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We present a model-independent calculation of hadron matrix elements for all dimension-6 operators asso-
ciated with baryon number violating processes using lattice QCD. The calculation is performed with the
Wilson quark action in the quenched approximationBat6/g?=6.0 on a 28x48x 80 lattice. Our results
cover all the matrix elements required to estimate the partial lifetimegpafton,neutrop— (K, 7)

+ (Ze*,;f) decay modes. We point out the necessity of disentangling two form factors that contribute to the
matrix element; previous calculations did not make the separation, which led to an underestimate of the
physical matrix elements. With a correct separation, we find that the matrix elements have values 3-5 times
larger than the smallest estimates employed in phenomenological analyses of the nucleon decays, which could
give strong constraints on several GUT models. We also find that the values of the matrix elements are
comparable with the tree-level predictions of the chiral Lagrangian.

PACS numbe(s): 12.38.Gc, 11.15.Ha, 13.36a

[. INTRODUCTION theory. This was followed by a direct measurement of
(7°|0®|p) with the use of the three-point functiorg],

Nucleon decay is one of the most exciting predictions ofwhich showed an unexpectedly large discrepancy between
grand unified theorie§GUTS) regardless of the existence of these two methods: the direct method yielded a value of the
supersymmetrySUSY). Although none of the decay modes matrix element 2 or 3 times smaller than the value obtained
have been detected up to now, experimental efforts over thgy the indirect method. Recently we have examined this old
yeaI’S haVe pushed the IOWer ||m|t Of the partial Iifetimes Ofprob'em and CO”firme@S] the peculiar feature When onhe
the nucleon. Moreover, an improvement by an order of magto|jows the methods employed in the earlier wi#.
nitude is expected from the Super-Kamiokande experiment, |, this paper we report results of our effort to advance the
which can give a strong constraint 8USY) GUTs. On the | aice QCD calculation of the nucleon decay matrix ele-
other hand, theoretical predictions of the nucleon partial Ilfe—ments in several directions. We point out that there are two
times suffer from various uncertainties. One of the mainform factors that contribute to the matrix element
sources of uncertainties is found in the evaluation of the,

hadron matrix elements for the nucleon decéy§ O 2|N) (m°|0®|p) for general lepton momentum. While only one
where PS and N denote the pseudoscalar meson an’d th of the form factors is relevant for the physical amplitudes as

nucleon, andO® is the baryon number violating operator the other form factor contribution is annulled by the negligi-

that appears in the low-energy effective Lagrangian 01bly small Ie_pton mass, the two contrib_utions have to _be dis-
(SUSY) GUTs. The matrix elements have been estimated byntangled in the lattice QCD calculation. This explains the
employing various QCD models. Their results, however'dlscrepancy between _the direct and |nFj|rect esur_nanons of
scatter over the range whose minimum and maximum valuel® proton decay matrix element found in the previous stud-
differ by a factor of 10[1]. Therefore, a precise determina- 1€S[4,5] where the separation was not made.
tion of the nucleon decay matrix elements from the first prin- Another important feature of our calculation is model in-
ciples using lattice QCD is of extreme importance. dependence. All dimension-6 operators associated with
In lattice QCD the pioneering studies for the nucleon de-Paryon number violating processes are classified into four
cay matrix element§2,3] attempted to estimate the matrix types under the requirement of SUEFHU(2)X U(1) invari-
element(7% ©2|p), which is relevant to the dominant de- ance at low-energy scal¢§,7]. If one specifies the decay
cay modep— 7%+ e* in the minimal SW5) GUT, from the  Processes of interest—namely, the processes arf@otpn,
matrix elemen{0|©2|p) with the aid of chiral perturbation neutron— (,K, )+ (v,e*,u")—we can list a complete
set of independent matrix elements in QCD, and we calculate
all the matrix elements.
*On leave from Institute of Particle and Nuclear Studies, High Other advances, which are more technical but essential
Energy Accelerator Research OrganizatigkEK), Tsukuba, for precise calculation, are the following two points: the
Ibaraki 305-0801, Japan. flavor SU3) breaking effect in the process with thkemeson
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in the final state is correctly taken into account by setting the (L) /qC 1 V(1€ _c -
strange quark mass nongegenerate with the gp andgdown Od" = (digUr) (U Bau ~ dia VL) €igc ©
quark mass, andii) two spatial momenta are injected to O P=(d ujL) (UFRE4R) €ijik » (6)
investigate they? dependence of the matrix elements, where n o o
q is the four-momentum transfer between the nucleon and (’)ff’)z(deujL)(uﬁLedL—dﬁLvdL)eijk, 7)
the pseudoscalar meson. _ _

This paper is organized as follows. In Sec. Il we formu- O V= (dxUjr) (UfEAR) €ijk - (8

late our calculational method of the nucleon decay matri)‘Ne can also list the operators relevant to strange final states
elements. The complete set of the independent matrix eli-8]_ P 9

ments is also presented. In Sec. Ill we briefly review th

chiral Lagrangian for the baryon number violating interac- @E,l)=(?fRujR)(EZLedL—EﬁLvdL)eijk, 9)
tions and enumerate its tree-level predictions. Section IV ~(2)_ ¢ —
contains the simulation parameters and technical details. Re- Og = (SiLUjL) (UgrEdR) €ijk » (10
sults for the matrix elemerd| O 2|p) are given in Sec. V. In ~ — — —

. 3 =(sC u. ¢ —d¢ .
Sec. VI we present the results for the nucleon decay matrix Og”= (SiLUjL) (U gL — i V4L ) €ijk » (12)

elements obtained by the direct method and compare them O M S 3
with the tree-level predictions of the chiral Lagrangian. We O = (SiRUjR) (Ukr®aR) €ijk (12
also discuss the soft pion limit of the matrix elements. Our OB = (d%u.)(sE vy e 13
conclusions are summarized in Sec. VIL. &= (diUir) (Svad) €ije 13
O = (dS uj ) (S vay) €ijk (14

Il. FORMULATION OF THE METHOD

whered denote the generatioe;=e, e,=u, v1=v,, and
A. Independent matrix elements for nucleon decays Vy=v,.
One of the most important features in the study of the We are interested in the decay processes from the nucleon
baryon number violating processes is that the low-energy® One pseudoscalar mesoffproton,neutrop— (K, 7)
effective theory is described in terms of SUB$U(2) +(v,e",u™). For these decay modes we can list the com-
X U(1) gauge symmetry based on strong and electroweaklete set of independent matrix elements in QCD employing
interactions, which enables us to make a model-independetite operators of Eq$5)—(14):

analysis. Our interest is focused on the dimension-6 opera- e (UTCPw . d)P, uk 1
tors which are the lowest-dimensional operators in the low- {m |E"k(u_ b _) Lip), 13
energy effective Hamiltonian: operators associated with (m*|€p(u'TC PrLd)PLd¥p), (16)
baryon number violating processes must contain at least 0 - i K
three quark fields to form a §B) color singlet, and then an (K%l €ij (U™ CPg S PLUYp), (17)
additional lepton field is required to construct a Lorentz sca- (K| € (uTC PR 8" PLAY p), (18)
lar. Higher-dimensional operators are suppressed by inverse . - _ ’
powers of the heavy particle mass that is characterized by the (K™ €ij(u"" CPg L d) P S p), (19
theory beyond the standard model. o (iT i k
All dimension-6 operators are classified into the four (Kl €ije(u CPr 8P dn), (20)
types under the requirement of SUEBHU(2) X U(1) invari- (7]€j(uTCPg d)P UK p), (21)
ance[6,7]:
. _ _ where we assume §P) isospin symmetrym,=my and use
O {ea= (DErY bR (QCkcLL paL) €ijk s (1)  the relations
— — (PYORIN)=(PYOg(IN), (22
ngb)cd:(QZiaLQ,ijL)(UﬁcRLdR)Eijkeaﬁ! (3]
(PYORAN)=(PSOL(IN), (23

®) —(0°. . o° .
Oaped™ (Quiat Quipt)(Qpkerlsav) €ijk€asesy: B g0 1o the parity invariance. All we have to calculate in

— — lattice QCD are these 14 matrix elements. Other matrix ele-
@ — (DS .U c - .
Oabed= (DiarUjbr) (Uicrk-dar) €iji @ ments are obtained through the exchange of the up and down

— ] ) guarks, under which the nucleon and PS meson states trans-
where §°=¢'C with C= 1,7y, the charge conjugation ma- form as

trix; i, j, andk are SU3) color indices;a, B, vy, and§ are
SU(2) indices;a, b, ¢, andd are generation indices;, and Ip)——[n),[n)——[p), (24)
Q. are generic lepton and quark &)Y doublets with the

+ - 0_._ /.0 - +
left-handed projectio®, = (1— ys)/2; Lg, Ug, andDg are (m = ([ (7] = = (| (7| (7], (29)
generic charged _Iep_ton aEd quark (Sle_lngIets with the (K| = (KO (KO — (K], (26)
right-handed projectiorPr=(1+ ys)/2. Fierz transforma-

tions are used to eliminate all vector and tensor Dirac struc- (n|—{(n, (27)

tures in Eqs(1)—(4). _
The operators relevant to nonstrange final state§&re  where there is no decay mode with t§& or K~ final state.
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B. Form factors in nucleon decay matrix elements The contribution of then, term in Eq.(28) is negligible in
Under the requirement of Lorentz and parity invariance the physical decay amplitude, because its contribution is of

the matrix elements between the nuclddh) and the pseu- th(?[_lordter of t.he IeE'ton mass, _afterﬂTultlpl)h?atlon W'tht e:jn f
doscalar(PS meson in Egs(15-(21) can have two form antiiepton spinor. However, since e refalive magnitude o
factors: the two form factorsi, and W, is a priori not known, we

have to disentangle these two form factors in the lattice QCD
S A BING) Y — 2 2\: £ 714(S) calculation. Hereafter we refer W/, andW, as relevant and
(PS(P)|OLIN®(K))=PL[Wo(q7) = Wo(a)id]u™,  (28) irrelevant form factor, respectively.
WhereOE represents the three-quark operator projected to In the lattice calculationk=0 is chosen for the nucleon
the left-handed chiral state(® denotes the Dirac spinor for spatial momentum anpi=k—q+ 0 for the PS meson. In this
nucleon with either the ups& 1) or down = 2) spin state, case the Dirac structure of the right-hand side in ) is
andq? is the momentum squared of the outgoing antileptongiven by

Wo—iqsWq  —W,q- o
Wg-o  WotigsW,

(Wo+(mN VMgt p AW, qus'(;
P Wo— (my— Vmi g+ pA) W

(WO—quq)u(5)=( u®

u®®, (29)

whereW,—W,id is expressed by a22 block notation o f) k=0 because of vanishing lower componen(is) An-

are the Pauli matnces and®T=(1,0,0,0) or (0,1,0,0). Itis other possible choice of momenta for disentangling the rel-
important to observe that the upper components W ( evant and irrelevant form factors is given Ik)#o and p
—quq)u(s) are linear combinations of the relevant and ir- =0. In this case, however, we cannot achievq2=m|2
relevant form factors, while the lower components contain

only the irrelevant one. Therefore, we can extract the rel- C. Calculational methods

evant form factorW, from the upper components by sub-  The nucleon decay matrix elements of E2@) are calcu-
tracting the contribution of the irrelevant form factdVy,  |ated with two methods, which we refer to as the direct and
with the use of the lower components. indirect methods. The former is to extract the matrix ele-
The need for the separation of the contribution of thements from the three-point function of the nucleon, the PS
irrelevant form factor was not recognized in previous studiesneson and the baryon number violating operator. The latter
with the direct methodl4,5]. The values found in these stud- is to estimate them with the aid of the chiral Lagrangian,
ies correspond t&W,—iq,W, instead ofW,. We examine where we have two unknown parameters to be determined by
how much this affects the estimate of the matrix elements inhe lattice QCD calculation.
Sec. VI. In the direct method we calculate the following ratio of
Let us add several technical commeritsThe separation the hadron three-point function divided by the two-point
procedure described above cannot be applied to the case foinctions:

> &P 0 Ia(X 1) OB (X3 5(0))
R(t,t)=—————— - ——ZN
2 € IpX 1) IhX,)) 2 (Ins(Xt) Iy o(0))

Xy

x

1 . A L.
_>L L.L <PS(p)|OE7|N(S)(k:O)>, t’>t>0. (30
xtylkz

Here@ , denotes the renormalized operator in the naive dimensional regulariz&@R) with the modified minimal

subtractlon MS) scheme, ang ands are spinor indices; we can specify the spin state of the initial nucleon at rest by choosing
s=1or 2.L,L,L, is the spatial volume of lattice in lattice units. The amplitudgg andZy are given by
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PS(p)|J5«0,0)|0)=Zps 31 —- . — -
(PS(PIJed0.010)=Zps BD S @0 ysu(G,0u(y.0 v6d(7.0)
< NG ") @2 ! LW(X), t>0
(0]Ins(0,0)[NEI(0)y=Zul), 32 — R N ' ,
) ) S (d(0,t) y5u(G,H)u(y.0) yd(5.0))
which can be obtained from the two-point functions Y (44)

_ D - with configurations fixed to the Coulomb gauge. Although
2 PO Jpg(x" t )J“;,S(x,t)>, (33 there is no reason to assume that the wave functions for the
o three quarks in the proton are well described by the quark
wave function in the pion, the smeared sources of 4.
> <JN,s(>Zat)JN,s(6ao)>- (34)  and(43) work effectively (see Sec. Y.
X In the renormalization of the baryon number violating op-
erators on the lattice, the explicit chiral symmetry breaking
We move the baryon number violating operarfiﬁy in in the Wilson quark action causes mixing between operators
terms oft between the nucleon source placed-ab and the ~ With different chiralities. In Eqs(15)—(21) we find two types

PS meson sink fixed at sonté well separated front=0. of operators in terms of chiralities:
We list all the local interpolating fields for the PS meson B iT J- K
and the nucleon required to calculate the independent matrix OrL= €ijk (1 CPrip2)PLY3, (45
elements of Eqs(15)—(21): . .
! OLL= e YTCPLILPLYK, (@6
> — 1 —- v Y v where i, , 5 represent the quark fields. Their mixing struc-
o= \/E[u(x,t)ysu(x,t) dix.ysd(x.t)], tures under perturbative renormalization up to one-loop level
(35  are given by[9]
3+ (X0 =d(x,1) ysu(X,t), (36) 0L 1) =Z(arg, na) O 2 a) + Zm,xO'a“(a)
Jo(X,t)=5(X,t) ysd(X, 1), (37) as _,
- ’ - o Zh O (@), (47)
I+ (X, =S(X,1) ysu(X,1), (39)

O™ w) Z(as,ﬂa)olaﬁ(a)Jr zm.XO'a“<a>

Jﬂ(f,t)z%[u(f,t)y5u(>2,t)+d(>z,t)y5d(>z,t)
+ —Zr’n.XO'a“ (a), (48)
—25(X,1) y58(X,1)], (39)
where the overall factoZ(«g,a) has the form
Jp s =€ uT(x,HCysd (X DIUEX L), (40) N
) o . ) Z(as,pa) =1+ Z~[4In(pa) +Ag], (49
Ins(X) = € [uT(X,1) Cysd! (X,1) 1dE(X,1). (41)

with u the renormalization scale, and the additional operator
We also prepare smeared operators for the nucleon source@)y L Iis defined by
overlap with the lowest-energy state dominantly:

O, 1= €ik(¥1 CyuYsyh) PLY,U5. (50

Jps= 2 TV (Y)W (2)€
Y.z

“ Employing theMS subtraction scheme with the naive dimen-
sional regularization for the continuum theory, we have re-

X[uT(x,t)Cysdi(y,t)Juk(z,t), (42)  evaluated the finite constants and found
Ag=-34.11 for NDR, (51)
Io(D= 2 WOV (Y)W (2) e
T ! Zmix=3.21, (52)
X[uT(x,t)Cysdi(y,0)]ds(z ), (43 z! .=—0.803, (53)

where the measured quark wave function in the pion is emwhere the errors are-1 in the last digit. The value ohg
ployed for the smearing facto¥, which is obtained by depends on the renormalization scheme in the continuum,
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while Z.,ix andZ/,;, are independent. We present the integraltrix elements to the physical point. In this section we present
for Ay in the dimensional reductioDRED) scheme and the tree-level results for all the independent matrix elements
those forZ,,i, andZ/,,, in the Appendix, where we give a in Egs.(15—(21) with the explicit expressions af depen-
detailed description for the one-loop perturbative calculatiorflences.

of the renormalization factors. With the use of the Kronfeld- We first define the chiral Lagrangian for baryon-meson
Lepage-MackenziéKLM ) normalization of quark fieldgl0] ~ strong interactions following the notation of REB]. The PS
and the tadpole improvemeft1], the overall renormaliza- Meson and baryon fields are given by

tion factor of Eq.(49) is rewritten as

K\® %s ! w0+ ! * K*
=|1- = = =7 ™
Z(ag,pa)=|1 4Kc) Z[l-l— yp 41In(pa)+Ag V2 J6
3 - _ i 0 i KO
+ E’ZTX 5457) . (54) b= ™ \/577 + \/677 , (59
HereK_. is the critical hopping parameter at which the pion K~ KO — i,]
mass vanishes. We use V6
! =1-5.45% /4 55
SKC - . Qg ( ) 1 1
=304+ —A° T p
in Ref.[12] for the perturbative estimate &f;. V2 V6
Let us turn to the indirect method. The baryon number 1 1
violating operators constructed in the chiral Lagrangian cong— 3" ——=3%+—=A° n
tains two unknown coefficients and 8 defined by V2 G
: . — 2
(0] €ij (UTCPRd) P UM ) =aP u®, (56) = g0 ——A°
V6
<O|€ijk(UiTC PLd)P UM p®) =P u®, 57 (60

where operators are renormalized in the NDR scheme with" terms of ¢ we define the X 3 special unitary matrices
the use of the renormalization factors of Eq52)—(54).

These matrix elements are obtained from the two-point func- 2id
tions E=exp< T) , (61)
2 (eij(uTCPg d)PLUN(X,1)J; (0)) 6
RB(1)=— VZn &= eXF( T) : (62)

Z <‘]p,5()-()lt)jllj,s(0)>

i _ K n(S) where f is the pion decay constant. Under SU(3)
—(0l€ij(U'CPr d)P U¥[p®¥), 0. (58  xSU(3); the meson and baryon fields transform as

Incorporating then and B8 values determined by the lattice

calculation in the tree-level results of the chiral Lagrangian, L3R, (63)
we can evaluate the nucleon decay matrix elements of Egs.
(19-(2D). B—UBU', (64)

Ill. TREE-LEVEL RESULTS OF THE CHIRAL h . | f dRi | f
LAGRANGIAN whereL is an element of SU(3)and R is an element o

SU(3)g; U is defined through the transformation properties

For some nucleon decay matrix elements, tree-level reef &:
sults of the chiral Lagrangian have already been given in
Refs.[8,13], which are obtained with the use of the on-shell
condition of the outgoing leptons= q2=m|2 and idv,
=mv,. In our lattice calculations, however, the lepton mo-
mentum is generally off the mass shell. Hence we need tdhe lowest order of the SU(3X SU(3)g invariant chiral
understand thg dependence for an extrapolation of the ma-Lagrangian is given by

Eé—LEUT=UER. (65)
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f2 : _ ThesE transformgtion properties are realized BB¢
Lo=gTr(9,2)(,21)+TrB(y,9,+Mg)B €(33), £'B&Te(3.3) Bt e (8,1) and¢'Bée (1,8), with
which we can express the operators of E&$—(14) as

1 = T t 1 = T
+ 5T By [£0,8"+£19,£1B+ 5TrBy,B(d,8)¢

OWP=a(eS, Tr FeB £~ 15, Tr F éB &), (74)

el 2 B T O P= aefTr FE'BRé! 75
+(9,£)€]= 5(D=F)TrBy,ysB[(d,8)¢ d =aegrlrT FEBrE, (75)
) 1 _ b O =p(e§, Tr FeB £ — 5, Tr 7 ¢B &),
(3,6 E1+ 5(D+F)TrBy, v £d,¢'~ £19,£]B 76)
(60 O )= BeSaTr Fe'Beg, )
on Euclidean space-time. Quark mass contributions can be
included by adding the symmetry-breaking term (1)_0[(edL-|—r FeB E— VdLTr]_" EBLE),
3 t =Y T (78)
L1==v Tr(ZMg+Mg2)—a;TrB({'M €'+ EMy€)B
— = DD = yet Tr Fe'Bogt
—a,TrBB(£MM &'+ M) — by TrBys O’ = agrTr F¢'BrE', (79)
X ("M g&"T— EM(€)B—Db,TrBysB OP®) = (e, TrFeB -8, Tr F ¢B. £,
80
X (M gE" ~ EM ), (67) (80
where O = BeSsTr F£'BRE, (81)
M 00 OO = 4l TrF'¢B, £, (82
M= O Ma O (69)
0 0 my O =Brg TrF'éB &, (83)
The parametep is related to the meson mass by wherea and g, which are already defined in Eq&6) and
) ) 2 (5_7), are unknown coefficients associated with the {38d
o= fem7 .o _ fomic« (3,3) operators and thé3,1) and (1,8) operators, respec-
4(my+mg)  4(my+my) tively; F, 7, F, F', andF’ are projection matrices in fla-
vor space:
CPm 3im . P
C4(mg+mg)  A(my+mg+4mg) 0 0O 0 0
Experimental results for the semileptonic baryon decays give F= 000 . F= 0 , (84)
F=0.47 andD =0.80[14]. The symmetry-breaking param- 1 0O 0 1 0
etersa; anda, are estimated from mass splittings among the
octet baryonsp, andb,, on the other hand, are not well
determined since they do not contribute to the baryon 0 0 0 0
masses. The parametersa;, anda, have no contribution F—| — 1 0 o -1 0
to the tree-level results for the nucleon decay matrix ele- N ' '
0 O 0 O
ments.
Let us consider the construction of the operators of Egs.
(5)—(14), which are written in the quark fields, with the me- 0 0 O
son and baryon fields. The operators transform under
SU(3).XSU(3) as F=(0 00 (85)
— ~ 1y = 0 0 1
(3,3):0(1, 00,0, (70)
3.3:00 0@ 71 We can now a'pply'the chiral Lagrangidly+ £, and the
(3:3:067,0d 7D baryon number violating operators of Eqg4)—(83) to cal-
. (3) H(3) H(6) culating the nucleon decay matrix elements. Expanding the
(8,2):0¢"7,04".04", (72) Lagrangian and the operators in terms of the meson and
@) H4) baryon fields, we obtain the following tree-level results for
(1,8:047,04". (73 the independent matrix elements of E¢f5)—(21):
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(2l 0tk p) = aP 1 D+F —g?+m 4b, mymy PLid D+F  2my +4b1 my
7°|(udg)u|p)=aPUp| —— — —- — — —aPliqu,| — ——+ — ——|,
RIULIP L p-\/if N, —qz—mﬁ. J2f —qz—mﬁ L p_ 2t _qz_mrzu 21 _qz_mrle_
(86)
1 D+F —g?+m 4b, mymy D+F  2my 4b, m,
°l(ud)u |p)=BPU)| ——— ——— — ———— | - BPLiU)| — ———+ — ———|,
< |( L) L|p> BPL p_\/Ef \/if —qz—mﬁ \/Ef _qz_mrz\‘_ BP.id P_ \/Ef _qz_mﬁ \/Ef _qZ_mﬁ_
87)
(1 D+F —q*+m?  2b; (my+mg)my| 'D+F  2my 2b; my+my |
+ = —_—— —_—— _— i —_—— —_—
<’7T |(UdR)d|_|p> a’PLUp_f f _q2_m§ f _qZ_mﬁ | aPquup f —qz—mlz\l f —qz—mﬁ_,
(88)
1 D+F —q?+mZ  2b, (my+mgmy] D+F  2my  2b; my+mq |
+ — o = — i - 0 -
<7T |(ud|_)d|_|p>—,8P|_up_f f _q2_m,2\‘ f —qz—mﬁ | BPquup- f _q2_mﬁ+ f _qz—mﬁ_!
(89
1 D-F —g?+mymy 2b, (Mg+mgmy
<KO|(USR)UL|p>:aPLup _?+ f _q2_m§ F _q2_5m§
«PLidu D—F my+tmy 2b, mg+mg (90)
BRIGE L R S S
q-—mg qQ —my
1 D-F —g’+mymy 2b, (mg+mgmy
KO(us,)u |py=BP uy| =+ - 5
(K% (us ) u|p)=BPLu, f f P o —g—m?
i D—F my+my 2b, myg+mg
—BPLidu, _T—qz——mg_T—qz——mg . (91)
. D-F —g?+mymy D+3F —g?+mym, b, (my+mgms b,—2b; (m,+mg)m,
(K™|(usp)d[p)=aP uy| — of P2 T T 6t 92— m? T f 42— m? 3f 92— m?2
—g°—ms —q°—my —gq - —mg Y A
D—F my+m D+3F my+m b, my+m b,—2b; my+m
—aPLiqU n N 3, N A b2 u s M2 1 u s ’ (92)
o2t —gremd s OF —gtemi T —g?-mi 3 —g?-m}
D-F —g?+mymy D+3F —g?+mym, b, (my+mgms b,—2b; (m,+mym
<K+|(US|_)d|_|p>:BPLup - q _ N22_ - q _ N2A_TZ( u _ 5)22+ 23]c 1 (M _ s)2A
—qTmmy —qTmmy —qT—my —qTmmy
D—F my+m D+3F my+m b, my+m b,—2b; my+m
~ BPLiduy| + — (:2 mzz s (';2 mAZ T2 qu2 msz_ 23f 1 qu2 msz, (93)
—g°—mg —g°—mj —q —myg Y A
1 D+3F —g?+mym, 2(b,—2by) (my+mgmy
+ — - —
<K |(UdR)SL|p>_aPLup f 3f _q2_m12\ + 3f _q2_m12\
. D+3F my+m, 2(b,—2b;) my+mg
—aPiduy| + - , (94)
P 3f _q2_mi 3f _q2_mi
1 D+3F —g?+mym, 2(b,—2b;) (my+mgm,
+ _ —_
<K |(UdL)SL|p> IBPLupf 3f _q2_m12\ 3f _q2_m12\
) D+3F mN+mA 2(b2_2b1) mu+ms
— BPidu| + - ! ©9
P 3f _q2_mi 3f _qZ_m/Z\
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B E+ D—F —g®+mymg _D+3F — 2+ mym, b, (mg+my)my . b,—2b; (myg+mgm,
f 2f —qz—m§ 6f —qz—mjz\ f —qz—m§ 3f —qz—mi
) D-F my+tmgy D+3F my+m, b, mg+tmg b,—2b; my+mg
—aPliduy — — 2_ 2 6f 2_ 2 f _.2_ -2  3f 2_ 2| (96)
—qTmmy —qTmmy —qTmmy —qT—my
1+ D-F —g?>+mymy D+3F —g?>+mym, b, (mg+mgmy . b,—2b; (mg+mgm,
b2t —g-mi 6 —g*-mi f -g’-ml 8t —g?-m}
D—F my+m D+3F my+m b, mg+m b,—2b; mg+m
—,BPLiqu _ 5 N2 22 o N2 AZ_TZ d2 52 _ 23f 1 d2 52 ’ (97)
—gTmmy —qTmmy —gTmmy —qTmmy
1 D-gF —q2+mﬁ_4(blmu—2b2ms) My
Vet JBf —g?-mji Jef —q>-m§
_ D-3F 2my  4(bym,—2b,my) 1 |
—aPliqu,| — + , 98
Lidup J6f  —q?-m3 J6f —g?—m3] 8
3  D-%F —q2+m§_4(b1mu—2b2ms) My
Jef  J6f —g?—mj Vef —g?—my
_ D-3F 2my  4(bym,—2b,my) 1 |
—BPLiqu,| — + , 99
:8 Lq p|: \/gf _qz_ma \/Ef —qz—mﬁ_ ( )

where we uséP S (1r,) ¥ |N) as a shortened form diP S e;j (#,'CPrL#b) PL#5IN); g dependences of the matrix
elements are retained without applying the on-shell condition of the outgoing leptayfs: m|2, idv,=mv,. These expres-
sions are considerably simplified if we employ the approximationsnet=m,=mg, m, y<mg, Mg/Mg<my/mg, by,
~0(1), and—qg?<myg:

(m°|(udg)u,|p)=aP_u _L+E 1+2(_q2)+2(_q2)2 -+O(q6) (100
RITL - Ply2f \2f m3, my /| '
(1 D+F (—-d  _(—g)?)]
Ol(ud )u,|p)=BP Uy — + —— 2 +2 +0(q°), 101,
1 D+F ~®)  _(—g??\]
(7" |(udr)d|p)=aP up| ++ 1+2( 2 )+2( q4) +0(q®), (102
_f f my my
(1 D+F (-9 _(—g)?)]
<7T+|(UdL)dL|p>:BPLup ?+ f +2 2 +2 4 +O(q6)1 (103)
I my my
[ 1 D-F([my my+mg((—gd) (—g??
0 . - _N N B 6
<K |(USR)UL|p>_aPLup- f f {mB+ Mg mé + m‘é +O(q )1
(104
1 D—F[my mytmg[(—g) (—¢?)?
0 . - _ N 6
<K |(US|_)U|_|p>—BP|_uP f f {mB Mg ( m% é +O(q )! (105)
2D |my my+tmg((—g®) (—g%?
+ _ <L My 6
<K |(USR)dL|p>_aPLup-+ 3f [mB+ Mg ( mé + é +O(q )1 (106)
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2D [my my+mg((—g?) (—g??
K*|(us)d,|p)=BP u,| + =—{ —+ + +0(g%, 10
<l up [1 D+3F(my mytmg((—q) (—g?)? Ora
(K™|(udg)s|p)=« Lup_? af m_B+ P~ m2 + m _"‘ (),

(108
lud P [1 D+3F(my mytmg((—q) (—g?)? Ora
(K*[(udy)s |py=8 |_Up_?+ af m_B+ P~ m2 + m _"‘ (),

(109

[ 1 D-3F[my mytmg[ (- (—0)?
0 . - N 6
<K |(USR)dL|n>_aPLup- f 3f |mB+ mg mé + mg +O(q )v

(110
KO d P 1 D-3F|my mytmg((—g°)  (—g%? o(db
< |(USL) L|n>_ﬂ Lup-?_ 3f m_B mg mé mé + (q )i

(111

1 D-3F (—9%)  (—g%)?
udg)u |p)=aP u,| — —— 1+2 +2 +0(q°), 112
<77|( R) L|p> ar p- \/éf \/Ef ( m,z\, mﬁ (Q) ( )
[ 3 D-3F (—g®)  _(—g??
ud)u, |py=BP, u,| — — 1+2 +2 +0(g%), 113
<77|( L) L|p> B L p_\/gf \/gf mlz\l mﬁ (Q) ( )

where we present only the relevant terms.

|
IV. DETAILS OF NUMERICAL SIMULATION ping parameter using the ratio of E@4). For this purpose
we prepare gauge configurations fixed to the Coulomb gauge
except thet=0 time slice. On these configurations the pion

_ Our calculation is carried out with the Wilson quark ac- ¢qrelation functions in Eq44) are constructed employing
tion in quenched QCD a8=6.0 on a 28x48x 80 lattice. h

Gauge configurations are generated with the single plaquetiﬁ_i quark propagators solved with wall sources attth®
action separated by 2000 pseudo-heat-bath sweeps. We efl- e slice where the Dirichlet boundary condition is imposed

ploy 20 configurations for the measurement of the quark" the time direction. We note that the nonlocal pion sources
wave function in the pion, which is used for the nucleonin thet=0 time slice cancel out on the average over gauge

smeared source, after the thermalization of 22000 sweepspnfigurations. Figure 1 shows the results‘b(|>2|) mea-
and then analyzed the next 100 configurations for the calcusured att=18 for the heaviest =0.15464) and lightest
lation of the nucleon decay matrix elements. The four hop(k =0.15620) hopping parameters. We use the central val-

ping parametersK=0.15620, 0.15568, 0.15516, and >
0.15464 are adopted such that the physical point forkthe e‘;ﬁz (if;, (Ix]) for the smeared nucleon sources of Egk2)

meson can be interpolated. The critical hopping paramet i )
In the second step we calculate various two-point func-

A. Data sets

K.=0.15714(1) is determined by extrapolating the results of : )
m?. at the four hopping parameters linearly in K/20 m2  tions required to determine hadron massg@ps, VZy, «,

m

=0. Thep meson mass at the chiral limit is used to deter-and3. We extract the PS meson masses and the amplitudes
mine the inverse lattice spacirg 1=2.30(4) GeV with Zps from the correlation functions of Eq33) where we
m,=770 MeV as input. The strange quark masga employ the set of quark propagators solved with the sources
=0.0464(16)K=0.15488(7], which is estimated from of &P% at thet=29 time slice without gauge fixing. The
the experimental ration, /m,=0.644, is in the middle of nycleon masses are determined from the smeared-local cor-
K=0.15516 and =0.15464. relation function =3(Jy«(X,1)J4<(0)), fixing gauge con-
figurations on the=0 time slice to the Coulomb gauge. The
amplitudes,/Z,, are evaluated by fitting the local-local cor-
Our calculations are carried out in three steps. We firstelation function of Eq(34) to an exponential form with the
measure the quark wave function in the pion for each hopnucleon mass fixed. It is straightforward to calculate she

B. Calculational procedure

014506-9
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1.0 - -
I (a) K=0.15464 ]
05 [ ‘ §
oo T - . . .
L 1 FIG. 2. Quark flow diagram for the nucleon decay three point
e L L function with the mass assignment. Solid circles denote the local
L L operators and the shaded rectangular is for the smeared operator.
1.0 —
K (b) K=0.15620 ] CotCr (=GP +Co (—gD)2+cg-my+Cy-my. (114
05 - ] We extrapolatan; andm, to the chiral limit for the matrix
L ] elements of Egs(15), (16), and (21), while m, is interpo-
L ", - lated to the physical strange quark mass withtaken to the
00 I —— N chiral limit for the matrix elements of Eq$17)—(20).
T | | | - To calculate the perturbative renormalization factors, we
o 3 16 24 = determine the strong coupling constant at the scadeaiht

%] mrla in the MS scheme. We first define the coupling constant

o ) . ap [16] from the expectation value of the plaquetie
FIG. 1. Quark wave function in the pion normalized by the =(TrUp)/3:

value at the origin fofa) K=0.15464 andb) K=0.15620.|x| is

distance between two quarks. A
—In P:?ap(3.4oa)[1_1.1%p]. (115

and B parameters with the use of the ratio of EG8). o
Finally we calculate the ratio of Eq(30), where the The conversion fromap to the MS coupling constant is

baryon number violating operator is moved between thénade by

nucleon source and the PS meson sink. Gauge configurations

on thet=0 time slice are fixed to the Coulomb gauge to

T Tl T [ T T T T [ T T T T [ T T 1T

employ the smeared source for the nucleon. For the calcula- - (a) Ipla=0, K=0.15464

tion of the three-point function in the ratio, we use the source 035 | ’ i
method to insert the pion fields &t 29 into the quark propa- ) o

gators solved with thé=0 smeared sourdd.5]. We should L %@o@ 2000000000000000*

note that calculation of the— % matrix elements of eq21)

requires the disconnected diagrams in terms of the quark  0-30
lines, which cannot be calculated by the source method. Al-

though these diagrams could have contributions to the matrix
elements in the nondegenerate case of the up, down, and 025 —————to— ol L
strange quark masses, we neglect them in this paper. Four A L L B
spatial momentga=(0,0,0), (7/14,0,0), (Os/14,0), and ° > _

(0,0,7/24) are imposed on the PS meson in the final state. (®) Ipla=n/14, K=0.15620

For thep#0 cases we distinguish the strange quark mass 035, % a

from the up and down quark mass by providing different - ° +
hopping parameters fan, andm, in Fig. 2. As explained in e, WD +
Sec. II B, we cannot disentangle the relevant form factor 0.30 %OW ﬂ %
from the irrelevant one in the case of the PS meson at rest, L «HH i
where we take only the degenerate quark nmags m,.

From the tree-level expressions of the chiral Lagrangian 0.25
for the nucleon decay matrix elements in E@6)—(99), we
can assume that the form factors obtained from the ratio of
Eg. (30) are functions ofy?, m;, andm,, where them; and FIG. 3. (a) Effective mass for the pion withpla=0 at K
m, dependences could appear through the baryon massesg 15464 andb) effective energy for the pion wit[p|a= /14 at
the pion decay constant, and the 8, F, D, by , parameters. K =0.15620. The pion correlation functions consist of the local sink
To interpolate the form factors to tlgg=0 point, where the and the wall source without gauge fixing. Solid lines denote the
charged lepton masses are negligidee Sec. V)| we em- fitting results with an error band of one standard deviation obtained
ploy the following fitting function: by global fits of the pion propagators.

0 10 20 30 40
t
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TABLE I. Hadron masses g8=6.0 in quenched QCD. L L L B
09 B
K m,a m,a mya - (a) K=0.15464 .
0.15464 0.3208) 0.435@22) 0.667439) » i
0.15516 0.284Q) 0.413526) 0.625343) 0.7 —%@% b % S
0.15568 0.243®) 0.392533) 0.581452) - G N C#M;‘# Hﬁ% E
0.15620 0.195@1) 0.372345) 0.535969) r @~> .
0.15713612) 0.334656) 0.460789) r b
05 B

1 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 1 1

2 T T T T | T T T T | T T T I T T
ws(3.408) = ap(€%3.408)| 1+ — +0.95a2}. 08 I~ 7
aps( )= ap( ) WQP P b (b) K=0.15620 |
(116 - .
: 0.6 o _
The values ofvys(1/a) and ays(7/a) are obtained by two- L ooy, a1 |
loop renormalization group running starting from L oo i
ays(3.404). I |
We estimate errors by the single elimination jackknife 04 _

procedure for all measured quantities. T B B L 1
0 10 20 30 40

t

V. RESULTS FOR « AND g PARAMETERS FIG. 4. Effective mass for the nucleon with the smeared source

In this section we present the results for hadron masse#t (8) K=0.15464 andb) K=0.15620. Solid lines denote the fit-
Zps VZn, @, and B, which are obtained from the two- ting results with an error band of one standard deviation obtained
point functions. In Fig. 3 we plot effective masses of the PSPy global fits of the nucleon smeared-local propagators.

meson for the case ofpla=0 at K=0.15464 and|p|a

=m/14 atK=0.15620; the statistical errors are best con- Zps (e Mps(t=29)4 g~ Mpg(T—t+29)) (117)
trolled in the former and worst in the latter. We observe 2Mpg

plateaus beyond~13 for both cases. The horizontal lines

denote the fitted values of the PS meson masses with an errshere the fitting range is chosen to be<li3<22 after taking
of one standard deviation obtained by a global fit of theaccount of the time reversal symmetry 29—~T—t+ 29.
two-point function of Eq.(33) with the function This fitting procedure also gives the amplitudgs. We

TABLE Il. Four-momentum transfers from the nucleon at rest to the pseudoscalar nigsois the
energy of the pseudoscalar meson with spatial momer;ftum

lpla=0 |pla=w/24 Ipla= /14
Kform;  Kform, —q?a? Epg a —g2a? Epsa —q?a?
0.15464 0.15464 0.12028) 0.346710) 0.085726) 0.391212) 0.0259(22)
0.15516 0.33041) 0.096627) 0.376713) 0.0341(24)
0.15568 0.31312) 0.108429) 0.361915) 0.0429(25)
0.15620 0.295@4)  0.121331)  0.3464921) 0.0523(28)
0.15516 0.15464 0.33010) 0.069827) 0.376913) 0.0113(23)
0.15516 0.116381) 0.313211) 0.080329) 0.362Qq14) 0.0190(25)
0.15568 0.29533) 0.091830) 0.346915) 0.0272(26)
0.15620 0.27645) 0.104532) 0.331622 0.0359(28)
0.15568 0.15464 0.31881) 0.054529) 0.362614) —0.0025(24)
0.15516 0.295@2) 0.064531) 0.347316) 0.0045(26)
0.15568 0.114(B6) 0.276814) 0.075733) 0.331719) 0.0120(28)
0.15620 0.256(1.6) 0.088335) 0.315925) 0.0202(31)
0.15620 0.15464 0.29613) 0.040G33) 0.348@18) —0.0150(27)
0.15516 0.277@.4) 0.049536) 0.332219) —0.0089(29)
0.15568 0.25745) 0.060439) 0.316323) —0.0021(32)
0.15620 0.115817) 0.235618) 0.073@42) 0.300331) 0.0052(37)
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LIRS B sy B D B B B H L H H —0.0010 ———————— —
09 - - L 4
r o (a) K=0.15464 . | (2) (NDR,1/a) i

L e : o014 | H) _
0'7:_ M%M‘*’%M—: MM -

1 -0.0018 |- N
05 - — L 4
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i (b) K=0.15620 g 0.0018 L (b) B(NDR,1/a)
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t
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t

FIG. 6. RatioR*#(t) for (8 a and (b) B parameters aK
=0.15620. Solid lines denote the fitting results with an error band
)()f one standard deviation.

FIG. 5. Effective mass for the nucleon with the local source at
(8) K=0.15464 andb) K=0.15620. Solid lines denote the fitting
results with an error band of one standard deviation obtained b
global fits of the nucleon smeared-local propagators.

over the range 18t<22, wherem, is fixed to be the value
tabulate the numerical values w5 in Tables | and those of determined from the smeared-local correlation functions. We

the PS meson energy for the casd 0 in Table II. present the numerical values afy for the four hopping

Figure 4 shows the nucleon effective masses obtainefarameters in Table I.

from the smeared-local correlation functions for the heaviest The a _andﬂ paramete.rs are extrac.ted from a constant fit
(K=0.15464) and lightest K=0.15620) quark masses, of the ratio of Eq.(58), which is shown in Fig. 6 for the case

which should be compared with Fig. 5 for the local-local ©f the lightest quark massK(=0.15620). The horizontal

correlation functions. We observe that the smeared sourddes represent the fit with the fitting range chosen to be 8
works effectively, dominantly overlapping with the lowest- <ts< 22. The numerical values are given in Table IIl. Figure
energy state. We extract the nucleon masses by fitting thé lllustrates quark mass dependences of theand S
smeared-local correlation functions to a exponential formParameters. Applying linear fits to the data, we
with the fitting range 8t<22. The fitted values are shown OPt@in @(NDR,1k)=—0.015(1) GeV and B(NDR, 1)

by the horizontal lines in Figs. 4 and 5 together with one-=0-014(1) GeV in the chiral limit with the use of
standard-deviation errors. The amplitudgg defined in Eq. =2.30(4) GeV.

(32) are obtained by a fit of the local-local correlation func- L€t us compare our results for the and 8 parameters
tions with the function with the previous estimates. We summarize the previous lat-

tice results in Table IV together with the simulation param-
eters. In Refs[3,4] the lattice cutoff scal@ ! was deter-
Zye ™t (1189 mined by the nucleon mass. The nucleon mass results

TABLE lll. Results fora and 8 parameters as a function of quark mass. Operators are renormalized at
the scalew in the NDR scheme.

aa’® Bad
K u=1/a u=mla u=1/a u=mla
0.15464 —0.00180(6) —0.00207(7) 0.00178) 0.0020%7)
0.15516 —0.00166(7) —0.00191(8) 0.0016%) 0.001898)
0.15568 —0.00155(7) —0.00177(8) 0.00152) 0.001748)
0.15620 —0.00148(9) —0.00170(11) 0.00149) 0.0016410)
0.15713612) —0.00125(11) —0.00144(13) 0.001191 0.0013712)
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L T L 7
00010 |- - —0.01 |- . ]
(2) a(NDR, 1/2) L (a) Ipla=n/14, K=0.15464 b
-0.0015 | 002 ¢ ﬁ i
: Coos [ b R 1
-0.0020 . i ]
| 1 1 1 | 1 1 1 | 1 1 1 ol -1
00 T
00020 ™ 1 () BNDR, 1/a) ] 001 | . b
I L (b) ipla=n/14, K=0.15620 ]
0.0015 ~0.02 _WL i
- : HHWTT M ]
0.0010 |- — -0.03 - ]
| L L L | L L L | L L L r 1
0.00 0.02 0.04 0.06 P N R
ma=(1/K-1/K)/2 o 10 20 30
FIG. 7. Chiral extrapolations ofa) « and (b) B parameters. t

Solid lines denote linear fits.

FIG. 8. Ratio R(t,t'=29) for the relevant form factor in

(7% (udg)u, |p) at(a) K=0.15464 andb) K=0.15620. Solid lines
employed[18,19 are, however, quite heavy compared to denote the fitting results with an error band of one standard devia-
those of more recent high statistical calculatid2®,21]: tion.
mya=1.11(10)[18] compared tomya=0.756(19)[20] in
the chiral limit at3=5.7 andmya=0.64(11)[19] compared
to mya=0.461(9) [21] in the chiral limit at 3=6.0. To
avoid this large uncertainty, we emplay * determined by _ i
the p meson mass to obtain tkeand 3 parameters in physi- We now_turn to 'ghe calculation of _the nucleon maf[rlx
cal units in Table IV. elements with the direct method. In Fig. 8 we show time

In phenomenological GUT model analyses of the nucleordlependences dk(t,t’ =29) with |p|a= /14 for the matrix
decays, the valuds| =|8|=0.003 GeV? [22] are conserva- element (7°| e (UTCPrd)P u¥|p) in the case of the
tively taken as these are the smallest estimate among variofi¢aviest quark mas(=0.15464) and the lightest oné(
QCD model calculation§l]. A trend one observes in Table =0.15620). The results of constant fits are represented by
IV is that the previous lattice calculations indicated values ofthe sets of three horizontal lines. We choose the fitting range
these parameters considerably larger than the minimurtp be 8<t<16 for all the matrix elements of Eq&l5)—(21)
model estimate above. Our results, significantly improvedsuch that the excited state contaminations in the nucleon and
over the previous ones due to the use of higher statistic§S meson states observed in Figs. 3 and 4 can be avoided

VI. RESULTS FOR NUCLEON DECAY MATRIX

ELEMENTS

larger spatial size, lighter quark masses, and smaller latticeimultaneously.
spacing, have confirmed this trend: the values we obtained Figures 9—15 show- g’a® dependences of the relevant
form factorsW,(g?) in the independent nucleon decay ma-

are about 5 times larger than|=|g|=0.003 GeV.

TABLE IV. Comparison ofa andB parameters in lattice QCD. All calculations are done with the Wilson
quark action in the quenched approximation. Lattice cutoff is determined fronm,,. Quark mass is

defined bymy=(1/2K - 1/2K)-a" ™.

Ref. Haraet al.[2,17] Bowleret al.[3,18] Gavelaet al.[4,19] This work
Lattice size 18x 48 8x 16 1G X 20X 40 28X 48x 80
No. config. 15 32 30 100
a ! [GeV] 1.81(6) 1.459) 2.2(4) 2.30(4)
Spatial sizgfm?] (1.7)° (1.1)° (0.9°x1.8 (2.4¢x4.1
Quark masgMeV| 109=m,=696 184 m, =477 82<m,=223 44sm =118
o [GeVe] || ~0.065 || =0.019(2) a=-0.015(1)
B [GeV?] | B|=0.029(6) | 8| ~0.050 £=0.014(1)
Renorm. scheme Pauli-Villars DRED NDR
Renorm. scale n=285 GeV p=1/a pn=1/a
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FIG. 9. —qg2a? dependences for the relevant form factgy in FIG. 11. —q%a? dependences for the relevant form facdtds in

(@ (7°|(udr)ui|p) and(b) (7°/(ud)u |p). Combination of form 5 (K|(usg)uy|p) and(b) (K% (us,)u|p). Solid lines denote the
factorsWy—iq,W, is also plotted in(@) for comparison. Solid lines  ¢,nction Cot+Cy- (—g2a?) + ¢, (— g2a?)2+ ¢, - maa.
denote the functiory+ ¢, - (—g%a?) +c,- (—g?a?)?. °

_ _ Wo(q?) —iq,Wq(a?). The relevant form factors at g%a®
trix _elements in Eqs(15—(21), where the operators are —q (open circleg in Figs. 9—15 are obtained by fitting the
renormalized with the NDR scheme at=1/a. The values (ata employing the function of E¢L14), where we find that
of —qg?a® are enumerated in Table Il as a function of thethe charged lepton masses?a®=4.9x 108 and m2a?
quark masses), , and the spatial momentum In Fig. 9a) =2.1x10"2 are negligible in the current numericaIMstatis-
we also plot the combinatioMV/,—iq,W, for comparison, tics. We plot the functiorcy+c;-(—g?) +c,-(—g?)? em-
which is obtained by following the method in R¢#]. The  ploying the fitting results of,, ¢;, andc, in Figs. 9, 10, and
magnitude ofW,(g?) is more than 2 times larger than that of 15, andcy+c;- (—g?) +¢,- (—g?)%+c,- mg with the fitting

-0.02 — 7 : 0.00 — 7 :
[ L (2) <n'l(udy)d, Ip> | [ L () <K'l(usp)d, Ip> ]
-0.04 — -0.01
-0.06 — -0.02
I L | L | L | L | L
——T7—
0.06 0.02 -
0.04 0.01
0.02 ) i ) | I | I | I 0.00 I ) i L | I | I | I ]
-0.04 0.00 0.04 ) 20.08 0.12 0.16 -0.04 0.00 0.04 N 20.08 0.12 0.16
—qa —qa
FIG. 10. Same as Fig. 9 fota) (#*|(udg)d |p) and (b) FIG. 12. Same as Fig. 11 fof (K*|(usg)d.|p) and (b)
(7" |(udy)d[p). (K™ |(us,)dL|p).
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0.005 -

| (a) <K'l(udy)s, Ip> | @ <nludgu, fp>

-0.02
0.000

~0.04 -0.005 - 5 -

0.05
0.03

0.03 Ty t 0.02
r E b 0.01 L i L | L | ' |
0.01 TR T S -0.04 0.0 0.04 . 0.08 0.12 0.16
-004  0.00 0.04 , 008 0.12 0.16 _q2a2

FIG. 15. Same as Fig. 9 fofa) (#|(udg)u.|p) and (b)

FIG. 13. Same as Fig. 11 fof@ (K*|(udg)s.|p) and (b) (7l(ud)u,|p).

(K™ |(udy)sL|p)-
using the tree-level results of the chiral Lagrangdisquares

results ofcy, ¢, Cp, andc, in Figs. 11-14. We observe that where we employ the expressions of EG0—(113 with

the signs ofc, andc, are consistent with the predictions of «(NDR,1/)=—0.015(1) GeV, B(NDR,1/&)=0.014(1)

chiral Lagrangian in Eq9100—(113 for all the matrix ele- Ge\?, f_=0.131 GeV,my=0.94 GeV,mg=1.15 GeV,

ments, while the signs of, show disagreement in some D=0.80, andF=0.47. We observe that the two set of re-

matrix elements. The coefficients,, however, are poorly sults are roughly comparable. This leads us to consider that

determined compared togy and c,. The fitting results for the large discrepancy between the results of the two methods

W,(g?=0) are presented in Table V. found in Refs.[4,5] is mainly due to the neglect of the

In Fig. 16 we compare the nucleon decay matrix eIementS‘Nq(qz) term in Eq.(28).

obtained by the direct method with those by the indirect one It is also intriguing to compare our results with the tree-

level predictions of the chiral Lagrangian witle|=|p]

=0.003 GeV (crosses which is the smallest estimate

0.02 - ' (a) <K0I(usR)dLIn> ] among various QCD model calculations. Our results with the
" 3 ] direct method are 3-5 times larger than the smallest esti-
i 1 1 mates except n|(udg)u,|p). Hence they are expected to

001 i i give stronger constraints on the parameters of GUT models.

Finally, let us discuss the soft pion limit of the nucleon
decay matrix elements. The tree-level result of the chiral
Lagrangian for{7°|(udg)u,|p) in Eq. (86) shows that the
combination of form factor®Vy(q?) — iq4Wq(q2) converges
to a finite value ofa/(y/2f) in the soft pion limitp,—0
(—g?=my), whereas each diV, and W, diverges. In Fig.

17 we plot Wy—iq,W, for the matrix element
(7% (udr)u,|p) as a function of—g?a?. In this case the
results for the pion at rest are also included. To extrapolate
the data to the point-g?a®?=m2a? (dashed vertical ling

we employ the fitting function

0.00

0.03

0.02

CO+C1(_q2)+CZ(_Iq4)+C3 m1+C4- m2. (119)

i
004  0.00

0.01 - | | | ] It should be noted that this fitting function is different from
' o0 . 008 0L Ol6 Eq. (114 employed for the fit oNVO(qz). We incorporate a
—q2a2 g4 dependence in Eq119 to describe the] dependence of

the combination of form factorswo(g?) —ig,Wy(g?).
Higher-order terms oD(q*) andO(q,-q?) are neglected in
Eq. (119, since we observe a smatf dependence for

FIG. 14. Same as Fig. 11 fofa (K°(usg)d |n) and (b)
(K°(us,)d,|n).
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TABLE V. Results for relevant form factors in the independent nucleon decay matrix elements of Egs.
(15—(21). Operators are renormalized at the scalé the NDR scheme.

Matrix element n=1/a p=mla
(lattice unit9 (GeV?) (lattice unitg (GeVvy?

(7 (udg)u, |p) —0.0253(31)  —0.134(16) ~0.0289(36)  —0.153(19)
(7% (ud,)u, |p) 0.0242(32) 0.128(17) 0.0278(37) 0.147(20)
(*|(udg)d, |p) —0.0357(45)  —0.189(24) ~0.0409(51)  —0.216(27)
(a*|(ud,)d, |p) 0.0343(45) 0.181(24) 0.0394(52) 0.208(28)
(K°|(usq)u, |p) 0.0192(20) 0.102(11) 0.0213(22) 0.113(12)
(K9 (us,)u,|p) 0.0089(12) 0.0471(63) 0.0092(13) 0.0487(69)
(K*|(usR)dy |p) —0.0100(13)  —0.0529(69)  —0.0118(15)  —0.0624(79)
(K*|(us,)d,|p) 0.0088(11) 0.0466(58) 0.0105(13) 0.0555(69)
(K*|(udg)s|p) —0.0248(27)  —0.131(14) ~0.0282(31)  —0.149(16)
(K*|(ud))s|p) 0.0268(28) 0.142(15) 0.0304(32) 0.161(17)
(K9 (usR)d,|n) 0.0090(12) 0.0476(63) 0.0094(13) 0.0497(69)
(K% (us,)dy|n) 0.0179(18) 0.0947(95) 0.0198(20) 0.105(11)
(7](udg)uy |p) 0.0007(11) 0.0037(58) 0.0004(12) 0.0021(63)
(7l(ud)u,|p) 0.0191(25) 0.101(13) 0.0212(28) 0.112(15)

Wo(9?) —iq4Wg(g®) in Fig. 17. The solid line in Fig. 17 (36" ™) decay processes without invoking the chiral La-

denotescy+ ;- (—g2) with the fitting results ok, andc;. grangian.

We also drawcy+ ¢ (— %) +Cp- (—iqq) +C3-my+Cq-my We have also pointed out the necessity of separating out

(dotted line$ choosing the four cases ofigqs=my—m,  the contribution of an irrelevant form factor in lattice calcu-

with m;=m,. The extrapolated valuéopen circle at the lations for a correct estimate of the matrix elements at the

point —g?a?=mZa? is consistent with the result @f/ (\2f)  physical point. With this separation, the matrix elements ob-

(triangle). We observe similar situations fo#°|(ud,)u,|p) tained from the three-point functions are roughly comparable

and(7"|(udg )d_|p). with the tree-level predictions of the chiral Lagrangian with
the o and 8 parameters determined on the same lattice. The
magnitude of the matrix elements, however, are 3-5 times
larger than those with the smallest estimate cofand B

VII. CONCLUSIONS among various QCD model calculations. Our results would
stimulate phenomenological interest as the larger values of

In this article we have reported progress in the lattice
Cthe nucleon decay matrix elements can give more stringent
study of the nucleon decay matrix elements. In order to en-
constraints on GUT models.

able a model-independent analysis of the nucleon decay, wé
have extracted the form factors of all the independent matrix

elements relevant for the(proton,neutrop—(,K,7) 0.00 [ B T T
T | <t l(ud)u, Ip> |
—<nr I(udR)uT_Ip> - x —— m |
< I(udL)uLIp> - x —— . = E .
—<n I(udR)dLIp> - x e —o—
<mlud)dlp> | x e —— -0.01 =
<K I(usR)u,_Ip> o X _e = ] |
XK’ I(usL)uLIp> - X . = —
—<K" I(usR)d p> | 1% - H L
<K' I(us ilp> = % E 3 - |
—<K" I(udR)s,_Ip> - % e — .
<K' I(udL)sLIp> o x —— m -0.02
Klusdn> | X - = .
Klus)d > - | - = gg(“ B _ - o
\ o (ours) .
<nludgu lp> ~ %2 2 -1 | ] . . . | . L L L
! X —a— .Wo(q =0) ]
<ni@wdpy, lp> - I - | 0.0 021 ) 0.2
0.0 0.1 , 02 03 —qa
GeV

FIG. 17. Wy(a?) —iq,Wy(g?) as a function of—qza2 Dashed
FIG. 16. Comparison of relevant form factors with tree-level vertical line denotes the soft pion limit—qg2a?= m a®
predictions of chiral perturbation theof@€hPT). Crosses denote the =(0.4607F. See text for solid and dotted lines. Triangle denotes
ChPT results witHa|=|8|=0.003 GeV. the results fora/(\/2f).
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The ultimate goal of lattice QCD calculations of the k-p
nucleon decay matrix elements is to determine the matrix ~
elements precisely with control over possible systematic er- . A&L .
rors. Major systematic errors conceivably affecting our . K !
present results are the scaling violations and the quenching
effects. The former can be investigated by repeating the (a)

simulation at several lattice spacings; the latter are elimi-
nated once configurations are generated with dynamical

k
quarks, where it is straightforward to apply our method. We
leave these points to future studies.
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(©) (d)

FIG. 18. One-loop diagrams for th@) quark self energy and
(b)—(d) vertex corrections for the three-quark operafpdenotes a
external quark momentum amgj, andk at the ends of quark lines
label color indices.

APPENDIX
ablatt 1
GaPR= 5.06,., . (A5)
4, sirt(k,/2) +\2

The perturbative renormalization factors for the baryon
number violating operator®g, andO, | , which are defined
in Egs. (47) and (48), have already been calculated in Ref.
[9] employing the DRED scheme for the continuum theory.
However, the authors of Ref9] present only the numerical
results forZ, Z,ix, andZ;,;,. We consider that it would be
instructive to demonstrate the calculation of the renormaliza;
tion factors in detail.

We first rewrite the operator®g, and O, as

We should note that the infrared behavior of the theory
should be independent of the ultraviolet regularization
schemes. The infrared-divergent contributions in the one-
loop diagrams, which emerge as thefnterms, are sup-
posed to cancel in the renormalization factors relating the
continuum and lattice operators.

_ ' Up to the one-loop level the inverse quark propagator and
OrL= €ijkl (47)'Pr( P IPL(3) (A1) the vertex functions are written in the following form:

O = €[ (U9 PL(¥) 1P ()", (A2) G‘l(p,)\)=i|25(1—:—;2(1)()\)>, (A6)

whereE°= 'C is a charge-conjugated field gf. The con-
tinuum and Wilson quark actions for the charge-conjugated
field ° are obtained from those faf with the replacement ArLLL(M)=Pg '-®P'-+ AR'— L),

of (A7)

igTA——ig(THT, (A3)  where the superscrifit) refers to theith loop level. AS? |
represents the sum of contributions from the three diagrams
where TA (A=1,...,8) aregenerators of color S@) In Figs. 18b)-18d). The continuum results foE™® and
group. This |mpl|es the modification of the Feynman rule ofAS?,, are given by
the quark-gluon vertex for the* field.

We illustrate the relevant one-loop diagrams in Fig. 18: 4l /2 w2 1
(a) the quark self-energy anh)—(d) the three types of ver- SO\ =- 3 (—— y+In|47| | +In =~ 3] (A8)
tex corrections. We calculate these diagrams in the Feynman € A

gauge for massless quarks with vanishing external momenta.

The infrared divergences are regularized by introducing the 2 u?
fictitious small mass\ in the gluon propagator: A LL(N)=4Pg 0P, (——'y+|n|477|) +in| =+ 3l
A
(A9)
GaoeoM= 5,8, : (A4)
" aCuri2,\2 in the NDR scheme and
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sy 4 (22 e infan| |40 2] + X Ay =amn |+ 24 ZF d'
(== 3| [ -yrinlan| [ +in =+ 5, =4l |+ 3Um ]y
(A10)

2

A (\)=4Pg ®P z +In|4 7| +in|2 )+ 1

RLLL RLEFL ™Y A2 ' | FeeP AG(4r2A2—A)
(A11) AZ(4A,+2\2) | 2 v

in the DRED scheme, where the reduced space-time dimen-

sion D is parametrized by asD=4—¢, €>0. The pole A

term (2k— y+In|4x|) should be eliminated in theélS + 2[4 (1—r2)A,]+2A,—2A5+6r2A,A,
scheme. The corresponding lattice results ®fY and 2

AR, are

4 A2 4 443 PR®PL AG 2.2
W il 2 L a2 +8rA)+— —2(4r2A2-A,)
SM\)= 3{ln N 1|+ (4m) Ut s, 2 1Ay
= d* 1
XJ 4 2 A,
—m(2m)" [ Ap(4A1+NF) —7[4—(1—r2)A1]+2r2A1A4
1+r?
>< - A4+r2Al(2—A1)
1 (1+r2 > Ya¥s®PLYa 2
* A1A4—A4—As) —“—(—A A —4r2A2+r2A3)
A2(4A1+)\2)2 2 A§(4Al+)\2) 4 0174 1 1
1 -1
b A KD)————|
2(4A,+\2) (K2+A2)2]
(A12) —O(A2—K¥)——— Al4
( )kz(k2+)\2) K (A14)
2l 2 m d% 0
AR(N)=41n 2 + 5(477)2f7 2 wherer denotes the Wilson parameter afigl, A,, A,, As,
mem andAg are given by
» Pr®PL (5(4r2A2—A4) A= siré(k,/2), (A15)
AZ(48,+2%) | 2 !
A2 2 2 Ay=, sirf(k Al6
+ 5 (4= (1-r?) A1+ 24, - 205+ 6r’A1A, 4= 24 Sl (Ka), (A16)
P ®P A
3 L L 6 2
”“1%@ 7 (AT A 25=3 sirt(k,)sit(k,j2), (17
A, 2 2 242
5 [4=(1=r9)A]+2r°A4, Ap=Ay+4r2AT, (A18)
Ag=(1+r?)A;—4. (A19)

> Ya¥s®PLYa, _ _ , _
« (_A1A4—4r2Af+r2Af> The counterterms in proportion (A“—k ) vyh|ch have
4 the same infrared singularities as the lattice integrands, are
introduced to pick out the analytical expressions of the infra-
red divergent contributions. The hypersphere radiudoes
not exceedr. With the use of Eqs(A8)—(A11) and(A12)—
—6(A*~ kz)m ; (A13)  (A14), we obtain the expression for the renormalization con-
( ) A=0 stantAg in Eq. (49):

+—
AS(4A1+\?)
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ANDR_ 5 DRED g The mixing coefficientZ ,;x andZ/,;, in Egs.(47) and (49
B B 3 are expressed by

5 410|A |~ (47 7 —(4 )sz dk -1 (A6(4 202 )

3 mix a(2m)t 6A,A2 2 v

xf e [ s rra - A T R (A2D)
~m(2m)*| 2814, 8 ™ ' ' 2 ' o

R VR YRV I ML LN
8A§A2 > 1847847 38| T AT Zix=(4) J_W(zw)4@(ZA4—4r Ag+r Al).

(A22)
+

Ag A,
(7(4r2A§—A4)+ S [4-(1= r9)A4] We evaluate numerical values 45°%, Z,..., andz/,;, with
r=1 using the Monte Carlo integration routiBases [23],
which have already been presented in Sec. Il C. Our results
. for Z,ix andZ/,;, are consistent with those in Ré¢€], while
we observe a slight deviation beyond the statistical error of

(A20)  the numerical integration fak pREP.

6A,A3

2
+2A,—2A5+6r2A A4+ 8r4A§) —O(A?— kZ)F
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