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We report results of quark masses in quenched lattice QCD with the Kogut-Susskind fermion action,
employing the regularization independent scheme of Martinelliet al. to nonperturbatively evaluate the
renormalization factor relating the bare quark mass on the lattice to that in the continuum. Calculations
are carried out atb ­ 6.0, 6.2, and 6.4, from which we findmMS

ud s2 GeVd ­ 4.23s29d MeV for the
average up and down quark mass and, with thef meson mass as input,mMS

s s2 GeVd ­ 129s12d MeV
for the strange mass in the continuum limit. These values are about 20% larger than those obtained
with the one-loop perturbative renormalization factor. [S0031-9007(99)09226-1]
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The values of quark masses are fundamental parame
of the standard model which are not directly accessib
through experimental measurements. Lattice QCD allo
their determination through a calculation of the function
relation between quark masses and hadron masses.
this reason a number of lattice QCD calculations ha
been carried out to evaluate quark masses, employing
Wilson, clover, or Kogut-Susskind (KS) fermion actio
[1]. These actions are different lattice discretizations
the continuum fermion action, and an agreement of qua
masses calculated with them provides an important ch
on the reliability of lattice results.

An important ingredient in these calculations is th
renormalization factor relating the bare lattice quark ma
to that in the continuum. While perturbation theory
often used to evaluate this factor, uncertainties due
higher order terms are quite significant in the ran
of the QCD coupling constant accessible in today
numerical simulations. A nonperturbative determinatio
of the renormalization factor is therefore necessary
a reliable calculation of quark masses, and effort in th
direction has recently been pursued for the Wilson a
clover fermion actions [2–5].

The need for a nonperturbative determination of t
renormalization factor is even more urgent for the KS a
tion since the one-loop correction [6,7] is as large as 50
in present simulations. In this Letter we report a stud
to meet this need [8,9]: we calculate the renormalizati
factor of bilinear quark operators for the KS action no
perturbatively using the regularization independent (R
scheme of Ref. [2] developed for the Wilson and clov
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actions. The results for the scalar operator, combined w
our previous calculation of bare quark masses [10], le
to a nonperturbative determination of the quark masses
the continuum limit.

In the RI scheme, the renormalization factor of
bilinear operatorO is obtained from the amputated Gree
function,

GO spd ­ Sspd21k0jfspdO f̄spdj0lSspd21, (1)

where the quark two-point function is defined bySspd ­
k0jfspdf̄spdj0l. The quark fieldfspd with momen-
tum p is related to the one-component KS fieldxsxd
by fAspd ­

P
y exps2ip ? ydxs y 1 aAd, where ym ­

2anm, pm ­ 2pnmysaLd with 2Ly4 # nm , Ly4 and
Am ­ 0, 1.

Bilinear operators have a form

O ­
X

yABab

f̄a
As yd sgS ≠ jFdABUab

ABs ydfb
Bs yd , (2)

wheresgS ≠ jFd refers to Dirac (gS) and KS flavor (jF)
structure [7], and the indicesa andb refer to color. The
factorUab

ABs yd is the product of gauge link variables alon
a minimum path fromy 1 aA to y 1 aB.

The renormalization condition imposed onGO spd is
given by

ZRI
O spd ? Zfspd ­ TrfPy

O GO spdg , (3)

where P
y
O ­ sgy

S ≠ j
y
Fd is the projector onto the tree-

level amputated Green function. The wave functio
renormalization factorZfspd can be calculated by the
© 1999 The American Physical Society
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TABLE I. Run parameters.

b 1yasGeVd am No. conf.

6.0 1.855(38) 0.010 0.020 0.030 30
6.2 2.613(87) 0.008 0.015 0.023 30
6.4 3.425(72) 0.005 0.010 0.020 50

condition ZV spd ­ 1 for the conserved vector current
corresponding tosgm ≠ Id. Since the RI scheme explic-
itly uses the quarks in external states, gauge fixing
necessary. We employ the Landau gauge throughout
present work.

The relation between the bare operator on the latti
and the renormalized operator in the continuum takes t
form

OMSsmd ­ UMSsm, pdZMS
RI spdyZRI

O spdO , (4)
where UMSsm, pd is the renormalization-group running
factor in the continuum from momentum scalep to m.
We adopt the naive dimensional regularization (NDR
with the modified minimum subtraction scheme (MS) in
the continuum. The factorZMS

RI spd provides matching
from the RI scheme to theMS scheme. These two factors
are calculated perturbatively in the continuum. For ou
calculation of the quark mass we apply the relation (4)
the scalar channel in the chiral limit, i.e.,1yZRI

m ­ ZRI
S .

Our calculations are carried out in quenched QCD
Gauge configurations are generated with the standard p
quette action atb ­ 6.0, 6.2, and 6.4 on a 324 lattice.
For eachb we choose three bare quark masses tabula
in Table I where the inverse lattice spacing1ya is taken
from our previous work [10].

We calculate Green functions for15 momenta in the
range0.038 553 # sapd2 # 1.9277. Quark propagators
are evaluated with a source in a momentum eigensta
We find that the use of such a source results in very sm
statistical errors ofOs0.1%d in Green functions.

The RI method completely avoids the use of lattic
perturbation theory. We do not have to introduce an
ambiguous scale, such asqp [11], to improve on one-
loop results. An important practical issue, however,
whether the renormalization factor can be extracted from
momentum rangeLQCD ø p ø Os1yad keeping under
control the higher order effects in continuum perturbatio
theory, nonperturbative hadronization effects, and th
discretization error on the lattice. These effects appear
p dependence of the renormalization factor in (4), whic
should be absent if these effects are negligible.

In Fig. 1 we compare the scalar renormalization fact
ZRI

S spd with that for pseudoscalarZRI
P spd for three

values of bare quark massam at b ­ 6.0. From chiral
symmetry of the KS fermion action, we naively expec
a relationZRI

S spd ­ ZRI
P spd for all momentap in the

chiral limit. Clearly this does not hold with our result
toward small momenta, whereZRI

P spd rapidly increases
asm ! 0, while ZRI

S spd does not show such a trend.
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FIG. 1. The renormalization factor for the scalarZRI
S spd and

the pseudoscalarZRI
P spd.

To understand this result, we note that chiral symme
of KS fermion action leads to the identities

ZRI
S spdZfspd ­ ≠Mspdy≠m , (5)

ZRI
P spdZfspd ­ Mspdym , (6)

with Mspd ­ Tr fSspd21g. In Fig. 2 Mspd in the chi-
ral limit obtained by a linear extrapolation inm is plot-
ted. It rapidly decreases for large momenta, but tak
nonzero values for small momenta. Equation (6) impli
that ZRI

P spd diverges in the chiral limit for small mo-
menta, which is consistent with the result in Fig. 1.

The functionMspd is related to the chiral condensat
as follows:

kff̄l ­
X
p

TrfSspdg ­
X
p

MspdP
m Cmspd2 1 Mspd2 , (7)

where Cmspd ­ 2i Trfsgm ≠ IdSspd21gy cosspmad. A
nonvanishing value ofMspd for small momenta would
lead to a nonzero value of the condensate. Theref
the divergence ofZRI

P spd near the chiral limit is a
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FIG. 2. Mspd in the chiral limit.
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FIG. 3. The ratioZmsm, p, 1yad at m ­ 2 GeV. For eachb
the filled data points are used for linear interpolation insapd2.

manifestation of spontaneous breakdown of chiral sym
metry; it is a nonperturbative hadronization effect arisin
from the presence of massless Nambu-Goldstone boso
the pseudoscalar channel.

While we do not expect the pseudoscalar meson
affect the scalar renormalization factorZRI

S spd, as indeed
observed in the small quark mass dependence seen
Fig. 1, the above result raises a warning thatZRI

S spd may
still be contaminated by hadronization effects for sma
momenta.

In Fig. 3 we show the momentum dependence
Zmsm, p, 1yad ; UMSsm, pdZMS

RI spdZRI
S spd which is the

renormalization factor from the bare quark mass o
the lattice to the renormalized quark mass at sca
m in the continuum. Here we setm ­ 2 GeV and
use the three-loop formula [12] forUMS and ZMS

RI .
While Zmsm, p, 1yad should be independent of the quar
momentum p, our results show a sizable momentum
dependence which is almost linear insapd2 for large
momenta (filled symbols in Fig. 3).
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FIG. 4. The final results of the light quark massmMS
ud s2 GeVd.
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TABLE II. The nonperturbative (NP) and the perturbative (P
renormalization factors of the quark massZmsm, p, 1yad at
m ­ 2 GeV.

NP P
b p ­ 1.8 GeV p ­ 2.6 GeV qp ­ 1ya qp ­ pya

6.0 2.735(16) 2.509(18) 1.867 1.776
6.2 2.5451(91) 2.449(10) 1.877 1.800
6.4 2.385(12) 2.339(12) 1.871 1.804

For small momenta we consider that the momentu
dependence arises from nonperturbative hadronizat
effects on the lattice and the higher order effects
continuum perturbation theory. It is very difficult to
remove these effects from our results.

Toward large momenta, however, these effects a
expected to disappear. The linear dependence onsapd2,
which still remains, should arise from the discretizatio
error on the lattice, i.e.,

Zmsm, p, 1yad ­ mMSsmdym 1 sapd2ZH 1 Osa4d (8)

with the constantZH corresponding to the mixing to
dimension 5 operators on the lattice.

This relation implies that, if we take a continuum ex
trapolation ofZmsm, p, 1yadm at a fixed physical momen-
tum p, the discretization error inZm is removed. This
procedure also removes thea2 discretization error in the
lattice bare quark massm itself, which reflects that in
hadron masses.

The momentump should be chosen in the region wher
the linear dependence onsapd2 is confirmed in our results.
This region starts from a similar value ofp2 ø 3 GeV2

for the threeb values, and extends top2 ø 1.9ya2,
the highest momentum measured. Hence we are abl
use only a rather narrow range3 , p2 , 6.6 GeV2, the
upper bound dictated by the value of1.9ya2 for the largest
lattice spacing atb ­ 6.0.

In Fig. 4 we show the continuum extrapolation fo
the averaged up and down quark mass atm ­ 2 GeV.
Filled circles are obtained forp ­ 1.8 GeV and squares
for p ­ 2.6 GeV for which the value ofZm is obtained
by a linear fit in sapd2 employing the filled points in
Fig. 3. The bare quark mass [10] is determined by a line
extrapolation of pseudoscalar meson mass squared in
Nambu-Goldstone channelsg5 ≠ j5d and that of vector

TABLE III. Final results for mMS
ud s2 GeVd obtained with the

nonperturbative (NP) and the perturbative (P) renormalizati
factors. The lattice bare quark massamud is also listed.

NP(MeV)
amud p ­ 1.8 p ­ 2.6 P(MeV)

b s1024d GeV GeV qp ­ 1ya qp ­ pya

6.0 9.72(40) 4.93(23) 4.52(21) 3.37(15) 3.20(15)
6.2 6.86(45) 4.56(34) 4.39(32) 3.36(25) 3.23(24)
6.4 5.38(23) 4.39(21) 4.31(21) 3.45(16) 3.32(16)
a2 ! 0 4.17(30) 4.23(29) 3.46(23) 3.36(22)
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TABLE IV. The final results for the strange quark mas
mMS

s s2 GeVd obtained withK meson orf meson mass to fix
the bare strange quark massesams.

NP(MeV)
ams p ­ 1.8 p ­ 2.6 P(MeV)

b s1022d GeV GeV qp ­ 1ya qp ­ pya

K input
6.0 2.44(10) 123.8(5.7) 113.6(5.3) 84.6(3.9) 80.4(3.7)
6.2 1.72(11) 114.4(3.3) 110.1(8.0) 84.5(6.2) 81.0(5.9)
6.4 1.350(57) 110.3(5.2) 108.2(5.1) 86.5(41) 83.4(3.9)
a2 ! 0 104.7(7.4) 106.0(7.1) 86.9(5.6) 84.2(5.4)

f input
6.0 2.73(15) 138.5(8.2) 127.1(7.5) 94.6(5.4) 90.0(5.2)
6.2 2.04(23) 136(16) 131(15) 100(12) 96(11)
6.4 1.597(97) 130.4(8.4) 128(8.3) 102.3(6.6) 98.7(6.3)
a2 ! 0 128(11) 129(12) 105.5(9.1) 102.2(8.7)

meson mass in theVT channelsgi ≠ jid to the physical
point of p andr meson masses.

We observe that the continuum extrapolation remov
the momentum dependence of the quark mass at fin
lattice spacings. Furthermore the values are substantia
larger than those obtained with one-loop perturbatio
theory (open circles forqp ­ 1ya and squares forqp ­
pya). Making a linear extrapolation ina2, our final result
in the continuum limit is

mMS
ud s2 GeVd ­ 4.23s29d MeV , (9)

where we adopt the value forp ­ 2.6 GeV since this
is the largest momentum accessible and the moment
dependence is negligible. The quoted error includes tho
arising from Zm, the bare quark mass, and the lattic
spacing. The value (9) is about20% larger than the
perturbative estimates:3.46s23d MeV for qp ­ 1ya and
3.36s22d MeV for qp ­ pya. We collect the values
of renormalization factor and quark masses in Tables
and III.

Applying our renormalization factor to the strange
quark mass, we obtain

mMS
s s2 GeVd ­ 106.0s7.1d MeV for mK (10)

­ 129s12d MeV for mf , (11)
s
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where we useK or f meson mass to determine the bar
strange mass. The results from perturbative estimation
given in Table IV.

The CP-PACS Collaboration recently reported the r
sults [13] mMS

ud s2 GeVd ­ 4.6s2d MeV, mMS
s s2 GeVd ­

115s2d MeVsmK d, and 143s6d MeVsmfd from a large-
scale precision simulation of hadron masses with the W
son action. Our values are 10% smaller, which may b
due to the use of a one-loop perturbative renormalizati
factor in the CP-PACS analysis.
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