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Light quark masses are computed for Kogut-Susskind fermions by evaluating non-perturbatively the renormal-
ization factor for bilinear quark operators. Calculations are carried out in the quenched approximation at β = 6.0,
6.2, and 6.4. For the average up and down quark mass we find m

MS
(2GeV) = 4.15(27)MeV in the continuum

limit, which is significantly larger than 3.51(20)MeV (q∗ = 1/a) or 3.40(21)MeV (q∗ = π/a) obtained with the
one-loop perturbative renormalization factor.

1. Introduction

Light quark masses are important unknown pa-
rameters of the standard model, and a number of
lattice QCD calculations have been carried out
to evaluate quark masses employing the Wilson,
clover or Kogut-Susskind (KS) fermion action [1].
Among the results, those with the KS action ap-
pear more accurate than others because of small
lattice discretization errors and small statistical
errors.

A worry with the KS result, however, has been
that the employed one-loop renormalization fac-
tor takes a large value of ≈ 2 in the range of
β studied, calling into question the viability of
perturbation theory. In this article we report a
study to circumvent this problem: we calculate
the renormalization factor of bilinear quark op-
erators for the KS action non-perturbatively us-
ing the method of Ref. [2] developed for the Wil-
son/clover actions. This calculation is carried out
in quenched QCD at β = 6.0, 6.2, and 6.4 on an
324 lattice. The results, combined with our pre-

∗presented by N. Ishizuka

vious calculation of bare quark masses [4], lead
to a non-perturbative determination of the light
quark mass.

2. Method

The renormalization factor of a bilinear opera-
tor O is obtained from the amputated Green func-
tion,

ΓO(p) = S(p)−1〈0|φ(p)Oφ̄(p)|0〉S(p)−1 (1)

where the quark two-point function is defined by
S(p) = 〈0|φ(p)φ̄(p)|0〉. The quark field φ(p) with
momentum p is defined from the original one-
component field χ(x) by φA(p) =

∑
y exp(−ip ·

y)χ(y + aA), where yµ = 2anµ, pµ = 2π/(aL)nµ

(nµ = [−L/4, L/4)) and Aµ = [0, 1].
The renormalization condition imposed on

ΓO(p) is given by

ΓO(p) = Zφ(p)ZO(p)Γ
(0)
O

(2)

where Γ
(0)
O

is the amputated Green function at
tree level and Zφ(p) is the wave function renor-
malization factor which can be calculated by the
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Figure 1. The scalar renormalization factor
ZS(p) and that for the pseudoscalar ZP (p).

condition ZV (p) = 1 for the conserved vector cur-
rent.

The relation between the bare operator on the
lattice and the renormalized operator in the con-
tinuum takes the form,

OMS(µ) = UMS(µ, p)ZMS(p)/ZO(p)Olat.(a) (3)

where UMS(µ, p) is the renormalization-group
running factor, and ZMS(p) is the matching fac-

tor from the RI scheme defined by (2) to the MS
scheme, calculated perturbatively in the contin-
uum. For the light quark mass we apply relation
(3) in the scalar channel in the chiral limit.

We use a source in momentum eigenstate to
evaluate quark propagators. This results in very
small statistical errors of O(0.1%) in the Green
functions.

The external momentum p should be taken in
the range ΛQCD ≪ p ≪ O(1/a) in order to keep
under control higher order effects in continuum
perturbation theory, non-perturbative hadroniza-
tion effect on the lattice, and discretization errors
on the lattice. In this work we choose 15 mo-
menta in the range 0.038553 < (ap)2 < 1.9277
for all values of β.

3. Result

In Fig. 1 we compare the scalar renormalization
factor ZS(p) with that for pseudoscalar ZP (p) for
three values of bare quark mass am at β = 6.0.
From chiral symmetry of KS fermions, we expect
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Figure 2. M(p) in the chiral limit.

naively ZS(p) = ZP (p) for all momenta p in the
chiral limit. Clearly this relation does not hold
with our result toward small momenta, where
ZP (p) rapidly increases as m → 0, while ZS(p)
does not show such a trend.

To understand this result, we note that chiral
symmetry of KS fermion leads to the following
identities :

ZS(p) · Zφ(p) = ∂M(p)/∂m
ZP (p) · Zφ(p) = M(p)/m (4)

with M(p) = Tr[S(p)−1]. In Fig. 2 M(p) in the
chiral limit obtained by a linear extrapolation in
m is plotted. It rapidly dumps for large momenta,
but takes large values in the small momentum re-
gion. Combined with (4) this implies that ZP (p)
diverges in the chiral limit for small momenta,
which is consistent with the result in Fig. 1.

The function M(p) is related to chiral conden-
sate as follows :

〈φφ̄〉 =
∑

p

Tr[S(p)] =
∑

p

M(p)

Cµ(p)2 + M(p)2
(5)

where Cµ(p) = −iTr[(γµ⊗I)S(p)−1]/ cos(pµa). A
non-vanishing value of M(p) for small momenta
would lead to a non-zero value of the condensate.
Therefore the divergence of ZP (p) near the chiral
limit is a manifestation of spontaneous symme-
try breakdown of chiral symmetry; it is a non-
perturbative effect arising from the presence of
massless Goldstone boson.

We expect this non-perturbative effect to affect
the scalar renormalization factor ZS(p) much less,
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Figure 3. The ratio mMS(µ)/m at µ = 2GeV.
For each β the filled data points are used for linear
extrapolation in (ap)2.

since the scalar operator can not interact directly
with the pseudoscalar meson. Indeed the quark
mass dependence is quite small as we have seen
in Fig. 1.

In Fig. 3 we show the momentum dependence
of the ratio mMS(µ)/m = UMS(µ, p)ZMS(p)ZS(p)
calculated in the chiral limit where we set µ =
2GeV and use the three-loop formula [3] for UMS
and ZMS. While the ratio should be indepen-
dent of the quark momentum p, our results show
a large momentum dependence which is almost
linear in (ap)2 for 0.6 < (ap)2.

A natural origin of the linear dependence on
(ap)2 is the lattice discretization error of the
scalar operator, which differs by terms of O(a2)
from that of the continuum for the KS fermion.
We then remove this error from the renormaliza-
tion factor by a linear extrapolation in (ap)2 to
(ap)2 = 0. In Fig. 3 the fitting lines are plotted,
where filled data points are used for the linear ex-
trapolation. For comparison, the ratio calculated
with the one-loop value equals 1.867, 1.877, and
1.871 for β = 6.0, 6.2 and 6.4 at q∗ = 1/a. Hence
one-loop perturbation theory underestimates the
ratio by 40% to 20%.

Our final results for the averaged up and down
quark mass at µ = 2GeV are shown in Fig. 4 by
filled symbols. Here we use the JLQCD results
for bare quark mass [4]. The values are substan-
tially larger than those obtained with one-loop
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Figure 4. The final results of the light quark
mass at µ = 2GeV.

perturbation theory (open circles for q∗ = 1/a
and squares for q∗ = π/a). Furthermore they
exhibit a significant a2 dependence, which we as-
cribe to the discretization error of the quark mass
itself. Making a linear extrapolation in a2, our fi-
nal result in the continuum limit is given by

mMS(2GeV) = 4.15(27)MeV. (6)

This value is 20% larger than the perturbative
estimates : 3.51(20)MeV for q∗ = 1/a and
3.40(21)MeV for q∗ = π/a.
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