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We formulate and numerically test the Schrödinger functional scheme for domain-wall QCD. We then apply it

to a non-perturbative calculation of the renormalization factors for vector and axial-vector currents in quenched

domain-wall QCD with plaquette and renormalization group improved gauge actions at a
−1

≃ 2 GeV.

1. Introduction

Recent calculations with domain-wall QCD
(DWQCD) have shown that the good chiral prop-
erty of domain-wall fermions leads to good scal-
ing behavior of physical observables such as quark
mass and BK [1]. Aside from the quenched ap-
proximation, the use of perturbative renormal-
ization factors is the largest source of the un-
controlled systematic errors in these calculation.
Non-perturbative renormalization is required to
reduce the total error to a few percent except
for quenching, and we decide to employ the
Schrödinger functional(SF) scheme[2], which is
a gauge-invariant and finite volume method, to-
ward this goal.

In this report we formulate the SF scheme for
DWQCD and calculate the renormalization fac-
tors for vector and axial-vector currents as a first
step to obtain the renormalization factors for the
quark mass and BK .
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2. Schrödinger Functional in DWQCD

We consider DWQCD[3] on an L3 × T × Ns

lattice. The SF boundary condition for the
domain-wall fermion is given by ψ(~x, x0 = 0, s) =
P+PL(s)ρ(~x), ψ̄(~x, x0 = 0, s) = ρ̄(~x)PR(s)P−,
ψ(~x, x0 = T, s) = P−PL(s)ρ′(~x) and ψ̄(~x, x0 =
T, s) = ρ̄′(~x)PR(s)P+. Here ρ, ρ̄ are the bound-
ary quark fields, PL(s) = PLδs,1 + PRδs,Ns

and
PR(s) = PRδs,1 +PLδs,Ns

with PR/L = 1
2
(1± γ5)

and P± = 1
2
(1 ± γ0).

We follow the definitions and notations of
ref. [4] for the calculation of the renormalization
factors.

3. Tests of the formulation

Since the SF boundary condition in time for
ρ = ρ̄ = 0 is identical to the Shamir’s domain-
wall(Dirichlet) boundary condition in the fifth di-
rection[5], extra zero modes appear near x0 = 0
and T . We check whether these unwanted zero
modes induce extra contribution to the low en-
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Figure 1. amAWTI as a function of x0 with Dirich-
let(solid circles), periodic(open squares) and anti-
periodic(open diamonds) boundary conditions.

ergy observables at 0 ≪ x0 ≪ T . Here we con-
sider the quark mass, amAWTI, defined through
the axial Ward-Takahashi identity(AWTI). In
Fig. 1, we plot amAWTI for free theory as a
function of x0 with Dirichlet, periodic and anti-
periodic boundary conditions at the bare quark
mass mfa=0.01, on an 83 × 24 × 16 lattice, with
the domain-wall height M=0.9. The dependence
of amAWTI on the boundary condition, which
is visible near the boundaries, disappears away
from them. Therefore we conclude that the extra
zero modes associated with the Dirichlet bound-
ary condition gives negligible effects to the deter-
mination of the renormalization factors evaluated
at x0 ≃ T/2. Further analytic investigations on
this problem for the free case will be given else-
where[6].

In Fig. 2, amAWTI for the SF scheme is plotted
in quenched DWQCD at β = 6.0 of the plaque-
tte action. The x0 dependence is also weak away
from the boundaries. Interestingly mAWTI is non-
zero even at mfa = 0, and becomes smaller for
larger Ns. Moreover the value is consistent with
m5q, the explicit breaking of chiral symmetry cal-
culated from the conserved axial vector current of
DWQCD[7]. Therefore mAWTI for the SF scheme
may be a better alternative as the measure of ex-
plicit chiral symmetry breaking in DWQCD, since
it can be calculated directly at mfa = 0 with

0 4 8 12 16 20 24
x0

−0.01

−0.005

0

0.005

0.01

0.015

amAWTI vs. x0

8
3
x24xNs  β=6.0 , M=1.8, mfa=0.0/−0.005

Ns=8
Ns=16
Ns=8, mfa=−0.005
Ns=10, m5q

Ns=20, m5q

Figure 2. amAWTI as a function of x0 at β=6.0
on an 83×24×Ns lattice atmfa = 0(open symbols)
and −0.005 (solid circles), together with m5q[7].

much less computational cost. Note also that the
large explicit breaking in mAWTI at Ns = 8 (open
circles) is well compensated if one takes a negative
quark mass ofmf = −0.005 (filled circles). Hence
the domain-wall fermion at Ns 6= ∞ may be con-
sidered as a highly improved Wilson fermion[8].

The non-perturbative renormalization factors
for vector and axial-vector currents are defined
by ZV (1 + bV mfa) = f1/fV (x0) and Z2

A =
2f1/fAA(x0, x

+
0 , x

−

0 ), where we fix x±0 = T/2 ±

T/4 and put mfa = 0 for ZA. In Fig. 3,
ZV and ZA are plotted as a function of x0 at
β = 6.0. Similar to the case of amAWTI a plateau
is seen away from the boundaries. The relation
ZV = ZA, exactly valid in perturbation theory, is
satisfied within 1–2%. Moreover the magnitude
almost agrees with the mean-field(MF) improved
one-loop value. We also observe that ZV is insen-
sitive to boundary parameters such as the 2-loop
boundary counter-terms for gauge fields and the
parameter θ of the twisted boundary condition
for quarks.

4. Results

We have calculated ZV and ZA in quenched
DWQCD at a−1 ≃ 2 GeV with the plaque-
tte action (β = 6.0) and with the renormal-
ization group(RG) improved action (β = 2.6)
on an 83 × 16 × 16 lattice with mfa = 0 for
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Figure 3. ZV,A as a function of x0 at β = 6 on
an 83 × 16 × 16 lattice with M = 1.8 and mfa =
0. We compare the results from the boundary
counter-terms at tree-level(circles) with those at
2-loop(squares and diamonds) as well as those at
θ = 0 with that at θ = 0.5(squares).

M = 1.0 ∼ 2.2. The results are summarized in
Fig. 4, where ZV and ZA are plotted as a function
of M , together with one-loop perturbative esti-
mates with and without MF improvement. For
both gauge actions, ZV ≃ ZA holds, and they
show a minimum at M ≃ 1.7 for the plaquette ac-
tion or M ≃ 1.6 for the RG action. Perturbative
estimates without MF improvement fail, particu-
larly for the plaquette action for which the curve
can not be placed in the figure. The agreement
becomes much better with MF improvement for
both actions.

5. Future directions

We are encouraged with the present results to
proceed to an extension of the present work to
scale-dependent cases such as quark masses and
four-quark operators needed for BK .

S.A. thanks Profs. M. Lüscher, P. Weisz and
H. Wittig for useful discussion. This work is sup-
ported in part by Grants-in-Aid of the Ministry of
Education (Nos.11640294, 12014202, 12304011,
12640253, 12740133, 1364026013135204 ).
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Figure 4. ZV and ZA vs M for plaquette(upper)
and RG(lower) gauge actions.
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