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Black holes in three-dimensional Einstein-Born-Infeld-dilaton theory
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The three-dimensional static and circularly symmetric solution of the Einstein-Born-Infeld-dilaton system is
derived. The solutions corresponding to low energy string theory are investigated in detail, which include black
hole solutions if the cosmological constant is negative and the mass parameter exceeds a certain critical value.
Some differences between the Born-Infeld nonlinear electrodynamics and the Maxwell electrodynamics are
revealed.
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[. INTRODUCTION This paper is organized as follows. In Sec. I, we derive
basic equations of the Einstein-Born-Infeld-dilaton system
The black hole is one of the fundamental objects in gravfor general dilaton couplings, and give an analytic solution
ity theories. What we shall consider here is a black hole irunder appropriate assumptions. In Sec. Ill, we analyze in
the Einstein-Born-Infeld-dilaton theory motivated by string detail the solution to the low energy string theory. We espe-
theory. We have a clear picture of an astrophysical blackially focus on the effects of the nonlinearity of the Born-
hole as a final product of the gravitational collapse owing tolnfeld field, where some differences between the Maxwell
the uniqueness theorem of the stationary asymptotically flaand the Born-Infeld fields are revealed. In Sec. IV, we sum-
black hole solution. On the other hand, there are variougnarize the results.
kinds of black objects in string theory since there emerge
many matter fields as in the present case. It seems hard to Il. BASIC EQUATIONS AND SOLUTIONS

reveal the general properties of such stringy black holes. We _ ) i
want to approach this problem. We first consider the general form of the Lagrangian

The Born-Infeld nonlinear electrodynamics has attracted’YhiCh describes nonlinear electrodynamics. We adopt the ac-

much attention in the context of string theory. It was origi- ion which is written in string frame as

nally introduced for the purpose of solving various problems

of divergence appearing in the Maxwell thedd). It has Szf PBx—ge 29(R—2A+4(d¢)2+ L[F2]), (1)
later been shown that the Born-Infeld theory naturally arises

in the low energy limit of the open string theofg,3].

In the open and the closed bosonic string theory, there a
four massless states of strings: the dilaton fig¢ldhe U (1)
gauge fieldA;, the gravitational fieldg;;, and the Kolb-
Ramond antisymmetric tensor fieltj; . When one considers
the Born-Infeld electrodynamics motivated by the string S=f Bxy— g(R—2e**A — 4(d )2+ e** L[ e B¢F2)).
theory, he might include other massless fields together with o)
the electromagnetic field. In this paper, we however neglect
Bjj for simplicity. Then, the Einstein-Born-Infeld-dilaton e consider an action with general dilaton coupling con-
system describes interactions among massless figlds, , stantse, 8 and y>0:
andgj .

Recently, numerical studies of the Einstein-Born-Infeld- _
dilaton system have been done in four-dimensional static andS= d*xV=g(R—2e*’A - y(d¢)*+ e’ Lle *IF?]).
spherically symmetric space-tinié—6]. Here we turn to the 3
three-dimensional case, and show that the analytic solution
describing the black hole can be obtained. The threeThe equations of motion of the dilaton fietbl and the elec-
dimensional gravity is a simple version of general relativity tromagnetic field= are
and gives one useful approach to the black hole physics _ .

[7-9]. Three-dimensional black holes also arise in some 2y ;' —2aAe*?+ pef?L—2Be PPF2L=0, (4)
higher dimensional theorigsl0]. We may anyway get an

r\é/hereF2= Fi;F' and L is its functional. The action in Ein-
stein frame is given via the conformal transformation
gij’_>e4¢gij by

insight into the property of the Born-Infeld theory by inves- (e*ﬁﬁthiJ’)_j:O, (5)
tigating the three-dimensional black hole as the simplest ex- '
ample. respectively, where[x]= 8L/ 5x. The Einstein equation is

Rij=4¢ ¢+ (2e"?A—eP’L)g;;
*Email address: yamazaki@tap.scphys.kyoto-u.ac.jp )
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We consider the Born-Infeld nonlinear electrodynamics, fr—fs

which corresponds to . e 29=—2Ae*+4b%eP?(1-h?). (17
1/2
L[x]=4bY 1—| 1+ — ’ @ H.ere, we assume the following form of the metric function
2p? lo¥
where b>0 is the Born-Infeld parameter. In the limit of S=nin r for 1>0 (19)
largeb, this gives Maxwell Lagrangian; — —Xx. ro '

The three-dimensional static and circularly symmetric

space-time can be written in the form wheren andry,>0 are constants. From E([L6), it turns out

thatn must be positive, and then the dilaton fiebdoecomes
f(r)

1/2
) )
The electromagnetic field is assumed to have the following

25(r)

g=—f(r)dt®>+ dr2+r2de?.

8

n

Y

r

r1 (19

p==

pure electrostatic form: with a positive constant;. Then, Eqs(14) and(17) become

( >’:i< r aA(

yn) 1/2r 02n

F=efo(TME(r)dt/\dr. 9)
Then, Eq.(5) becomes
rE '
—] =0, (10
V1—E?/b?

where prime denotes derivative with respect.tdhis can be
integrated to give

E= h—1’2$, (11)
where
2
h=1+ %, (12

andQ is an integration constant. The constgnis the elec-
tric charge, namely

= ~Bé x|
4ar re £ '

Q (13

for any smooth closed spacelike cuiveenclosingr =0. The
equation of motion of the dilaton fiel(#) becomes

ef(S
7r (rfe%¢")’ — ah e+ 28b%eh*(1—h1?) =0,
(14
The Einstein equations are
f!
fre =1 e 2%=—4Ae*?+8b%P?
2
X 1_h1/2+ Q h—1/2

2b?r?
(15
&' =yr(e")? (16)

n+1

f

rn

r

ta\fm
rl)

o ' Ay 1
—2p0°| - (1-h'? (20
1
and
F\7 g+l [\ ey
ey B —2/\(7
r ro 1
2| ! N 1/2
+4b E (1—h"9) |, (21

respectively. These two equatiof20) and (21) are consis-
tent if and only if

a=pB=T/4ny.

Equation(22) includes the string casenE 1,a=8=y=4).
When the conditior(22) is satisfied, Eqs(20) and (21) be-

)

The solutions of Eq(23) are

(22)

f

rn

r

)

2n
) [(4b%—2A)—4bhY2rt-n (23

112
rl 2 4b2_2A 2 2 njr 1-n ?
—(a) ﬂr —4b°r r 1+W dr ,
(24)
forn#2, and
ro\4 r
f=|—| | (4b>—2A)r?In| —|—4b?r?
) )
. 2\ 12
Xf r—1 1+W) drl, (25)

for n=2.
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TABLE I. Classification of solutions of the three-dimensional Einstein equation. Abbreviations E, Bl, M,
D and A stand for Einstein, Born-Infeld, Maxwell, dilaton and cosmological constant, respectively.

b A a, B,y n M Q System
Egs.(24),(25) a=B=72Jny EBIDA
Eq. (30) a=p=y=4 1 EBIDA (String
Cataldo and Garai(1999 a=p=0 0 EBIA
Chan and Manr{1994 +00 a=B=F2Jny, n#2 EMDA
McGuiganet al. (1992 +oo a=pB=y=4 1 EMDA (String
Mandalet al. (1991 +oo a=p=y=4 1 0 EDA (String
Saet al. (1996 +oo <0 a=p=ny=4, n+1,2 0 EDA
Saet al. (1996 +oo <0 a=pB=4,y=2 2 0 0 EDA
Barrow et al. (1986 4o <0 a=—+2,y=1 1/2 0 0 EDA
Baradoset al. (1992 +o0 a=p=0 0 EMA
Barrow et al. (1986 +o 0 y=1 #0 0 ED
Deser and Mazu¢1985 +o 0 a=p=0 0 EM
Gott Il et al. (1986 +oo 0 a=p=0 0 0 EM
Baradoset al. (1993 +0o0 a=p=0 0 0 EA

The above solutions include known solutions as speciafail. In this case, Eq24) is expressed in terms of elementary
cases. Whem=0, the dilaton field vanishes, and then Eg. functions as
(24) becomes

r 2Ar2  4b%ry? Q2 \ "
f=—M—(A—2b2)r?—2b7r 17+ Q%/b? FO=1o) M | ) |
—20Q2In(r + 2+ Q%p?), 26 12
oint Qb (20 4b|Qlr? @\ |q
. ) +—n|| 1+ —| +-—— (30
which has been given by Cataldo and Garkil]. In the Mo b2r? br
limit of b— o0, the Born-Infeld field reduces just to the Max-
well field. Then Eq.(24) gives The integration constatM can be regarded as the total mass

of the system. In fact, according to Brown and Y¢19,2Q.
The (quasi-local mass functionM (r) within the circle of
, (27)  radiusr becomes

ry) 2 2A 2Q?
f=(—1) [—Ar“——erri
2—n

ro n
o120 12 (12 o6
for n+0,2, M(r)=2f"9(fy—f")e ?, (3D
4 wheref,=f(r) is a function defining the zero of mass cor-
f:(r_l) [—Arz—ZArz In(L +Q?|, (28) responding to some background space-time. It will be natural
o ra to choose
forn=2, and 2Ar,2
fo(r)=—=—-r2, (32)
r
r 0
f:—M—Ar2—2Q2In(—>, (29)
rs which implies that the Born-Infeld field vanishes in the back-

. o ) ) . ground space-time. Them is the total mass in the sense
for n=0. Equation(27) coincides with the solution obtained =lim, , ...M(r).
by Chan and Mani12], and Eq.(29) corresponds to the  |n the following, we analyze the curvature singularity, the
charged Baados-Teitelooim-Zanelli(BTZ) solution [8].  caysal structure and propagation of light front, where we

Other solutions can be obtained by taking special values ofhow some differences between the Born-Infeld and the
parameters in Eqg24) or (25). Table | shows the classifi- paxwell electrodynamics.

cation of solutions found previous[y3,9,11-18.

A. Curvature singularity

III. SOLUTIONS TO THE STRING ACTION . . .
There is a curvature singularity at the center=0},

The casen=1, a=B=7y=4 is particularly important, where the scalar curvature and the energy density diverge.
since the solution witm=1 can be converted into the solu- The asymptotic behavior nefr=0} of these quantities are
tion for the string frame action via the conformal transfor-shown in Table Il. In addition, the cases of the Einstein-
mation g;;—e~*?g;; . We shall investigate this case in de- Maxwell-dilatonA system [12], the Einstein-MaxwellA
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TABLE Il. Behavior of the scalar curvature and the energy den-  The behavior of at spatial infinity depends om and\.

sities near the central singularitfzinstein framg The causal structure is classified into several cases.

(i) A>0. In this caseF~—\x? holds asymptotically as
System R PEM Pp P x—oo for any m. FurthermoreF=0 has a simple positive
EBID(Q+0) r=3nr 3 r=3nr -2 root. This implies that there exists a cosmological horizon.
EMD(Q+0) =4 =4 -4 -2 ~ (i) x=0. The causal structure dependsronif mis nega-
EBI(Q#0) -1 1 0 [0 tive, there_: exists a cosmological horlzon,_ and _the causal
charged BTZ -2 -2 0 [0 structurg is _S|m|Iar tq .tha>0 case. Whem is positive or
ED(Q=0) -3 0 (-3 e zero, F is strictly positive for anyx>0. Therefore, the cen-

tral singularity is naked.

(iii) A<0. The causal structure dependsronThe behav-
ior of F at spatial infinity is same as the>0 case except for
the signature. Whem satisfies

system(charged BTZ [8], the Einstein-Born-Infeldk sys-
tem[11], and the Einstein-dilaton- system Q=0) are also
shown for comparison. It can be seen that nonlinearity of _ v
electrodynamics weakens the divergence of the curvature m=m, (A):=In(A =X+ V(A =2)), (36
scalars at least in the case of the dilaton-coupled system
The curvature scalars also diverge in the string frame. Tabl
[Il shows the behavior in the string frame.

the equatiorF=0 has a multiple root. Whether the central
gingularity is covered by the black hole horizon depends on
the value ofm;

(li-a) m<m, . In this case,F>0 for any x>0. This
implies that the central singularity is naked.

A null hypersurface on which the horizon functidiir) (ii-b) m=m, . This is the extreme case. The black hole
vanishes is a Killing horizon. The behavior of the function horizon is degenerated, and the causal structure is similar to
f(r) determines the causal structure of the space-time. Intrdhe four-dimensional extremal Reissner-Nordstrepace-

B. Causal structure

duce the following dimensionless quantitie@0): time. The horizon radius becomes-[\(\ —2)] 2
(li-c) m>m, . F=0 has two distinct positive roots.
b 2r,Q roM A These correspond the inner Cauchy horizon and the black
X= @f, q= ro m= m A= @ hole horizon, respectively. The causal structure is similar to
1 (33 the four-dimensional nonextremal Reissner-Nordstro
space-time.

Here we show the effect of the nonlinear electrodynamics.
We rewrite Eq.(36) in terms of the original physical quan-
tities. Black hole horizons exist if and only £<0 and

1o
1+(1+x2)1’2] MM
n———~,I. (39

+1 X / 1
(oo 2
1= nl-— — | == :
It can be seen that the causal structure is determined by es- 4r3p 2b? 2b?\ 2b?

sentially two parametens and\.

Then, Eq.(30) can be rewritten as

F:=f/g?=x{ —m+(1—-N\)x—(1+x%)?

For anym and \, the behavior of nearx=0 is (37)
To compare with the Einstein-Maxwell-dilaton syst¢h®],
F~—xInx(>0)(x—+0). (39 e take the Maxwell limit with fixing the other parameters:
Using Eq.(35), we can see that the conformal radial coordi- Q| ro
nater, :=["dr\—g,, /gy remains finite ax— +0, which (V) — —|A|"Y(b—00). (39
implies the curvature singularityr =0} is timelike. On the x4

other hand, it can be seen thigt— +% asx— +o for any

m and \. This implies that spatial infinityr =c} is a null  For finite value ofb, (IQI/M), is always larger than this
hypersurface. limit value. Therefore, there is a certain set of parametérs

and Q for which black hole horizons exist in the Einstein-
TABLE Ill. Same as in Table II, but in the string frame. ~ Born-Infeld-dilaton system but do not exist in the Einstein-
Maxwell-dilaton system.

System R PEM PD PA

EBID(Q+0) T [0 TS [0 C. Propagation of light front

EMD(Q#0) r—2 10 2 r0 Finally, we see the propagation of light frobt which is
ED(Q=0) r1 0 1 r0 a boundary of the region of disturbed electromagnetic field.

The motion of this characteristic surfagecan be investi-
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gated by the method similar t21]. The electromagnetic 05 7 , ;
field is discontinuous in the following sense: 045 ¢ mﬂeﬁhcawhy—% " s~ event hotizon A
04 F m."tzon i Ay ~
[Fijls=0, [ViFijls="ijkq, (39 o35 ¢ ﬁ
wherek; is a vector normal t&. The dilaton fieldp and its w03y 1
first derivative are continuous at 0;)2; P A / 1
[#]s=0, [Vi¢]s=0. (40) 0I5
0.1} T )
We apply above conditions to the equation of moti&ij. 0.05 /\\;
After short calculation, we find thad{; is not tangent to null = N / ,
geodesics of the background space-time meffibut of the 0.001 001 01 I 10 100 1000
effective metric P

. . L .. FIG. 1. Allowed region of light front§shaded regionis shown
J(ern=9" +4e 2P —FI FIK, (4D  inthex—w plane for a fixed background space-time in the case of
L Einstein-Born-Infeld-dilaton systerf\=—0.4, m=1.2). The filled

. . . ircl h le circul it.
Using Eqs.(7), (8), (9), and(11), the effective metric can be circle corresponds to the unstable circular orbit

rewritten as )
~ oM . % ~ 1(ro\?(E\?
268 A=—"A, w== 6 —| . (46

e m=_—-,
g(eff)=h‘1( —fdt?+ —drz) +r2de?. (42) 2r,Q? Q2 2 L

f
Figure 2 shows the regio<<0 with fixed background pa-

rametersm and for which no Killing horizons exist.
We can see some differences between the Born-Infeld and
the Maxwell electrodynamics. Let us consider the light fronts
)2 coming from infinity to the centefr =0}. They can arrive at
(d_r) +V(r)=0, the center in the Born-Infeld case, while they are scattered in
the Maxwell case it. #0. Furthermore, the unstable circular
020 hi orbit exist only in the Born-Infeld case. These differences
V(r)::—(—LZ—EZ), (43) between the Born-Infeld and the Maxwell electrodynamics
h? 2 can also be seen when the naked singularity or the cosmo-
logical horizon exist.

A generator of the null geodesic of the effective metd2)
is written ask'=dx'/dr. Then, k' satisfies following equa-
tions:

whereE andL are conserved quantities defined by

dt ,de IV. CONCLUSION
- L=rc—. (44)

-1
E=h de’ dr

We have given a seven parameter family of static, circu-
larly symmetric, and pure electrically charged solutions of
The light front can exist in the regioi<<0. In the following,  the three-dimensional Einstein-Born-Infeld-dilaton system.
we consider the case=1. The behavior of potentiaV is  The electric field remains finite near the central singularity,

determined by three parameters\ and which shows a nonlinear effect of the Born-Infeld field. The
_[ T 2(5)2 (45) 0.5 ' W
= 2br, R 045 innerh g’rai?gily —|-s, “7”%5740&

Figure 1 shows the regioi<0. The background param- 04 | L

etersmand\ are fixed and satisff<0 andm>m, , so that 035 t

the black hole horizon and the inner Cauchy horizon exist. w 03}

For comparison, we also show a same calculation in the case 025 +

of the Maxwell limit. WhenL= —x, the second term on the 02 |

right hand side of Eq41) vanishes. Thereford; is tangent 015 |

to null geodesics of the background space-time, which is A

well-known result. Insertindi=1 and Eq.(27) with n=1 0.05

into Eq. (43), we find that the potential functio¥ is deter- 0 . . . .

mined by the following three parameters: 0001 001 01 I 10 100 1000

T:=r/n

!Covariant components of the effective metric are defined as FIG. 2. Same as in Fig. 1, but in the case of Einstein-Maxwell-

a9k =3l . See Ref[21]. dilaton systemX=—0.4, m=1.4).
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solution reduces to known black hole solutions of variousMaxwell case(ii) The lower bound of mass for which black
theories by appropriately taking limits of parameters. hole horizons exist is lower in the Born-Infeld case, so that it
We have studied the low energy string case=() in is easier to form a black hole horizon in the Born-Infeld case
detail. The solution is essentially described by the mass pan the sense that the parameter region corresponding to the
rameterm and the cosmological constant parameteiThe  plack holes is widerii ) We have considered the light fronts
critical value of mass parametar, exists for given\, such  coming from infinity towards the center with nonzero impact
that the black hole horizons exist if and onlyN<0 and  parameter. The light fronts are always scattered in the Max-
m=m, [22]. The causal structure of charged black hole soe|| electrodynamics, while they can reach the center in the
lutions (\<O case is similar to those of the four- Born-Infeld electrodynamics.
dimensional Reissner-Nordstrosolution. The spatial infin-
ity is not a timelike but a null hypersurface. This is an effect
of the dilaton field[12].
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