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Thick domain walls intersecting a black hole
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We discuss the gravitationally interacting system of a thick domain wall and a black hole. We numerically
solve the scalar field equation in the Schwarzschild space-time and show that there exist scalar field configu-
rations representing thick domain walls intersecting the black hole.

PACS numbegs): 04.70-s, 11.27+d

[. INTRODUCTION cally stable configuration of a scalar field has a finite thick-
ness.

Topological defects arise during spontaneous symmetry Now we shall consider the validity of a thin-wall approxi-
breaking associated with phase transitions, and cosmologicatation in the system of a topological defect and a black hole.
evolution of them is considered to have played an importantn such a system, there are two characteristic scales: the
role in cosmology(see, e.g.[1]). Topological defects pro- thicknessw of the defect and the black hole radigg. In the
duced in the early universe might give us some informatiorcase of the system of an astrophysical black hole with the
on high energy phenomena, which cannot be reached by amass ~M and a defect formed during a grand unified
celerator experiments, and those produced at the late tintheory phase transition, the thickness of the defect is much
phase transitionf2] also have attracted attention as a poten-smaller than the black hole radius and therefore thin-wall
tial source of the cosmic structures. To study the topologicahpproximation would be valid. However, it is not so hard to
defects is therefore crucially important in cosmology andconsider the situation where the thickness of defects cannot
elementary particle physics. be negligible as compared with the size of a small black

In general relativity, topological defects have interestinghole. Over the last few decades, many people have studied
features. Topological defects are extended and relativistithe formation of small black holes called primordial black
objects due to their large tension. In particular, the gravitaholes(PBH’s) and their cosmological implications. For ex-
tional field produced by an infinitely thin domain wall shows ample, studying the contribution of PBH’s to cosmic rays
a repulsive natur¢3,4]. On the other hand, although there enables one to place limits on the spectrum of density fluc-
are many studies about the properties of thick domain wallsuations in the early universésee e.g.[12—14). On the
in the flat and de Sitter spacetime backgroufts little is ~ other hand, the possibility of thick defects and their roles in
known about the existence of thick wall configurations on ancosmology, has been discussed e.g., as a source of large-
inhomogeneous, strongly curved background such as a bladcale structure in the univerg2], or as a candidate for some
hole space-time. Thus it is intriguing to study the gravita-kind of dark mattef15]. For example, it is thought that the
tional interaction between two extended relativistic objects: dypical mass of PBH’s which evaporate at the present epoch
topological defect and a black hole. is 10 g, so Rgfle*13 cm. When one considers the topo-

In most studies of a defect—black-hole system, topologicalogical defects formed during a phase transition<at00
defects have been approximately treated as infinitely thin anMeV, such defects become thicker than the size of PBH’s
nongravitating objects whose dynamics are governed bwnd thin-wall approximation is no longer valid.

Nambu-Goto action. Within this context, the scattering prob- In this paper, we investigate the gravitational interaction
lem of a Nambu-Goto string by a background black hole hadetween a domain wall and a black hole taking the thickness
been studied in deta[l5-9]. In the domain wall case, re- of the wall into account. We deal with scalar fields in the
cently Christensen, Frolov, and Larsgh0,11 considered Schwarzschild black hole space-time with* and sine-
Nambu-Goto walls embedded in the Schwarzschild blackGordon potentials, which have a discrete set of degenerate
hole space-time and found the static axisymmetric solutionsninima. We explicitly show that static axisymmetric thick
They showed that there exist a family of infinitely thin walls domain walls intersecting the black hole do exist by numeri-
which intersect the black hole event horizon. However, littlecal investigation. We consider a nongravitating domain wall
attention has been given to the system of a thick defect infor simplicity. This test wall assumption might be valid when
teracting with a black hole although a defect as a topologithe symmetry braking scale of the scalar field is much lower
than Planck scale as will be shown later by dimensional

analysis.
*Email address: morisawa@yukawa.kyoto-u.ac.jp This paper is organized as follows. In Sec. I, we derive
"Email address: yamazaki@tap.scphys.kyoto-u.ac.jp the basic equation and discuss the boundary conditions
*Email address: ida@tap.scphys.kyoto-u.ac.jp which represent the situation we want to study. In Sec. lll,
$Email address: akihiro@yukawa.kyoto-u.ac.jp we show the numerical result. We summarize our work in
'Email address: knakao@sci.osaka-cu.ac.jp Sec. IV. We also discuss the validity of the assumption that
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FIG. 1. Numerical solution of
Eq. (14) with the ¢* potential for
e=1. This solution expresses a
domain wall configuration whose
20 ! ! ' ! ! ! it thickness is comparable to the
Schwarzschild radius.
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the effects of gravity of the domain wall can be ignored near 2m\ 2M\ 1 5
the black hole horizon. Throughout this paper, we use units g= (1 R jACH|{1- &) dR
such thatt=%=G=1 unless otherwise stated.
+R?(d9?+sir 9 de?). (1)
II. THE BASIC EQUATION AND THE BOUNDARY For our purpose, we find that it is more convenient to work
CONDITIONS in the isotropic coordinatef,r, 9, ¢}, where the new radial
We consider a static thick domain wall in a black hole coordinater is defined by
space-time. The domain wall is constructed by a scalar field M\ 2
with self-interaction in a given curved space-time. In what R=rl1+ 7) _ )
follows, we neglect the self-gravity of the scalar field, as will 2r,
be justified later. As a background space-time, we consider
the Schwarzschild black hole We mainly consider the region outside the event horizon in
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FIG. 2. Numerical solution of
Eq. (14) with the ¢* potential for
e=0.1. This solution expresses a
domain wall configuration whose
thickness is one order of magni-

tude larger than the Schwarzschild
radius. The black hole is envel-
oped in the core region of the
wall.
z
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this paper, which corresponds to-M/2. In this coordinate V2¢p—oVIagp=0. (5)

system, the metric has a spatially conformally flat form

_[(2r—=M 2d2 (1 M)“
9=~ oram) AUH | Ty
X[dr?+r?(d9?+sir® 9 de?)]. (3

Let us consider a real scalar figfdwith a potentiaV[ ¢ ],
of which Lagrangian is given by

L=—(—detg)"4(;V¢-Vo+V[4]). (4)

The equation of motion fot is

In this paper, we consider the following two familiar types of
potentials which have a discrete set of degenerate minima:
the ¢* potential

A
Vil ¢]= 7 (67— %)%, )
and the sine-Gordon potential

Vol ¢]=N7"[1+cos ¢/ 7)]. (7)

Since the Schwarzschild space-time is asymptotically flat,
the asymptotic boundary condition for E¢) would be
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FIG. 3. Numerical solution of

Eq. (14) with the sine-Gordon po-

tential for e=1. This solution ex-
P presses a domain wall configura-
20 T T . T T T tion whose thickness is compar-
able to the Schwarzschild radius.

T
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given by the solution in the flat space-time. The relevanin the Schwarzschild background, the solution compatible

solutions in the flat space-timg=—dt?+dx®+dy®+dz>  with the above asymptotic boundary condition would have a

are the static and plane-symmetric solutions static and axisymmetric formp= ¢(r,). Then, the explicit
form of the equation of motiol5) becomes

$1(2) = ptanhyN/29z, (8
and 2r \452+ 8r g 1 (92+ tt}a
_ 20 M) (a2 " ar—mg a2\ ez 58 |
$o(2) = 5[ 4 arctan expy\ z) — 7], 9)
oV
for the potentialsv, andV,, respectively. These solutions s (13)

represent domain walls in the flat space-time characterized
by the thickness of the wall
This equation can be parametrized by a single dimensionless
w=1//\17. (100  parameter
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FIG. 4. Numerical solution of
Eq. (14) with the sine-Gordon po-
tential for e=0.1. This solution
expresses a domain wall configu-
ration whose thickness is one or-

20 T T T T T

der of magnitude larger than the

=T
horizon Schwarzschild radius. The black

hole is enveloped in the core re-
gion of the wall.

where the dimensionless potentid] ®]=V[ ¢]/\ 7* is de-
fined. U has minima atb=+1 for the ¢* potential and at
d=(2n+1)7w (n=0,=£1,=2,...) for thesine-Gordon po-
tential. The parameteris just a ratio of the horizon radius to
the wall thickness measured in the asymptotic region,

z
T i DU
15 | i
20 -1I5 -1Io :5 <I) é 1Io 1I5 20
T
e=M/2w, 12
by introducing dimensionless variables
p=2rIM, ®(p,9)=¢(r,9)7. (13

In terms of these variables, EGL1) becomes

(p>452+ 2p (9+1 (72+t1‘}a O
pt1 ap?  (p?—1) I  p?\909? a9
_a 2 14
=5 (14

namely if € is smaller(largep than unity, then the wall is
said to be thick(thin) as compared to the size of the black
hole.

We shall confine ourselves to the case where the core of
the wall is located at the equatorial plaf@= =/2} of the
black hole. The solutions without this assumption will be
discussed in a separate pap&6]. Accordingly, we impose
the Dirichlet boundary condition at the equatorial plane

®D|5- 2=0. (15
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FIG. 5. The energy density

E E(x,z) of ¢* scalar field fore
20 . . . . . . — =1. This is calculated from the
horizon ——— numerical solution shown in
0.2 ----nn- Fig. 1.
15 R J—
04 ————

10 1

.10 F 4

.15 | 4

_20 1 1 1 1 1 1 1

Now it is sufficient to consider the north region, namely theAs is shown in the Appendix, the condition E@Q.7) is the
solution in the south region can be obtained ®dp,d) consequence of a natural requirement that the energy density
=—®(p,m— ), {w/2<=I<m} of the space-time. The observed by a freely falling observer remains finite at the
regularity of the scalar field at the symmetric axis is given byevent horizon. In practice, the region of numerical integra-
the Neumann boundary condition tion should be finite, so that we need an asymptotic boundary
condition atp=pmay fOr pnae1. Taking into account the

El) flat background solutions Eq$8) and (9), we impose the
— =0. (16) Dirichlet boundary condition
Y 9=0

Dyl -, =tant(2™"%ep,,c08) (18

On the other hand, the boundary condition at the event hori-
zon{p=1} is given by the Neumann boundary condition and

JP (I)2|P:pmax: 4 arctan expepm,axcosd) — m, (19

p=1 for the ¢* and the sine-Gordon potentials, respectively.
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FIG. 6. The energy density

E E(x,z) of ¢* scalar field fore
20 T T ; . . . ; =0.1. This is calculated from the
horizon ——— numerical solution shown in
I Fig. 2.
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In Sec. Ill, we numerically integrate the field equation thickness of the kinks Eq$18) and(19) at pyay iS One order

(14) using the relaxation method under these boundary conof magnitude larger than the Schwarzschild radkig. 2 for
ditions at the equatorial plane E@.5), at the symmetric axis ¢ and Fig. 4 for sine-GordgnIn both cases, we obtain a
(16), at the event horizon Eq17), and in the asymptotic domain wall solution as a kink of the scalar field at the equa-
region Eqgs.(18) and (19) for both the ¢* and the sine- torial planez=0. Particularly in the case=0.1, the black

Gordon potentials. hole is enveloped in the core region of the wall.
The scalar field configurationB(x,z) satisfying Eq.(14)

We also show the energy densiky of the scalar field
I1l. NUMERICAL INTEGRATION given by

and the boundary conditions are shown in Figs. 1-4, wkere = p_ Ltt :1(p)4 (&(D) 2+ 1((@) 2] +U[D]

and z are the Cartesian coordinates- p sind, z=p cosd. At 2e2\ptl ap p2\dd

Here we show the results typical in two cases; kel case (20

in which the thickness of the kinks Eq4.8) and(19) at pyax

is comparable to the Schwarzschild radiggy. 1 for ¢* and  in Figs. 5-8, corresponding to Figs. 1—4, respectively. In all

Fig. 3 for sine-Gordoj) and thee=0.1 case in which the the cases, one can see that the configuration actually has a
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FIG. 7. The energy density

E E(x,z) of the sine-Gordon scalar
20 ; ; : ; ; ; ; field for e=1. This is calculated
horizon ——— from the numerical solution
X — shown in Fig. 3.
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wall-like structure, namely the energy density is localized(1000x 180) grid when keeping,,.,—=51 at most 1%. We
around the equatorial plane with a certain thickness correaiso comment that the reliability of the numerical code is

sponding toe. ) ) checked in the flat space case and it reproduces the exact
We shall comment on the computational domain and theys|ytions Eqs(8) and (9) with accuracy of 102,

grid spacing taken in our calculation. In order that the
asymptotic boundary conditions Eqggl8) and (19) make
sense pmax Must be large enough. In the above calculation,
we take the computational domain which is 50 times as large In order to answer the question whether or not scalar
as the horizon radiu§.e., pma=51), and we carry out the fields can actually form a topological defect in the vicinity of
integration on a 508 90 grid (the grid spacing in the and  a black hole, we have numerically solved the equation of
9 directions is 0.Xhorizon-radius and 1°, respectively motion for real scalar fields wit* and sine-Gordon poten-
Then we clip the regiod|x|,|z| <20}, where the above re- tials, which have a discrete set of degenerate minima, in the
sults are insensitive to the value pf,., and the number of Schwarzschild black hole background. In beth and sine-

grid points. In fact, the results do not change when we extenébordon potential cases, we showed that there exist the static
the computational domain tp,,,,=101 when keeping the axisymmetric field configurations which represent thick do-
grid spacing, and the results differ from ones on the finemmain walls intersecting the black hole. In particular, we stud-

IV. SUMMARY AND DISCUSSIONS
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FIG. 8. The energy density

E E(x,z) of the sine-Gordon scalar
20 ; ; : ; ; ; — field for e=0.1. This is calculated
horizon from the numerical solution

shown in Fig. 4.
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ied the specific case where the wall's core is located at thextended infinitely in space. Then we can understand that the
equatorial plane of the Schwarzschild space-time. We introdomain wall is suspended from the asymptotic region and
duced the parameter, which characterizes the domain wall supported against falling into the black hole by its tension, so
thickness compared to the black hole horizon radius; thehat the static configuration is realized.
smaller than unitye is, the larger the wall width is. We In our analysis, we assumed that the gravitational effect of
showed the domain wall solutions and their energy densitiethe domain wall is negligible compared to that of the
for e=1 ande=0.1 cases. In summary, we can say that aSchwarzschild black hole. We shall comment on the validity
black hole is not an obstacle for scalar fields to form a do-of this assumption. The energy density of a domain wall is
main wall configuration intersecting the black hole. given by

One might wonder about our present results; one naively
expects that the scalar field could have no static distribution )
around a black hole and inevitably fall into the horizon as GT.!~GN i i 7
usual objects do. However, a domain wall is a relativistic t 7 w2
object with a large negative pressioz large tensionwhose
magnitude is comparable to that of energy density. Further-
more in our study we examined the domain walls which arevheremp, is the Planck mass an@ is the Newtonian con-

Mp) @)
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stant. On the other hand, the curvature strength, or gravitaworth investigating the existence of the static axisymmetric
tional tidal force, of Schwarzschild space-time is estimatedsolutions, which represent thick domain walls located away

as from a black hole.
A cosmic string is also an extended relativistic object with
GM w large tension and is thought to play a more important role in
?“ f% (22 cosmology than a domain wall does. Study of a gravitation-

ally interacting system of thick cosmic strings and black
at areal radiuR. Then a ratio of the gravity, which will be holes is an interesting problem as a generalization of the
produced by the domain wall to the gravity of the back-present analysis.
ground black hole, is given by
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try breaking scale being much lower than the Planck scale

(i.e., »<<mp), we havew<<1l and consequently our result APPENDIX: THE BOUNDARY CONDITION

gives a good description of shapes of gravitating thick do- AT THE EVENT HORIZON

main walls near the black hole. We can also see from Eqg. ] )

(23) that, in the thick wall v>2GM) case, ifp<mp, the The tangent qf a freely falling observer parametrized by
test wall assumption is still valid even Re~w. its proper timer is u#=(dt/dr,dr/d7,0,0), and we have

In the asymptotic regionR>w), one may expect that the
gravity of the domain wall is no longer negligible and —1=g,,ulu’=—
changes the asymptotic geometry drastically. Bonjour, Char-
mousis, and Gregory have recently investigated the space-
time of a thick gravitating domain wall with local planar The quantity
symmetry and reflection symmetry around the wall’'s core
[17]. They showed that the domain wall space-time becomes _ v 2[ dt
spatially compact and has a cosmological horizon as de Sitter a=—g,,8u= dr (A2)
space-time does. This suggests that, when a black hole exists
and the wall’'s gravity is taken into account in the region faris @ constant of the motion, wheg¢=(1,0,0,0) is the static
from the black hole, the whole space-time has a cosmologiKilling field. The energy density observed by this observer is
cal horizon and an axisymmetric domain wall intersects both , s 1
the black hole and the cosmological horizons as an equatorial T uu"=—(u-Vé)*=(2Ve-Vo+V[a]). (A3)
Vates US 1o study further the interacion between thik doSeS e consicer the statc configuration and the spatial part
) : of the metric is nonsingular in the isotropic coordinates, the
main walls and black holes in, for example,

Schwarzschild—de Sitter background. second term of Eq(A3) is always finite. We have

The domain wall solutions obtained here are thought to 2r+M\2 Y299
represent a possible final configuration of a gravitational cap- u-Ve=- ( 1+ or r—m| ~ 1} ar (A4)
turing of a domain wall by a black hole. At present, it is far
reaching for us to investigate a fully dynamical process suclfior the static axisymmetric configuratiop(r,d). Thus the
as the scattering and capture of thick domain walls by blackequirement that EqA3) is finite at the horizon is reduced
holes. However, to get some insight into the problem, it isto d¢/dr=0 atr=M/2, or equivalently Eq(17).

2r—M\?/ dt 2+ 1+M 4/ dr)\?2
2r+M/ \dr 2r) \dr
(A1

2r—M
2r+M

-2

a,2
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