21! are consis-
tent if and only if

a5b57A4ng. ~22!

Equation~22! includes the string case (n51,a5b5g54!.
When the condition~22! is satisfied, Eqs.~20! and ~21! be-
come

S f

r nD 8
5S r 1

r 0
D 2n

@~4b222L!24b2h1/2#r 12n. ~23!

The solutions of Eq.~23! are

f 5S r 1

r 0
D 2nF4b222L

22n
r 224b2r nE r

r 12nS 11
Q2

b2r 2D 1/2

dr G ,

~24!

for nÞ2, and

f 5S r 1

r 0
D 4F ~4b222L!r 2 lnS r

r 2
D24b2r 2

3E r

r 21S 11
Q2

b2r 2D 1/2

dr G , ~25!

for n52.
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TABLE I. Classification of solutions of the three-dimensional Einstein equation. Abbreviations E, B
D andL stand for Einstein, Born-Infeld, Maxwell, dilaton and cosmological constant, respectively.

b L a, b, g n M Q System

Eqs.~24!,~25! a5b572Ang EBIDL

Eq. ~30! a5b5g54 1 EBIDL ~String!
Cataldo and Garcı´a ~1999! a5b50 0 EBIL
Chan and Mann~1994! 1` a5b572Ang, nÞ2 EMDL

McGuiganet al. ~1992! 1` a5b5g54 1 EMDL ~String!
Mandalet al. ~1991! 1` a5b5g54 1 0 EDL ~String!
Saet al. ~1996! 1` ,0 a5b5ng54, nÞ1,2 0 EDL

Saet al. ~1996! 1` ,0 a5b54,g52 2 0 0 EDL

Barrow et al. ~1986! 1` ,0 a52A2,g51 1/2 0 0 EDL

Bañadoset al. ~1992! 1` a5b50 0 EML

Barrow et al. ~1986! 1` 0 g51 Þ0 0 ED
Deser and Mazur~1985! 1` 0 a5b50 0 EM
Gott III et al. ~1986! 1` 0 a5b50 0 0 EM
Bañadoset al. ~1993! 1` a5b50 0 0 EL
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The above solutions include known solutions as spe
cases. Whenn50, the dilaton field vanishes, and then E
~24! becomes

f 52M2~L22b2!r 222b2rAr 21Q2/b2

22Q2 ln~r 1Ar 21Q2/b2!, ~26!

which has been given by Cataldo and Garcı´a @11#. In the
limit of b→`, the Born-Infeld field reduces just to the Max
well field. Then Eq.~24! gives

f 5S r 1

r 0
D 2nF2Arn2

2L

22n
r 21

2Q2

n G , ~27!

for nÞ0,2,

f 5S r 1

r 0
D 4F2Ar222Lr 2 lnS r

r 2
D1Q2G , ~28!

for n52, and

f 52M2Lr 222Q2 lnS r

r 3
D , ~29!

for n50. Equation~27! coincides with the solution obtaine
by Chan and Mann@12#, and Eq.~29! corresponds to the
charged Ban˜ados-Teitelboim-Zanelli~BTZ! solution @8#.
Other solutions can be obtained by taking special value
parameters in Eqs.~24! or ~25!. Table I shows the classifi
cation of solutions found previously@8,9,11–18#.

III. SOLUTIONS TO THE STRING ACTION

The casen51, a5b5g54 is particularly important,
since the solution withn51 can be converted into the solu
tion for the string frame action via the conformal transfo
mation gi j °e24fgi j . We shall investigate this case in d
02400
al
.

of

tail. In this case, Eq.~24! is expressed in terms of elementa
functions as

f ~r !5S r

r 0
D H 2M2

2Lr 1
2

r 0
r 1

4b2r 1
2

r 0
F12S 11

Q2

b2r 2D 1/2G r

1
4buQur 1

2

r 0
lnF S 11

Q2

b2r 2D 1/2

1
uQu
br G J . ~30!

The integration constantM can be regarded as the total ma
of the system. In fact, according to Brown and York@19,20#.
The ~quasi-local! mass functionM (r ) within the circle of
radiusr becomes

M ~r !52 f 1/2~ f 0
1/22 f 1/2!e2d, ~31!

where f 05 f 0(r ) is a function defining the zero of mass co
responding to some background space-time. It will be natu
to choose

f 0~r !52
2Lr 1

2

r 0
2

r 2, ~32!

which implies that the Born-Infeld field vanishes in the bac
ground space-time. Then,M is the total mass in the sens
M5 limr→1`M (r ).

In the following, we analyze the curvature singularity, t
causal structure and propagation of light front, where
show some differences between the Born-Infeld and
Maxwell electrodynamics.

A. Curvature singularity

There is a curvature singularity at the center$r 50%,
where the scalar curvature and the energy density dive
The asymptotic behavior near$r 50% of these quantities are
shown in Table II. In addition, the cases of the Einste
Maxwell-dilaton-L system @12#, the Einstein-Maxwell-L
9-3
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system~charged BTZ! @8#, the Einstein-Born-Infeld-L sys-
tem @11#, and the Einstein-dilaton-L system (Q50) are also
shown for comparison. It can be seen that nonlinearity
electrodynamics weakens the divergence of the curva
scalars at least in the case of the dilaton-coupled syste
The curvature scalars also diverge in the string frame. Ta
III shows the behavior in the string frame.

B. Causal structure

A null hypersurface on which the horizon functionf (r )
vanishes is a Killing horizon. The behavior of the functio
f (r ) determines the causal structure of the space-time. In
duce the following dimensionless quantities (QÞ0):

x5
b

uQu
r , q5

2r 1Q

r 0
, m5

r 0M

4br1
2uQu

, l5
L

2b2
.

~33!

Then, Eq.~30! can be rewritten as

Fª f /q25xH 2m1~12l!x2~11x2!1/2

1 lnF11~11x2!1/2

x G J . ~34!

It can be seen that the causal structure is determined by
sentially two parametersm andl.

For anym andl, the behavior ofF nearx50 is

F;2x ln x~.0!~x→10!. ~35!

Using Eq.~35!, we can see that the conformal radial coor
nate r *ª* rdrA2grr /gtt remains finite asx→10, which
implies the curvature singularity$r 50% is timelike. On the
other hand, it can be seen thatr * →1` asx→1` for any
m and l. This implies that spatial infinity$r 5`% is a null
hypersurface.

TABLE II. Behavior of the scalar curvature and the energy d
sities near the central singularity~Einstein frame!.

System R rEM rD rL

EBID(QÞ0) r 23ln r r 23 r 23ln r r 22

EMD(QÞ0) r 24 r 24 r 24 r 22

EBI(QÞ0) r 21 r 21 0 r 0

charged BTZ r 22 r 22 0 r 0

ED(Q50) r 23 0 r 23 r 22

TABLE III. Same as in Table II, but in the string frame.

System R rEM rD rL

EBID(QÞ0) r 21ln r r 0 r 21ln r r 0

EMD(QÞ0) r 22 r 0 r 22 r 0

ED(Q50) r 21 0 r 21 r 0
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The behavior ofF at spatial infinity depends onm andl.
The causal structure is classified into several cases.

~i! l.0. In this case,F;2lx2 holds asymptotically as
x→` for any m. Furthermore,F50 has a simple positive
root. This implies that there exists a cosmological horizo

~ii ! l50. The causal structure depends onm. If m is nega-
tive, there exists a cosmological horizon, and the cau
structure is similar to thel.0 case. Whenm is positive or
zero,F is strictly positive for anyx.0. Therefore, the cen
tral singularity is naked.

~iii ! l,0. The causal structure depends onm. The behav-
ior of F at spatial infinity is same as thel.0 case except for
the signature. Whenm satisfies

m5m* ~l!ª ln„12l1Al~l22!…, ~36!

the equationF50 has a multiple root. Whether the centr
singularity is covered by the black hole horizon depends
the value ofm;

~iii-a! m,m* . In this case,F.0 for any x.0. This
implies that the central singularity is naked.

~iii-b ! m5m* . This is the extreme case. The black ho
horizon is degenerated, and the causal structure is simila
the four-dimensional extremal Reissner-Nordstro¨m space-
time. The horizon radius becomesx5@l(l22)#21/2.

~iii-c ! m.m* . F50 has two distinct positive roots
These correspond the inner Cauchy horizon and the b
hole horizon, respectively. The causal structure is simila
the four-dimensional nonextremal Reissner-Nordstr¨m
space-time.

Here we show the effect of the nonlinear electrodynam
We rewrite Eq.~36! in terms of the original physical quan
tities. Black hole horizons exist if and only ifL,0 and

uQu
M

<S uQu
M D

*

ª

r 0

4r 1
2b

XlnF12
L

2b2
1A L

2b2 S L

2b2
22D GC21

.

~37!

To compare with the Einstein-Maxwell-dilaton system@12#,
we take the Maxwell limit with fixing the other parameter

S uQu
M D

*
→ r 0

4r 1
2

uLu21/2~b→`!. ~38!

For finite value ofb, (uQu/M )* is always larger than this
limit value. Therefore, there is a certain set of parametersM
and Q for which black hole horizons exist in the Einstein
Born-Infeld-dilaton system but do not exist in the Einste
Maxwell-dilaton system.

C. Propagation of light front

Finally, we see the propagation of light frontS, which is
a boundary of the region of disturbed electromagnetic fie
The motion of this characteristic surfaceS can be investi-

-
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gated by the method similar to@21#. The electromagnetic
field is discontinuous in the following sense:

@Fi j #S50, @¹kFi j #S5 f i j kk , ~39!

whereki is a vector normal toS. The dilaton fieldf and its
first derivative are continuous atS:

@f#S50, @¹ if#S50. ~40!

We apply above conditions to the equation of motion~5!.
After short calculation, we find thatki is not tangent to null
geodesics of the background space-time metricgi j but of the
effective metric

g(e f f)
i j

ªgi j 14e22bf
L̈
L̇Fi

kF
jk. ~41!

Using Eqs.~7!, ~8!, ~9!, and~11!, the effective metric can be
rewritten as1

g(e f f)5h21S 2 f dt21
e2d

f
dr2D1r 2dw2. ~42!

A generator of the null geodesic of the effective metric~42!
is written aski5dxi /dt. Then,ki satisfies following equa-
tions:

S dr

dt D 2

1V~r !50,

V~r !ª
e22d

h2 S h f

r 2
L22E2D , ~43!

whereE andL are conserved quantities defined by

E5h21f
dt

dt
, L5r 2

dw

dt
. ~44!

The light front can exist in the regionV,0. In the following,
we consider the casen51. The behavior of potentialV is
determined by three parametersm, l and

wªS r 0

2br1
D 2S E

L D 2

. ~45!

Figure 1 shows the regionV,0. The background param
etersm andl are fixed and satisfyl,0 andm.m* , so that
the black hole horizon and the inner Cauchy horizon ex
For comparison, we also show a same calculation in the c
of the Maxwell limit. WhenL52x, the second term on th
right hand side of Eq.~41! vanishes. Therefore,ki is tangent
to null geodesics of the background space-time, which
well-known result. Insertingh51 and Eq.~27! with n51
into Eq. ~43!, we find that the potential functionV is deter-
mined by the following three parameters:

1Covariant components of the effective metric are defined
gil

(e f f)g(e f f)
l j 5d i

j . See Ref.@21#.
02400
t.
se

is

m̃5
r 0M

2r 1Q2
, l̃5

r 1
2

Q2
L, w̃5

1

2 S r 0

Q D 2S E

L D 2

. ~46!

Figure 2 shows the regionV,0 with fixed background pa-
rametersm̃ and l̃ for which no Killing horizons exist.

We can see some differences between the Born-Infeld
the Maxwell electrodynamics. Let us consider the light fron
coming from infinity to the center$r 50%. They can arrive at
the center in the Born-Infeld case, while they are scattere
the Maxwell case ifLÞ0. Furthermore, the unstable circula
orbit exist only in the Born-Infeld case. These differenc
between the Born-Infeld and the Maxwell electrodynam
can also be seen when the naked singularity or the cos
logical horizon exist.

IV. CONCLUSION

We have given a seven parameter family of static, cir
larly symmetric, and pure electrically charged solutions
the three-dimensional Einstein-Born-Infeld-dilaton syste
The electric field remains finite near the central singular
which shows a nonlinear effect of the Born-Infeld field. Th

s

FIG. 1. Allowed region of light fronts~shaded region! is shown
in the x2w plane for a fixed background space-time in the case
Einstein-Born-Infeld-dilaton system~l520.4, m51.2). The filled
circle corresponds to the unstable circular orbit.

FIG. 2. Same as in Fig. 1, but in the case of Einstein-Maxw

dilaton system (l̃520.4, m̃51.4).
9-5



u

p

so

c

or
el
n
g
u
th

k
t it
se
the

s
ct
ax-
the

ns
iba.
was

ch

RYO YAMAZAKI AND DAISUKE IDA PHYSICAL REVIEW D 64 024009
solution reduces to known black hole solutions of vario
theories by appropriately taking limits of parameters.

We have studied the low energy string case (n51) in
detail. The solution is essentially described by the mass
rameterm and the cosmological constant parameterl. The
critical value of mass parameterm* exists for givenl, such
that the black hole horizons exist if and only ifl,0 and
m>m* @22#. The causal structure of charged black hole
lutions (l,0 case! is similar to those of the four-
dimensional Reissner-Nordstro¨m solution. The spatial infin-
ity is not a timelike but a null hypersurface. This is an effe
of the dilaton field@12#.

We have revealed some differences between the B
Infeld nonlinear electrodynamics and the ordinary Maxw
electrodynamics.~i! The curvature scalar and the energy de
sity diverge asr→0 in both the Einstein frame and the strin
frame. In the dilaton-coupled system, the divergence of c
vature scalars is weaker in the Born-Infeld case than in
st

lli,

02400
s
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Maxwell case.~ii ! The lower bound of mass for which blac
hole horizons exist is lower in the Born-Infeld case, so tha
is easier to form a black hole horizon in the Born-Infeld ca
in the sense that the parameter region corresponding to
black holes is wider.~iii ! We have considered the light front
coming from infinity towards the center with nonzero impa
parameter. The light fronts are always scattered in the M
well electrodynamics, while they can reach the center in
Born-Infeld electrodynamics.
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