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Nonperturbative Determination of Quark Masses in Quenched Lattice QCD
with the Kogut-Susskind Fermion Action
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We report results of quark masses in quenched lattice QCD with the Kogut-Susskind fermion action,
employing the regularization independent scheme of Martie¢lél. to nonperturbatively evaluate the
renormalization factor relating the bare quark mass on the lattice to that in the continuum. Calculations
are carried out aB = 6.0, 6.2, and 6.4, from which we findmuMdS(Z GeV) = 4.23(29) MeV for the
average up and down quark mass and, withghmeson mass as inpuMS(2 GeV) = 129(12) MeV
for the strange mass in the continuum limit. These values are about 20% larger than those obtained
with the one-loop perturbative renormalization factor. [S0031-9007(99)09226-1]

PACS numbers: 12.38.Gc, 12.15.Ff

The values of quark masses are fundamental parameteaistions. The results for the scalar operator, combined with
of the standard model which are not directly accessibl@ur previous calculation of bare quark masses [10], lead
through experimental measurements. Lattice QCD allow$o a nonperturbative determination of the quark masses in
their determination through a calculation of the functionalthe continuum limit.
relation between quark masses and hadron masses. Forn the RI scheme, the renormalization factor of a
this reason a number of lattice QCD calculations havéilinear operatol® is obtained from the amputated Green
been carried out to evaluate quark masses, employing tHanction,

Wilson, clover, or Kogut-Susskind (KS) fermion action . ~1 < ~1

[1]. These actions are different lattice discretizations of Lo(p) = S(p) " 0lb(P)OS(PIOS(p)". (1)
the continuum fermion action, and an agreement of quarkvhere the quark two-point function is defined Byp) =
masses calculated with them provides an important checld|¢ (p)¢(p)|0). The quark field¢(p) with momen-
on the reliability of lattice results. tum p is related to the one-component KS fieldx)

An important ingredient in these calculations is theby ¢4(p) = > exp(—ip - y)x(y + aA), wherey, =
renormalization factor relating the bare lattice quark masgan,, p, = 27n,/(aL) with —L/4 = n, < L/4 and
to that in the continuum. While perturbation theory isA, = 0, 1.
often used to evaluate this factor, uncertainties due to Bilinear operators have a form
higher order terms are quite significant in the range
of the QCD coupling constant accessible in today's O = > ¢5(y)(ys ® ér)apUsa(»)d5(y), (2)
numerical simulations. A nonperturbative determination yABab
of the renormalization factor is therefore necessary for

a reliable calculation of quark masses, and effort in thisWhere(yS ® ¢r) refers to Dirac ¢s) and KS flavor £r)

L . tructure [7], and the indicas and b refer to color. The
direction has recently been pursued for the Wilson an(? ab ) . .
clover fermion actions [2—5] actor U4z(y) is the product of gauge link variables along

The need for a nonperturbative determination of the®
renormalization factor is even more urgent for the KS ac-
tion since the one-loop correction [6,7] is as large as 5098
in present simulations. In this Letter we report a study Z8Y(p) - Zs(p) = TP T o (p)]. (3)
to meet this need [8,9]: we calculate the renormalization -
factor of bilinear quark operators for the KS action non-where P(Jrg = (y;r ® f}i) is the projector onto the tree-
perturbatively using the regularization independent (RlJevel amputated Green function. The wave function
scheme of Ref. [2] developed for the Wilson and cloverrenormalization factoiZ,4(p) can be calculated by the

minimum path frony + aAtoy + aB.
The renormalization condition imposed dry (p) is
iven by
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TABLE I. Run parameters. 200 B=6.0, ZNR'(p) vs. ZR (p)
B 1/a(GeV) am No. conf. [ Scalar  P-Scalar
6.0 1.855(38) 0.010 0.020 0.030 30 I \ am am |
6.2 2.613(87) 0.008 0.015 0.023 30 150 |- L ™0 oo —ema0t g
64 3.425(72) 0.005 0.010 0.020 50 [ S0z o
I LN —=—0.03 —=—0.03
10.0 '_n\‘ \ -
condition Zy(p) = 1 for the conserved vector current [ e,
corresponding tdy, ® I). Since the Rl scheme explic- L. .‘\\
itly uses the quarks in external states, gauge fixing is 50 | ‘\‘\.j:\ . ]
necessary. We employ the Landau gauge throughout the I gjggpmﬁgg%ﬁ
[e—=:5 1 - B
present work. [ o :
The relation between the bare operator on the lattice 00 L v i s
and the renormalized operator in the continuum takes the 0.1 10 100 100.0
form p?(Gev?)

Onis(w) = Um(u,p)zﬁ(p)/zgl(p)@ , (4 FIG.1. The renggmalization factor for the scaldf'(p) and

where Usis(u, p) is the renormalization-group running 1€ pseudoscalay”(p).
factor in the continuum from momentum scaketo w. To understand this result, we note that chiral symmetry
We adopt the naive dimensional regularization (NDR)of KS fermion action leads to the identities
with the modified minimum subtraction schenMdS) in RI

. MS . . Z Z = oM om, 5
the continuum. The factoZg: (p) provides matching s (P)Zg(p) (p)/om ©)
from the RI scheme to th&S scheme. These two factors Zp'(p)Zg(p) = M(p)/m, (6)

are calculated perturbatively in the continuum. For our, . M(p) = Tr[S(p)~']. In Fig. 2 M(p) in the chi-

calculation of the quark mass we apply thglrelatioRrP (4) Na) limit obtained by a linear extrapolation m is plot-
the scalar channel in the chiral limit, i.d,/Z,," = Zg". ted. It rapidly decreases for large momenta, but takes

GOur calch.JIatlo?s are carried (t)ué InthqtjhencPedd Q(?Dlnonzero values for small momenta. Equation (6) implies
auge conngurations are generated wi € stanaard plgy 5 ZR(p) diverges in the chiral limit for small mo-

. o L
quette action a3 = 6.0, 6.2, and6.4 on a32" lattice. \onia \which is consistent with the result in Fig. 1.

.F or eachs we choose three bar? quark Masses tabulated The functionM( p) is related to the chiral condensate
in Table | where the inverse lattice spacihfu is taken as follows:

from our previous work [10]. B M(p)
We calculate Green functions fd5 momenta in the (¢ ¢) = ZTI’[S(p)] = Z c eyl
range 0.038 553 = (ap)®> = 1.9277. Quark propagators P > 20 Cu(p) (p)
are evaluated with a source in a momentum eigenstatg,ere Cu(p) = —iTr(y, ® 1)S(p)~ ')/ cod pua). A
We find that the use of such a source results in very SmaHonvanishing value oM(p) for small momenta would

statistical errors 00 (0.1%) in Green functions. _ lead to a nonzero value of the condensate. Therefore
The RI method completely avoids the use of latticeye divergence ofZR'(p) near the chiral limit is a

perturbation theory. We do not have to introduce any

ambiguous scale, such a8 [11], to improve on one- Gev

loop results. An important practical issue, however, is 04

whether the renormalization factor can be extracted from a I

momentum rangeé\gcp <K p < O0(1/a) keeping under [ —*p=60 ]

control the higher order effects in continuum perturbation 03 ?\ k=62
\

(7)

M(p) at m=0

theory, nonperturbative hadronization effects, and the i TrRoea
discretization error on the lattice. These effects appear as 02 |

p dependence of the renormalization factor in (4), which -
should be absent if these effects are negligible.

In Fig. 1 we compare the scalar renormalization factor
Z8(p) with that for pseudoscalaZp'(p) for three L M) =0 , ]
values of bare quark massn at 8 = 6.0. From chiral 00 ]
symmetry of the KS fermion action, we naively expect I ]
a relationz8'(p) = Z§'(p) for all momentap in the oal i e
chiral limit. Clearly this does not hold with our result 01 1.0 10.0 100.0
toward small momenta, whergR'(p) rapidly increases P (Gev?)
asm — 0, while ZX!(p) does not show such a trend. FIG. 2. M(p) in the chiral limit.
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Z.(2GeV,p, 1/a) TABLE Il. The nonperturbative (NP) and the perturbative (P)
3.2 [ renormalization factors of the quark mags,(u,p,1/a) at
n =2 GeV.
I o ~®-B=60 |
o o Eez ] NP P
[ o --®-B=64 ] B p=18GeV p=26GeV g*=1/a ¢ =m/a
28r s T ] 60 2.735(16) 2.509(18) 1.867 1776
- e ] 6.2  2.5451(91) 2.449(10) 1.877 1.800
Gl R SR ] 6.4  2.385(12) 2.339(12) 1.871 1.804
24 ;“%*-L- Tree b .
[ . e, ] For small momenta we consider that the momentum
29 L -_ T dependence arises from nonperturbative hadronization
[ SR ] effects on the lattice and the higher order effects in
ool ] continuum perturbation theory. It is very difficult to
00 04 08 12 16 20 24 remove these effects from our results.
@py Toward large momenta, however, these effects are
FIG. 3. The ratioZ,,(u, p,1/a) at u = 2 GeV. For each3  expected to disappear. The linear dependencé&piy,
the filled data points are used for linear interpolatiodp)*. which still remains, should arise from the discretization

manifestation of spontaneous breakdown of chiral sym—error on the lattice, i.e.,

metry; it is a nonperturbative hadronization effect arising Z,,(u, p, 1/a) = m™MS(w)/m + (ap)*Zy + O(a*) (8)
from the presence of massless Nambu-Goldstone boson \i/ﬁth the constantZ« corresponding to the mixing to
the pseudoscalar channel, imension 5 o eratgrs on th(laolatticeg ’

While we do not expect the pseudoscalar meson tg This relationpim lies that, if we taike a continuum ex-
affect the scalar renormalization facts§'( p), as indeed olation ofZ,,( P 1/a) ’atafixed hvsical momen-
observed in the small quark mass dependence seen ﬁul;?nr: the disrgrleLt’ifa;tior? eror " ispre>r/noved This
Fig. 1, the above result raises a warning tA&{(p) may P im0 -

; : o procedure also removes tlaé discretization error in the
still be contaminated by hadronization effects for small” - ) . .
momenta lattice bare quark masa: itself, which reflects that in

In Fig. 3 we show the momentum dependence opadron Masses. . .

o MS RI . The momentunp should be chosen in the region where
Zn(p, p,1/a) = Usis(w, p)Zrr (p)Zs " (p) which'is the  he |inear dependence ¢mp)? is confirmed in our results.
renormalization factor from the bare quark mass onrpig region starts from a similar value pf ~ 3 Ge\?
the lattice to the renormalized quark mass at scalgy, the three 8 values, and extends tp? ~ 1.9/a>
p in the continuum. Here we sei =2 GeV %‘d the highest momentum measured. Hence we are able to
use the three-loop formula [12] foUys and Zgr.  use only a rather narrow range< p? < 6.6 GeV?, the
While Z,,(u, p,1/a) should be independent of the quark upper bound dictated by the valuelo$/a? for the largest
momentum p, our results show a sizable momentum attice spacing ag = 6.0.

dependence which is almost linear {ap)* for large In Fig. 4 we show the continuum extrapolation for
momenta (filled symbols in Fig. 3). the averaged up and down quark massuat 2 GeV.
Filled circles are obtained fop = 1.8 GeV and squares
Mev m, 7 (2 GeV) for p = 2.6 GeV for which the value ofZ,, is obtained
6O T T ] by a linear fit in (ap)> employing the filled points in
ss | 6260 ] Fig. 3. The bare quark mass [10] is determined by a linear
: B=6.2 ] extrapolation of pseudoscalar meson mass squared in the

5.0 Nambu-Goldstone channéls ® £5) and that of vector

5 TABLE Ill. Final results formﬁ(z GeV) obtained with the
nonperturbative (NP) and the perturbative (P) renormalization

Non-Perturbative

40| factors. The lattice bare quark mass,,, is also listed.
35%%% U NP(MeV)
B + R ﬁ: am, p=18 p=26 P(MeV)
30 3 Perturbation ] B (1074) GeV GeV q = 1/a q = w/a
o b v v v v 6.0 9.72(40) 4.93(23) 4.52(21) 3.37(15) 3.20(15)
0.0 0.1 0.2 0.3 0.4 6.2 6.86(45) 4.56(34) 4.39(32) 3.36(25) 3.23(24)
a2 (1/GeV?) 6.4 5.38(23) 4.39(21) 4.31(21) 3.45(16) 3.32(16)
a>—0 4.17(30) 4.23(29) 3.46(23) 3.36(22)

FIG. 4. The final results of the light quark maaé‘?@ GeV).
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TABLE IV. The final results for the strange quark mass where we us& or ¢ meson mass to determine the bare
mMS(2 GeV) obtained withk meson or¢ meson mass to fix strange mass. The results from perturbative estimation are

the bare strange quark masses. given in Table IV.
NP(MeV) The CP-PACS Collaboration recently reported the re-
am, p=18 p=26 P(MeV) sults [13] m)y’ (2 GeV) = 4.6(2) MeV, mMS(2 GeV) =
B  (107?) GeV GeV  g¢"=1/a q"=m/a  115(2) MeV(mg), and 143(6) MeV(my) from a large-
K input scale precision simulation of hadron masses with the Wil-

6.0 2.44(10) 123.8(5.7) 113.6(5.3) 84.6(3.9) 80.4(3.7) son action. Our values are 10% smaller, which may be

6.2 1.72(11) 114.4(3.3) 110.1(8.0) 84.5(6.2) 81.0(5.9) due to the use of a one-loop perturbative renormalization

6.4 1.350(57) 110.3(5.2) 108.2(5.1) 86.5(41) 83.4(3.9) factor in the CP-PACS ana|ysis_

a>—0 104.7(7.4) 106.0(7.1) 86.9(5.6) 84.2(54)  This work is supported by the Supercomputer

¢ input Project No. 32 (FY1998) of High Energy Accel-

6.0 2.73(15) 138.5(8.2) 127.1(7.5) 94.6(5.4) 90.0(5.2) erator Research Organization (KEK), and also in

g-i 5-23(72(3)7) igg%g " 1521é(185£) igg%(zé 6 %%(17%23 3 part by the Grants-in-Aid of the Ministry of Educa-

: X S ' O LA0-2) tion  (No. 08640404, No. 09304029, No. 10640246,

@ =0 128(11) 129(12) 1055(.1) 102.28.7) No. 10640248, No. 10740107, and No. 10740125). S.K.
and S.T. are supported by JSPS.

meson mass in th&T channel(y; ® ¢&;) to the physical
point of = andp meson masses.

We observe that the continuum extrapolation removes
the momentum dependence of the quark mass at finitq1] R. Gupta and T. Bhattacharya, Nucl. Phys. (Proc. Suppl.)
lattice spacings. Furthermore the values are substantially  B63, 95 (1998); R. D. Kenway, hep-lat/9810054.
larger than those obtained with one-loop perturbation [2] G. Martinelli et al., Nucl. Phys.B445, 81 (1995).

theory (open circles fog™ = 1/a and squares fog* = [3] K. Jansen et al., Nucl. Phys. B372, 275 (1996);
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where we adopt the value fgr = 2.6 GeV since this Q Tﬁguigdaﬁa S\Pagﬁ{zy\,ﬁ' E:)f??e\zofmflggfé’
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dependence is negligible. The quoted error includes thosg7] D. Daniel and S. N. Sheard, Nucl. Phya302, 471 (1988).

arising from Z,,, the bare quark mass, and the lattice [8] JLQCD Collaboration, S. Aokét al., hep-lat/9809124.
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3.36(22) MeV for ¢* = w/a. We collect the values [10] JLQCD Collaboration, S. Aoket al., Nucl. Phys. (Proc.
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Applying our renormalization factor to the strange
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