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Thick domain walls intersecting a black hole

Yoshiyuki Morisawa,1,* Ryo Yamazaki,2,† Daisuke Ida,2,‡ Akihiro Ishibashi,1,§ and Ken-ichi Nakao3,i

1Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606–8502, Japan
2Department of Physics, Kyoto University, Kyoto 606–8502, Japan

3Department of Physics, Osaka City University, Osaka 558–8585, Japan
~Received 8 May 2000; published 25 September 2000!

We discuss the gravitationally interacting system of a thick domain wall and a black hole. We numerically
solve the scalar field equation in the Schwarzschild space-time and show that there exist scalar field configu-
rations representing thick domain walls intersecting the black hole.

PACS number~s!: 04.70.2s, 11.27.1d
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I. INTRODUCTION

Topological defects arise during spontaneous symm
breaking associated with phase transitions, and cosmolog
evolution of them is considered to have played an import
role in cosmology~see, e.g.,@1#!. Topological defects pro-
duced in the early universe might give us some informat
on high energy phenomena, which cannot be reached by
celerator experiments, and those produced at the late
phase transitions@2# also have attracted attention as a pote
tial source of the cosmic structures. To study the topolog
defects is therefore crucially important in cosmology a
elementary particle physics.

In general relativity, topological defects have interesti
features. Topological defects are extended and relativ
objects due to their large tension. In particular, the grav
tional field produced by an infinitely thin domain wall show
a repulsive nature@3,4#. On the other hand, although the
are many studies about the properties of thick domain w
in the flat and de Sitter spacetime backgrounds@1#, little is
known about the existence of thick wall configurations on
inhomogeneous, strongly curved background such as a b
hole space-time. Thus it is intriguing to study the gravi
tional interaction between two extended relativistic objects
topological defect and a black hole.

In most studies of a defect–black-hole system, topolog
defects have been approximately treated as infinitely thin
nongravitating objects whose dynamics are governed
Nambu-Goto action. Within this context, the scattering pro
lem of a Nambu-Goto string by a background black hole
been studied in detail@5–9#. In the domain wall case, re
cently Christensen, Frolov, and Larsen@10,11# considered
Nambu-Goto walls embedded in the Schwarzschild bl
hole space-time and found the static axisymmetric solutio
They showed that there exist a family of infinitely thin wa
which intersect the black hole event horizon. However, lit
attention has been given to the system of a thick defect
teracting with a black hole although a defect as a topolo
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cally stable configuration of a scalar field has a finite thic
ness.

Now we shall consider the validity of a thin-wall approx
mation in the system of a topological defect and a black ho
In such a system, there are two characteristic scales:
thicknessw of the defect and the black hole radiusRg . In the
case of the system of an astrophysical black hole with
mass;M ( and a defect formed during a grand unifie
theory phase transition, the thickness of the defect is m
smaller than the black hole radius and therefore thin-w
approximation would be valid. However, it is not so hard
consider the situation where the thickness of defects can
be negligible as compared with the size of a small bla
hole. Over the last few decades, many people have stu
the formation of small black holes called primordial bla
holes ~PBH’s! and their cosmological implications. For ex
ample, studying the contribution of PBH’s to cosmic ra
enables one to place limits on the spectrum of density fl
tuations in the early universe~see e.g.,@12–14#!. On the
other hand, the possibility of thick defects and their roles
cosmology, has been discussed e.g., as a source of la
scale structure in the universe@2#, or as a candidate for som
kind of dark matter@15#. For example, it is thought that th
typical mass of PBH’s which evaporate at the present ep
is 1015 g, soRg;10213 cm. When one considers the topo
logical defects formed during a phase transition at&100
MeV, such defects become thicker than the size of PB
and thin-wall approximation is no longer valid.

In this paper, we investigate the gravitational interacti
between a domain wall and a black hole taking the thickn
of the wall into account. We deal with scalar fields in th
Schwarzschild black hole space-time withf4 and sine-
Gordon potentials, which have a discrete set of degene
minima. We explicitly show that static axisymmetric thic
domain walls intersecting the black hole do exist by nume
cal investigation. We consider a nongravitating domain w
for simplicity. This test wall assumption might be valid whe
the symmetry braking scale of the scalar field is much low
than Planck scale as will be shown later by dimensio
analysis.

This paper is organized as follows. In Sec. II, we deri
the basic equation and discuss the boundary condit
which represent the situation we want to study. In Sec.
we show the numerical result. We summarize our work
Sec. IV. We also discuss the validity of the assumption t
©2000 The American Physical Society22-1
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FIG. 1. Numerical solution of
Eq. ~14! with the f4 potential for
e51. This solution expresses
domain wall configuration whose
thickness is comparable to th
Schwarzschild radius.
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the effects of gravity of the domain wall can be ignored n
the black hole horizon. Throughout this paper, we use u
such thatc5\5G51 unless otherwise stated.

II. THE BASIC EQUATION AND THE BOUNDARY
CONDITIONS

We consider a static thick domain wall in a black ho
space-time. The domain wall is constructed by a scalar fi
with self-interaction in a given curved space-time. In wh
follows, we neglect the self-gravity of the scalar field, as w
be justified later. As a background space-time, we cons
the Schwarzschild black hole
08402
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g52S 12
2M

R Ddt21S 12
2M

R D 21

dR2

1R2~dq21sin2 q dw2!. ~1!

For our purpose, we find that it is more convenient to wo
in the isotropic coordinates$t,r ,q,w%, where the new radia
coordinater is defined by

R5r S 11
M

2r D
2

. ~2!

We mainly consider the region outside the event horizon
2-2
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FIG. 2. Numerical solution of
Eq. ~14! with the f4 potential for
e50.1. This solution expresses
domain wall configuration whose
thickness is one order of magn
tude larger than the Schwarzschi
radius. The black hole is envel
oped in the core region of the
wall.
of
ma:

at,
this paper, which corresponds tor .M /2. In this coordinate
system, the metric has a spatially conformally flat form

g52S 2r 2M

2r 1M D 2

dt21S 11
M

2r D
4

3@dr21r 2~dq21sin2 q dw2!#. ~3!

Let us consider a real scalar fieldf with a potentialV@f#,
of which Lagrangian is given by

L52~2detg!1/2~ 1
2 ¹f•¹f1V@f#!. ~4!

The equation of motion forf is
08402
¹2f2]V/]f50. ~5!

In this paper, we consider the following two familiar types
potentials which have a discrete set of degenerate mini
the f4 potential

V1@f#5
l

4
~f22h2!2, ~6!

and the sine-Gordon potential

V2@f#5lh4@11cos~f/h!#. ~7!

Since the Schwarzschild space-time is asymptotically fl
the asymptotic boundary condition for Eq.~5! would be
2-3
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FIG. 3. Numerical solution of
Eq. ~14! with the sine-Gordon po-
tential for e51. This solution ex-
presses a domain wall configura
tion whose thickness is compar
able to the Schwarzschild radius
an

s
ize
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given by the solution in the flat space-time. The relev
solutions in the flat space-timeg52dt21dx21dy21dz2

are the static and plane-symmetric solutions

f1~z!5h tanhAl/2hz, ~8!

and

f2~z!5h@4 arctan exp~Alhz!2p#, ~9!

for the potentialsV1 and V2, respectively. These solution
represent domain walls in the flat space-time character
by the thickness of the wall

w51/Alh. ~10!
08402
t

d

In the Schwarzschild background, the solution compati
with the above asymptotic boundary condition would hav
static and axisymmetric formf5f(r ,q). Then, the explicit
form of the equation of motion~5! becomes

S 2r

2r 1M D 4F ]2

]r 2
1

8r

~4r 22M2!

]

]r
1

1

r 2 S ]2

]q2
1cotq

]

]q D Gf

5
]V

]f
. ~11!

This equation can be parametrized by a single dimension
parameter
2-4
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FIG. 4. Numerical solution of
Eq. ~14! with the sine-Gordon po-
tential for e50.1. This solution
expresses a domain wall configu
ration whose thickness is one o
der of magnitude larger than th
Schwarzschild radius. The blac
hole is enveloped in the core re
gion of the wall.
o
on,

k

e of

e

e5M /2w, ~12!

by introducing dimensionless variables

r52r /M , F~r,q!5f~r ,q!/h. ~13!

In terms of these variables, Eq.~11! becomes

S r

r11D 4F ]2

]r2
1

2r

~r221!

]

]r
1

1

r2 S ]2

]q2
1cotq

]

]q D GF

5e2
]U

]F
, ~14!
08402
where the dimensionless potentialU@F#5V@f#/lh4 is de-
fined. U has minima atF561 for the f4 potential and at
F5(2n11)p (n50,61,62, . . . ) for thesine-Gordon po-
tential. The parametere is just a ratio of the horizon radius t
the wall thickness measured in the asymptotic regi
namely if e is smaller~larger! than unity, then the wall is
said to be thick~thin! as compared to the size of the blac
hole.

We shall confine ourselves to the case where the cor
the wall is located at the equatorial plane$q5p/2% of the
black hole. The solutions without this assumption will b
discussed in a separate paper@16#. Accordingly, we impose
the Dirichlet boundary condition at the equatorial plane

Fuq5p/250. ~15!
2-5
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FIG. 5. The energy density
E(x,z) of f4 scalar field for e
51. This is calculated from the
numerical solution shown in
Fig. 1.
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Now it is sufficient to consider the north region, namely t
solution in the south region can be obtained viaF(r,q)
52F(r,p2q), $p/2<q<p% of the space-time. The
regularity of the scalar field at the symmetric axis is given
the Neumann boundary condition

]F

]q U
q50

50. ~16!

On the other hand, the boundary condition at the event h
zon $r51% is given by the Neumann boundary condition

]F

]r U
r51

50. ~17!
08402
y

ri-

As is shown in the Appendix, the condition Eq.~17! is the
consequence of a natural requirement that the energy de
observed by a freely falling observer remains finite at
event horizon. In practice, the region of numerical integ
tion should be finite, so that we need an asymptotic bound
condition atr5rmax for rmax@1. Taking into account the
flat background solutions Eqs.~8! and ~9!, we impose the
Dirichlet boundary condition

F1ur5rmax
5tanh~221/2ermaxcosq! ~18!

and

F2ur5rmax
54 arctan exp~ermaxcosq!2p, ~19!

for the f4 and the sine-Gordon potentials, respectively.
2-6
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FIG. 6. The energy density
E(x,z) of f4 scalar field for e
50.1. This is calculated from the
numerical solution shown in
Fig. 2.
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In Sec. III, we numerically integrate the field equatio
~14! using the relaxation method under these boundary c
ditions at the equatorial plane Eq.~15!, at the symmetric axis
~16!, at the event horizon Eq.~17!, and in the asymptotic
region Eqs.~18! and ~19! for both the f4 and the sine-
Gordon potentials.

III. NUMERICAL INTEGRATION

The scalar field configurationsF(x,z) satisfying Eq.~14!
and the boundary conditions are shown in Figs. 1–4, whex
and z are the Cartesian coordinatesx5r sinq, z5r cosq.
Here we show the results typical in two cases; thee51 case
in which the thickness of the kinks Eqs.~18! and~19! at rmax
is comparable to the Schwarzschild radius~Fig. 1 for f4 and
Fig. 3 for sine-Gordon!, and thee50.1 case in which the
08402
n-
thickness of the kinks Eqs.~18! and~19! at rmax is one order
of magnitude larger than the Schwarzschild radius~Fig. 2 for
f4 and Fig. 4 for sine-Gordon!. In both cases, we obtain
domain wall solution as a kink of the scalar field at the eq
torial planez50. Particularly in the casee50.1, the black
hole is enveloped in the core region of the wall.

We also show the energy densityE of the scalar field
given by

E[
Tt

t

lh4
5

1

2e2 S r

r11D 4F S ]F

]r D 2

1
1

r2 S ]F

]q D 2G1U@F#

~20!

in Figs. 5–8, corresponding to Figs. 1–4, respectively. In
the cases, one can see that the configuration actually h
2-7
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FIG. 7. The energy density
E(x,z) of the sine-Gordon scala
field for e51. This is calculated
from the numerical solution
shown in Fig. 3.
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wall-like structure, namely the energy density is localiz
around the equatorial plane with a certain thickness co
sponding toe.

We shall comment on the computational domain and
grid spacing taken in our calculation. In order that t
asymptotic boundary conditions Eqs.~18! and ~19! make
sense,rmax must be large enough. In the above calculati
we take the computational domain which is 50 times as la
as the horizon radius~i.e., rmax551), and we carry out the
integration on a 500390 grid ~the grid spacing in ther and
q directions is 0.13horizon-radius and 1°, respectively!.
Then we clip the region$uxu,uzu,20%, where the above re
sults are insensitive to the value ofrmax and the number of
grid points. In fact, the results do not change when we ext
the computational domain tormax5101 when keeping the
grid spacing, and the results differ from ones on the fi
08402
e-

e

,
e

d

r

(10003180) grid when keepingrmax551 at most 1%. We
also comment that the reliability of the numerical code
checked in the flat space case and it reproduces the e
solutions Eqs.~8! and ~9! with accuracy of 1022.

IV. SUMMARY AND DISCUSSIONS

In order to answer the question whether or not sca
fields can actually form a topological defect in the vicinity
a black hole, we have numerically solved the equation
motion for real scalar fields withf4 and sine-Gordon poten
tials, which have a discrete set of degenerate minima, in
Schwarzschild black hole background. In bothf4 and sine-
Gordon potential cases, we showed that there exist the s
axisymmetric field configurations which represent thick d
main walls intersecting the black hole. In particular, we stu
2-8
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FIG. 8. The energy density
E(x,z) of the sine-Gordon scala
field for e50.1. This is calculated
from the numerical solution
shown in Fig. 4.
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ied the specific case where the wall’s core is located at
equatorial plane of the Schwarzschild space-time. We in
duced the parametere, which characterizes the domain wa
thickness compared to the black hole horizon radius;
smaller than unitye is, the larger the wall width is. We
showed the domain wall solutions and their energy dens
for e51 ande50.1 cases. In summary, we can say tha
black hole is not an obstacle for scalar fields to form a
main wall configuration intersecting the black hole.

One might wonder about our present results; one naiv
expects that the scalar field could have no static distribu
around a black hole and inevitably fall into the horizon
usual objects do. However, a domain wall is a relativis
object with a large negative pressure~or large tension! whose
magnitude is comparable to that of energy density. Furth
more in our study we examined the domain walls which
08402
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s
a
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n

r-
e

extended infinitely in space. Then we can understand tha
domain wall is suspended from the asymptotic region a
supported against falling into the black hole by its tension,
that the static configuration is realized.

In our analysis, we assumed that the gravitational effec
the domain wall is negligible compared to that of th
Schwarzschild black hole. We shall comment on the valid
of this assumption. The energy density of a domain wal
given by

GTt
t;Glh4;

1

w2 S h

mPl
D 2

, ~21!

wheremPl is the Planck mass andG is the Newtonian con-
2-9
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stant. On the other hand, the curvature strength, or grav
tional tidal force, of Schwarzschild space-time is estima
as

GM

R3
;e

w

R3
~22!

at areal radiusR. Then a ratio of the gravity, which will be
produced by the domain wall to the gravity of the bac
ground black hole, is given by

v[
GTt

t

GM/R3
;

1

e S R

wD 3S h

mPl
D 2

. ~23!

Whenv becomes much smaller than unity, the gravity of t
domain wall is negligible compared to that of the black ho
and our test wall assumption becomes valid. From Eq.~23!
we have v;e2(h/mPl)

2 near the horizon (R;2GM).
Therefore, when we consider domain walls with the symm
try breaking scale being much lower than the Planck sc
~i.e., h!mPl), we havev!1 and consequently our resu
gives a good description of shapes of gravitating thick
main walls near the black hole. We can also see from
~23! that, in the thick wall (w.2GM) case, ifh!mPl , the
test wall assumption is still valid even atR;w.

In the asymptotic region (R@w), one may expect that th
gravity of the domain wall is no longer negligible an
changes the asymptotic geometry drastically. Bonjour, Ch
mousis, and Gregory have recently investigated the sp
time of a thick gravitating domain wall with local plana
symmetry and reflection symmetry around the wall’s co
@17#. They showed that the domain wall space-time becom
spatially compact and has a cosmological horizon as de S
space-time does. This suggests that, when a black hole e
and the wall’s gravity is taken into account in the region
from the black hole, the whole space-time has a cosmol
cal horizon and an axisymmetric domain wall intersects b
the black hole and the cosmological horizons as an equat
plane in a Schwarzschild–de Sitter space-time. This m
vates us to study further the interaction between thick
main walls and black holes in, for exampl
Schwarzschild–de Sitter background.

The domain wall solutions obtained here are thought
represent a possible final configuration of a gravitational c
turing of a domain wall by a black hole. At present, it is f
reaching for us to investigate a fully dynamical process s
as the scattering and capture of thick domain walls by bl
holes. However, to get some insight into the problem, it
r
,

cl.
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worth investigating the existence of the static axisymme
solutions, which represent thick domain walls located aw
from a black hole.

A cosmic string is also an extended relativistic object w
large tension and is thought to play a more important role
cosmology than a domain wall does. Study of a gravitatio
ally interacting system of thick cosmic strings and bla
holes is an interesting problem as a generalization of
present analysis.
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APPENDIX: THE BOUNDARY CONDITION
AT THE EVENT HORIZON

The tangent of a freely falling observer parametrized
its proper timet is um5(dt/dt,dr/dt,0,0), and we have

215gmnumun52S 2r 2M

2r 1M D 2S dt

dt D 2

1S 11
M

2r D
4S dr

dt D 2

.

~A1!

The quantity

a[2gmnjmun5S 2r 2M

2r 1M D 2S dt

dt D ~A2!

is a constant of the motion, wherejm5(1,0,0,0) is the static
Killing field. The energy density observed by this observer

Tmnumun52~u•¹f!22~ 1
2 ¹f•¹f1V@f#!. ~A3!

Since we consider the static configuration and the spatial
of the metric is nonsingular in the isotropic coordinates,
second term of Eq.~A3! is always finite. We have

u•¹f52S 11
M

2r D
22Fa2S 2r 1M

2r 2M D 2

21G1/2]f

]r
~A4!

for the static axisymmetric configurationf(r ,q). Thus the
requirement that Eq.~A3! is finite at the horizon is reduce
to ]f/]r 50 at r 5M /2, or equivalently Eq.~17!.
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