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Lattice QCD calculation of the proton decay matrix element in the continuum limit
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We present a quenched lattice QCD calculation of the o and B parameters of the proton decay matrix
element. The simulation is carried out using the Wilson quark action at three values of the lattice spacing
in the range a = 0.1 — 0.064 fm to study the scaling violation effect. We find only mild scaling
violation when the lattice scale is determined by the nucleon mass. We obtain in the continuum limit,
|a(NDR, 2 GeV)| = 0.0090(09)(+5 — 19) GeV? and |B(NDR, 2 GeV)| = 0.0096(09)(+6 — 20) GeV?
with o and B in a relatively opposite sign, where the first error is statistical and the second is due to
the uncertainty in the determination of the physical scale.
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Proton decay (or nucleon decay in general) is a char-
acteristic consequence of grand unified theories (GUTs)
because of the unification of quarks and leptons into the
same gauge multiplet. However, no clear evidence of such
decay process has been observed up to now in spite of
continual experimental efforts over several decades. Most
recent experimental lower bound of the lifetime is given
by the Super-Kamiokande experiment: 4.4 X 103 years
for p — e* 4+ 7% mode and 1.9 X 10* years for p — v +
K* mode at 90% confidence level[1]. Although some
naive GUT models is already ruled out by this experi-
mental bound, we still have several viable GUTs which
allow the longer proton lifetime at O(103*734)[2]. Further
improvement of the experimental bound could give strong
constraints on these GUT models.

One of the main sources of uncertainties in the theo-
retical predictions is the evaluation of the hadronic matrix
elements for the nucleon decays (PS|O|N), where PS and
N stand for the pseudoscalar meson and the nucleon,
respectively, and O is the three-quark operator violating
the baryon number. The conventional procedure of esti-
mating the hadronic matrix element is to invoke current
algebra and PCAC and to reduce the three-body matrix
element into the two-body transition element (0|O|N),
leaving aside the question as to the validity of PCAC
with a long extrapolation. Varieties of models have been
employed to estimate this transition elements, but results
vary by an order of magnitude; see [3].

A promising method to reduce the uncertainty is to
resort to lattice QCD, which allows direct evaluation of
nonperturbative effects and has been successfully used in
giving various weak interaction matrix elements. There
are already a few calculations to evaluate the two-body
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transition element [4,5], and even a few attempts to
evaluate directly the three-body amplitude (PS|O|N)
[6,7]. Gavela et al. [6] argued that the three-body ampli-
tude gives proton decay lifetime that differs largely from
the one derived from a two-body calculation with the use
of PCAC. The JLQCD calculation [7], however, showed
that their results are due to a neglect of one of the two
form factors and that the three-body and two-body cal-
culations yield the results that agree at a reasonable
accuracy, say 20—30%.

Lattice QCD calculations, being carried out today,
however, contain a number of sources that lead to system-
atic errors, such as the quenching approximation, finite
lattice spacing, finite lattice size, chiral extrapolation and
so forth. Particularly worrisome are the finite lattice
spacing effects that could modify the continuum results
even by a factor two if scaling violation is substantial in
the relevant quantity. In fact, the recent preliminary result
of the RBC Collaboration [8] gives the matrix elements
that differs from those by JLQCD [7] by = 50%, which
urges us to study the issue of systematic errors. As for the
quenching effects, a large-scale simulation of CP-PACS
Collaboration for quenched light hadrons shows deviation
from the experiment by at most 10% [9], which suggests
that the systematic error due to quenching in the matrix
elements would be less significant than the scaling viola-
tion effects and 100 times smaller compared to the un-
certainties of the QCD model predictions.

In this paper we focus on the issue of the lattice spacing
effects, by carrying out simulations at three different
values of bare coupling constant, adopting the lattices
that are large enough so that finite lattice effects are
negligible even for baryons, and borrowing the results
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of CP-PACS Collaboration for quenched hadrons [9]. We
consider two-body matrix elements

Ol€;(uTCPrd))PLuk | p(k = 0)) = aPLu,, (1)

Olej(uTCPLd)PLut|p(k = 0)) = BPLu,  (2)

expressed by « and 8 parameters, where i, j, and k are
color indices, C is the charge conjugation matrix, Pg/, is
chiral projection operator and u, denotes the proton
spinor with the zero spatial momentum. We deal with
the two-body matrix elements in view of the feasibility
on current computers, rather than three-body matrix el-
ements, which need three-point correlators with finite
spatial momenta injected to disentangle the relevant and
irrelevant form factors [7].

The continuum operators relevant to the a and S
parameters are connected with the lattice operators as

, a, )
() = Zlaty pa) O, (@) + 55 20, O (@)

_a, .
* 1 Znin 03,1 (@), (3)

where
Or/1 = €W CPrjd’)Pru*, 4)

and the mixing operator
0,,.= €W Cy,ysd)Ppy )

appears due to explicit chiral symmetry breaking of the
Wilson quark action. The renormalization constants Z,
Zmix» and Z! . are evaluated perturbatively at one-loop
order [7,10]. The continuum operators are defined in naive
dimensional regularization (NDR) with the MS subtrac-
tion scheme. The matrix elements defined on the lattice
are converted to those in the continuum at u = 1/a and
are evolved to u = 2 GeV using the two-loop renormal-
ization group in the continuum [11].
To obtain the matrix elements, we consider the ratio

Z(OR/L,L()_Er t)j;),s(o)>

Sy G 07,0 V77

Rp/ (1) =

large ¢

- <0|Eijk(uiTCPR/Ldj)PLuklp(s)>; (6)
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where J,(%, #) is a local sink operator for the proton with
spin s and J), ;(0) is the smeared source,

1,5 1) = € [ulT (&, )Cysd/ (& Dk (R 1), (7)

1) = S TEHTGETE)

32
X eulu (& )Cysd! (5, DutZ 1), (8)

with the smearing function W. The factor ,/Z, defined by

=V

(O1,,,,(0,0) p(k = B)) = [z, u ©)

is obtained from the proton correlator with the local
source and local sink. It is recognized that the precise
determination of ,/Z,, is not easy because of large statis-
tical fluctuations of the local-local correlator (see, e.g.,
Fig. 16 of Ref. [9]). On the other hand, the ratio of two-
point functions in Eq. (6), calculated using the smeared-
local proton correlator, is determined well with small
statistical errors.

Under this circumstance we calculate \/Z—p from the
proton correlators generated in high statistics calculations
of the quenched light hadron spectrum performed by the
CP-PACS Collaboration [9]. We then carry out new simu-
lations with the same parameters to obtain the ratio of
two-point functions including the mixing operator, for
which we do not necessarily need very high statistics. We
attain a few percent statistical accuracy for the latter,
while the overall accuracy is still limited by the error of
N

Our simulation generates quenched gauge configura-
tions at B8 =5.90,6.10 and 6.25, which correspond to
lattice spacings in the range a =~ 0.1 — 0.064 fm when
determined from the p meson mass m, = 0.7634 GeV.
The spatial lattice size is kept at about 3 fm to avoid finite
size effects. We take four quark masses corresponding to
mpg/my = 0.75 — 0.5 for each B. These parameters are
the same as those of the CP-PACS spectrum calculations
[9], except that we drop the finest lattice and the lightest
quark mass at each B for the computational cost. The
simulation parameters are presented in Table I. The num-
ber of configurations in our simulation is about 1/3 that of
the CP-PACS calculation. We employ for ¥ in Eq. (8) the
pion quark wave function, which is measured for each
hopping parameter on 30 gauge configurations fixed to

TABLE I Simulation parameters and results. The lattice spacing a [fm] in the third column is determined from m,,. Results are
given with three different input quantities for the lattice spacing, i.e., my, m,, and f.

Number of Configurations |@(NDR, 2 GeV)|[GeV?]

|B(NDR, 2 GeV)|[GeV?3]

B L¥XT a[fm] this work/CP-PACS [9] my input m, input  f, input my input m, input  f, input
5.90 323 X 56 0.1020(8) 300/800 0.01026(31) 0.01265(43) 0.01563(72) 0.01064(32) 0.01312(44) 0.01621(76)
6.10 40% X 70 0.0777(7) 200/600 0.01041(35) 0.01152(41) 0.01398(81) 0.01092(37) 0.01209(44) 0.01467(85)
6.25 483 X 84 0.0642(7) 140/420 0.00956(35) 0.01012(45) 0.01321(75) 0.01004(35) 0.01063(47) 0.01388(78)

a=0 0.0090(09) 0.0063(13) 0.0092(22) 0.0096(09) 0.0069(14) 0.0100(23)
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FIG. 1. Time dependence of Rg(f) (the factor ,/Z, being
removed) for the heaviest (circle) and lightest (triangle) quark
masses at 8 = 6.10.

the Coulomb gauge except for the # = 0 time slice where
the wall source is placed[12].

To estimate ,/Z,,, we fit the smeared-local proton cor-
relator to a single exponential Z,exp(—m, 1), and then fit
the local-local proton correlator to Z,exp(—m,,t) with m,,
fixed to the value determined from the smeared-local
correlator, which is borrowed from the CP-PACS simula-
tion [9]. Figure 1 shows the ratio of two-point functions in
Eq. (6) with the ,/Z,, factor removed for the heaviest (K =
0.15280) and the lightest (K = 0.15440) quark masses at
B = 6.10. The horizontal lines represent the fits together
with 1 standard deviation errors, which are smaller than
1%. In Fig. 2 we plot the quark mass dependence of the a
parameter at B = 6.10, which is well described by a
linear function. A similar quark mass dependence is
observed for the B parameter. We find that linear plus
quadratic extrapolations yield results consistent within
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FIG. 2. Chiral extrapolation of the « parameter with linear
(solid) and quadratic (dotted) functions at 8 = 6.10.
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error bars in the chiral limit at all lattice spacings. The
«a and B parameters in the chiral limit obtained by linear
extrapolations are summarized in Table L. The errors are
at most a few percent. The contribution of the mixing
operator in Eq. (3) is smaller than 10%.

We present in Fig. 3 @ and S in physical units as a
function of a. We examine three choices, the nucleon
mass my, the p mass m,, and the pion decay constant
f - to determine the physical scale of the lattice. We take
these physical parameters given by CP-PACS [9], because
a and B have dimension three and the error of mass scale
is magnified by a factor of 3, so that high statistics results
are essential. Figure 3 indicates that scaling violation «
and B is minimized if nucleon mass is used as input. The
use of mesonic quantities, m, or f, on the other hand,
leads to substantial scaling violation. A simple linear
extrapolation to the continuum limit results in & and
that vary up to 30% depending on the input physical scale
as found in Table L

We adopt the « and 83, extrapolated to a = 0, using the
my input as our central value, since small scaling viola-
tion would minimize the error associated with the con-
tinuum extrapolation, and include the uncertainty in the
physical scale as systematic error. We obtain

|a(NDR, 2 GeV)| = 0.0090(09)(*3,) GeV3,  (10)

|B(NDR, 2 GeV)| = 0.0096(09)(*$,) GeV?,  (11)

where the first error is statistical and the second one is
systematic. Since the CP-PACS spectrum calculation [9]
is superior to this work in controlling the systematic
errors using finer lattices and lighter quark masses than
this simulation, we estimate the ambiguity due to scale
setting from their results of quenched light hadron mass
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FIG. 3. Continuum extrapolation of « (open) and S (filled)

parameters. The lattice scale is determined from my (circle),
m, (square) and f, (triangle) at each B. The errors in the
continuum limit are statistical only.
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spectrum. They show that the values of m, and f, in
quenched QCD deviate from the experiment by +7% and
—2% respectively in the continuum limit, once we set the
lattice spacing by my. The errors of mass scale in « and 8
are magnified by a factor of 3 and found to be comparable
with the variation of the results at the continuum limit in
Table I. This implies that the systematics from the physi-
cal scale dependence are mostly ascribed to the quench-
ing effects. We note that the sign of & and § are relatively
opposite, while the overall sign is a convention. Our
results are about 3 times larger than the smallest estimate
among various QCD model predictions, |a| = |B8] =
0.003 GeV? [13], which is often used in phenomenology
of GUTs to derive ‘“‘conservative” estimates of proton
lifetime.

Our present « and (B are smaller than the previous
results using the same gauge and quark actions,
|a(NDR, 1/a)| = 0.015(1) GeV? and |B(NDR, 1/a)| =
0.014(1) GeV? at 1/a = 2.30(4) GeV [7], beyond what
is expected from scaling violation obtained in this
work. We suspect that \/Z, and the lattice scale deter-
mined from m, are overestimated while their errors are
not properly estimated, probably due to large fluctuations
in \/Z_p for which only 100 configurations were used. We
also compare our & and 8 with those of the preliminary
results of RBC Collaboration using quenched domain wall
QCD with the DBW?2 gauge action on an L3 X T X N5 =
163X 32 X 12 lattice at 1/a = 1.23(5) GeV:
|a(NDR, 1/a)| = 0.006(1) GeV® and |B(NDR, 1/a)| =
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0.007(1) GeV? [8], which are smaller by 30% than our
values. This is of the order of scaling violation that is
expected when the physical scale is set by mesonic quan-
tities, but a quantitative comparison awaits their calcula-
tion of the continuum limit. It should be noted that the
effect of the change of renormalization scale from 1/a =
1.23 GeV to 2 GeV is about 3.5% and negligibly small.

In conclusion, we have studied scaling violation in the
proton decay « and B parameters in quenched lattice
QCD. Scaling violation is mild if the physical lattice
scale is set by the nucleon mass, whereas a 30% system-
atic errors may arise from the physical scale, reflecting a
part of the quenching error. Our estimate of a and B is
larger by about 3 times than the smallest prediction
among various QCD models. This implies stronger con-
straints on GUT models. We can eliminate a remaining
major uncertainty due to the quenched approximation by
repeating the calculation on the full QCD gauge configu-
rations which we already have [14]. This should be a next
task.
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