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We present a fully non-perturbative determination of the O(a) improvement coefficient cSW in three-flavor
dynamical QCD for the RG improved as well as the plaquette gauge actions, using the Schrödinger functional
scheme. Results are compared with one-loop estimates at weak gauge coupling.

1. Introduction

Realistic simulation of QCD requires treating
the light up, down and strange quarks dynami-
cally. Incorporating a degenerate pair of up and
down quarks have become almost standard by
now, and a first attempt toward the continuum
extrapolation has shown that the deviation of the
quenched hadron mass spectrum from experiment
[1] is sizably reduced[2]. Adding a dynamical
strange quark is the next step, which has become
possible with the recent algorithmic development
for odd number of fermions[3].

The CP-PACS and JLQCD Collaborations
have jointly started a 2+1 flavor dynamical QCD,
employing the polynomial HMC (PHMC) algo-
rithm for strange quark and the HMC algo-
rithm for up and down quarks. We choose the
renormalization-group (RG) improved action for
the gauge fields, in order to avoid the lattice arti-
fact present for the plaquette action[4]. We wish
to use a fully O(a)-improved action for quarks
to control lattice spacing errors. Here we report
on a non-perturbative determination of csw for
three-flavor QCD by the Schrödinger functional
scheme both for the plaquette and RG-improved
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Figure 1. ∆M as a function of M for the RG
action with Nf = 3 at β = 2.2.

gauge actions.

2. Method and Simulations

For the determination of cSW, we basically fol-
low the method of ref.[5], except for the choice
B for the boundary weight of the RG-improved
gauge action [6]. We refer to ref. [5] and refer-
ences therein for notations in this report.

We mainly use an 83
× 16 lattice in our de-

termination of cSW for the RG-improved as well
as the plaquette action with Nf = 3 dynamical
quarks at several values of β. Simulations with
Nf = 4, 2, 0 are also made for comparison.
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We measure the modified PCAC quark masses,
M and M ′, and their difference ∆M = M − M ′,
at several values of cSW and K. We have taken
these parameters to realize M = 0 by an inter-
polation, except at strong couplings for the case
of Nf = 3, where an extrapolation to M = 0 is
necessary as shown in Fig. 1.

From the linear fit of ∆M as a function of M
and cSW: δM = a0 +a1M +a2cSW, we obtain the
O(a) improvement coefficient cSW = (∆M (0)

−

a0)/a2, where ∆M (0) = 0.000277, marked by the
horizontal dotted line in Fig. 1, is the tree-level
value of ∆M on a 83

× 16 lattice. Note that the
dependence of ∆M on cSW becomes weaker at
stronger couplings, so that the determination of
cSW is more difficult, and hence the error is larger,
at stronger couplings.

3. Results

In the upper plot of Fig. 2 we show the non-
perturbative value of cSW as a function of the
bare gauge coupling g2

0 for the RG-improved
gauge action with Nf = 3(circles), 2(diamonds)
and 0(squares), together with the one-loop es-
timate(solid line) and the mean-field(MF) esti-
mate(dashed line) used in ref. [2]. Similarly, re-
sults for the plaquette action with Nf = 3(circles)
and 0(squares) are given in the lower plot of
Fig. 2, together with the one-loop estimate(solid
line) and the non-perturbative values by the Al-
pha collaboration with Nf = 2(dotted lines)[5]
and 0(long-dashed line)[7].

In both cases, the non-perturbative values of
cSW are almost Nf independent at weak coupling
while they become larger for smaller Nf at strong
coupling. This tendency can be clearly seen in
Fig. 3, where cSW is plotted as a function of Nf for
the RG action(open symbols) and the plaquette
action(solid circles).

4. Comparison with perturbative esti-

mates

At first sight, the non-perturbative cSW seems
to undershoot the one-loop estimate at weak
coupling for the RG action, while it converges
smoothly from above for the plaquette action.
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Figure 2. cSW as a function of g2
0 for the RG ac-

tion (upper) and for the plaquette action(lower).

We have found that the discrepancy seen for the
RG action is caused by the one-loop O(a/L) er-
ror in cSW

2, which becomes leading after the
O(a/L) error at tree level is removed by requir-
ing ∆M = ∆M0. In Fig. 4, the non-perturbative
cSW is compared with the one-loop estimate we
have calculated on the same lattice size employed
in the simulation, 83

× 16. As seen from the fig-
ure the non-perturbative value agrees with the
one-loop estimate much better on the 83

× 16
lattice than in the infinite box. Note that the
O(g2

0a/L) contribution to cSW slightly depends on
Nf through the fermion tadpole in the presence
of the background gauge field of the Schrödinger
functional scheme. Such an Nf dependence is in-

2O(a) errors of cSW in general cause O(a2) errors in
on-shell quantities, which are irrelevant in the O(a)
improvement.
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Figure 3. cSW as a function of Nf for RG and
P(plaquette) actions.
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Figure 4. cSW for the RG action at weak cou-
pling, together with the one-loop estimate on
the 83

× 16 lattice for Nf = 3(dotted line) and
Nf = 0(dashed line).

deed seen in the numerical data of Fig. 4.
For the plaquette action we also confirm a pres-

ence of the O(g2
0a/L) correction, which is small

on the 83
× 16 lattice, as shown in Fig. 5 where

cSW is plotted as a function of a/L at β = 24
with Nf = 0. The one-loop estimates(solid cir-
cles) reproduce the non-monotonic behaviour of
non-perturbative values(open circles) well.

5. Discussion

We have determined the non-perturbative
value of cSW for the RG action at several gauge
couplings with Nf = 3, 2, 0. In order to obtain
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Figure 5. Non-perturbative cSW(open circles)
and one-loop estimate(solid circles) as a function
of a/L at β = 24 for the plaquette action with
Nf = 0.

an interpolation formula of cSW as a function of
g2
0 , we have to eliminate large O(g2

0a/L) correc-
tions to cSW present for the RG action. We are
currently investigating this problem.

We are also measuring the hadron spectrum for
the RG action at β ≡ 2 with Nf = 3 using the
preliminary value of cSW, in order to determine
the corresponding lattice spacing.
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