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The kaonB parameter is calculated in quenched lattice QCD with the Wilson quark action. The
mixing problem of theDs ­ 2 four-quark operators is solved nonperturbatively with full use of chiral
Ward identities, and this method enables us to construct the weak four-quark operators exhibiting
good chiral behavior. We findBK sNDR, 2 GeVd ­ 0.69s7d (where NDR denotes naive dimensional
regularization) at the lattice cutoff scale ofa21 ­ 2.7 4.3 GeV. [S0031-9007(98)06929-4]
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Reliable knowledge of theK0-K̄0 transition matrix
elementBK is indispensable for further advancement i
CP violation phenomenology, and much effort has bee
expended towards this end using lattice QCD. Success
calculations of BK so far achieved [1,2] exclusively
employ the Kogut-Susskind quark action that respec
chiral U(1) symmetry. Whereas the verification tha
both Wilson and Kogut-Susskind (KS) quark action
yield the identical result is an important step to giv
full credit to the lattice QCD calculation, the attempt
made with the Wilson quark action have not yielde
much success [3–5]: the Wilson action that explicitl
breaks chiral symmetry causes mixing among four-qua
operators of different chiral structure, and hence ensuri
the correct chiral behavior of theDs ­ 2 operators is a
substantially more complicated problem. Early studie
have shown that the mixing problem is not adequate
treated by perturbation theory, leading to an “incorre
answer” for the matrix element [3]. Attempts were the
made to solve the mixing problem nonperturbatively wit
the aid of chiral perturbation theory [4]. Unfortunately
they were not successful since the calculation contai
large systematic uncertainties arising from higher ord
effects that survive the continuum limit. More recently
proposal has been made [5] to improve the chiral behav
of the Ds ­ 2 operator with the use of nonperturbative
renormalization (NPR) [6], and encouraging results ha
been reported [7].

In this Letter we propose an alternative nonperturbativ
method to solve the operator mixing problem using chir
Ward identities [8]. This method fully incorporates the
chiral properties of the Wilson action, yielding theDs ­
2 operator that shows good chiral behavior. No effectiv
theories are invoked to estimate the matrix element. T
resultingBK we obtained shows good agreement with th
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value from the KS quark action. We shall also revisit th
perturbative method.

Let us consider a set of weak operators in the co
tinuum hÔij which closes under chiral rotationdaÔi ­
ica

ijÔj . These operators are given by linear combination
of a set of lattice operatorshOaj, as Ôi ­

P
a ZiaOa .

We choose the mixing coefficientsZia such that the
Green functions ofhÔij with quarks in the external states
satisfy the chiral Ward identity toOsad. This identity can
be derived in a standard manner [8] and takes the form
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PasxdÔis0d
Y

k

c̃spkd

+
1

ca
ij

*
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wherepk is the momentum of the external quark,ZA and
r ­ sm 2 dmdyZA are constants to be determined from
the Ward identities for the axial vector currents [9], an
Pa is the pseudoscalar density of flavora.

The four-quark operator relevant toBK is given by
ÔVV1AA ­ VV 1 AA whereV ­ s̄gmd andA ­ s̄gm 3

g5d. Then, ÔVV1AA ­ VV 1 AA and ÔVA ­ VA
form a minimal set of the operators that closes und
l3 ­ diags1, 21, 0d chiral rotation. Taking account of
CPS symmetry (note that we takemd ­ ms in this article)
[3], mixing of these operators is written̂OVV1AAy2 ­
ZVV1AAsO0 1 z1O1 1 · · · 1 z4O4d and ÔVA ­ ZVA 3

z5O5, where the six lattice operatorsOi are given in the
Fierz eigenbasis byO0 ­ sVV 1 AAdy2, O1 ­ sSS 1

TT 1 PPdy2, O2 ­ sSS 2 TTy3 1 PPdy2, O3 ­
sVV 2 AAdy2 1 sSS 2 PPd, O4 ­ sVV 2 AAdy2 2
© 1998 The American Physical Society
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sSS 2 PPd, andO5 ­ VA with S ­ s̄d, P ­ s̄g5d, and
T ­ s̄fgm, gngdy2 sm , nd.

We consider the four external quarks having an equ
momentump, and denote byGVV1AA and GVA the sum
of the Green functions on the left-hand side of (1) wit
external quark legs amputated. Using the projection o
eratorPi for the Fierz eigenbasis corresponding toOi, we
write GVV1AAyZVV1AA ­ G5P5 andGVAyZVA ­ G0P0 1

G1P1 1 · · · 1 G4P4. Writing ÔVV1AA,VA in (1) in terms
of lattice operators, we obtain six equations for the fiv
coefficients z1, . . . , z5: Gi ­ ci

0 1 ci
1z1 1 · · · 1 ci

5z5 ­
Osad for i ­ 0, . . . , 5. This gives an overconstrained se
of equations, and we may choose any five equations
exactly vanish to solvezi: the remaining equation should
automatically be satisfied toOsad. We choose four equa-
tions to be those fori ­ 1, . . . , 4, since O1, . . . , O4 are
absent in the continuum. The choice of the fifth equatio
i ­ 0 or 5, is more arbitrary. We have confirmed tha
either G0 ­ 0 or G5 ­ 0 leads to a consistent result to
Osad for z1, . . . , z4 in the regionpa & 1. In the present
analysis we chooseG5 ­ 0. The overall factorZVV1AA

is determined by the NPR method [6]. We convert th
matrix elements on the lattice into those of the modifie
minimal subtractionsMSd scheme in the continuum using
naive dimensional regularization (NDR) renormalized
m ­ 2 GeV [10]:

BK sNDR, md ­

Ω
1 1

assmd
4p

∑
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1 8 log2

∏æ
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kK̄0jÔVV1AAjK0l
8
3 j k0jÂjK0lj2

, (2)

where p denotes the momentum at which the mixin
coefficients are evaluated.

For comparative purposes we also calculateBK with
one-loop perturbative mixing coefficients [11] after ap
plying a finite correction to convert into the NDR schem
together with the tadpole improvement withaMSs1yad.

We remark here that the equations obtained in Ref.
correspond toGi ­ 0 for i ­ 1, . . . , 4 in which the first
and the third terms in the Ward identity (1) are droppe
The NPR method satisfies the full Ward identities only
the limit of large external virtualities [5–7].

We made calculations with the Wilson quark action an
the plaquette gluon action atb ­ 5.9 6.5 in quenched
QCD using a Fujitsu VPP500/80 at KEK. Table
summarizes our run parameters. Gauge configurations
generated with the five-hit pseudoheat-bath algorithm w
2000(b ­ 5.9 and 6.1), 5000(b ­ 6.3), or 8000(b ­
6.5) sweep intervals apart. The physical size of the latti
is chosen to beLa ø 2.4 fm with the lattice spacing
determined frommr ­ 770 MeV. Four values of the
hopping parameter are adopted at eachb. We interpolate
the result tomsay2, which is determined frommKymr ­
0.648, for degenerated and s quark masses. Errors are
al
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TABLE I. Parameters of simulations.

b 5.9 6.1 6.3 6.5

L3 3 T 243 3 64 323 3 64 403 3 96 483 3 96
#conf. 300 100 50 24

K 0.15862 0.15428 0.15131 0.14925
0.15785 0.15381 0.15098 0.14901
0.15708 0.15333 0.15066 0.14877
0.15632 0.15287 0.15034 0.14853

Kc 0.15986(3) 0.15502(2) 0.15182(2) 0.14946(3
a21 sGeVd 1.95(5) 2.65(11) 3.41(20) 4.30(29)
aMSs1yad 0.1922 0.1739 0.1596 0.1480

msay2 0.0294(14) 0.0198(16) 0.0144(17) 0.0107(16
pp2a2 0.9595 0.5012 0.2988 0.2056

estimated by the single elimination jackknife method f
all measured quantities.

Our calculations are carried out in two steps. We fir
calculatezi andZVV1AA using the quark Green functions
having finite space-time momenta. Quark propagators
solved in the Landau gauge for the point source located
the origin with the periodic boundary condition. We nex
extractBK from the ratiokK̄0st ­ T dÔVV1AAst0dK0st ­
1dlys8y3dykK̄0st ­ T dÂst0dlykÂst0dK0st ­ 1dl, each
Green function projected onto the zero spatial mome
tum, by fitting a plateau seen as a function oft0. For
this calculation quark propagators are solved witho
gauge fixing employing the wall source placed at th
edge where the Dirichlet boundary condition is im
posed in the time direction. We obtainBK at msy2 by
quadratically interpolating the data at the four hoppin
parameters.

We plot in Fig. 1 a typical result for the mixing
coefficients as a function of the external quark momen
The plot shows, as desired, only weak dependence ofzi on
momentum in the range0.1 & p2a2 & 1.0. This enables
us to evaluate the mixing coefficients with small erro
at the scalepp ø 2 GeV, which always falls within the
range of a plateau for our runs atb ­ 5.9 6.5.
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FIG. 1. Mixing coefficientsz1, . . . , z4 plotted as a function
of external momentum squaredspad2 for K ­ 0.15034 at
b ­ 6.3. Vertical line corresponds topp ø 2 GeV.
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In Fig. 2 we compare the mixing coefficients evaluate
at the scalepp (filled symbols) with the perturbative
values obtained withaMSs1yad (open symbols) as a
function of lattice spacing. A large value ofz2 determined
by the Ward identities sharply contrasts with the one-loo
perturbative result,z2 ­ 0. For the other coefficients, the
perturbative calculations agree with the nonperturbati
ones in sign and rough orders of magnitude: they differ
quantitative details, however.

Let us examine the chiral property of the
operator ÔVV1AA by calculating the ratio
kK̄0jÔVV1AAjK0lys8y3dyjk0jP̂jK0lj2, which vanishes
at mq ­ 0 in the continuum. In Fig. 3 we show the
results atmq ­ 0 obtained by a quadratic extrapolation
of data in mq ­ s1yK 2 1yKcdy2, where WI stands
for our method using chiral Ward identities and PT fo
tadpole-improved one-loop perturbation theory (numbe
are given in Table II). The pseudoscalar densityP̂ in
the denominator is renormalized perturbatively for bo
cases. The advantage is clearly seen with use of
Ward identities, the ratio becoming consistent with ze
at the lattice spacingmra & 0.3sa & 0.08 fmd. In the
perturbative approach, the chiral behavior is recover
only after extrapolation to the continuum limit, where w
adopted a linear dependence ona expected for the Wilson
quark action in the extrapolation shown in Fig. 3.

Our final results forBK sNDR, 2 GeVd are presented in
Fig. 4 as a function of lattice spacing (see Table II fo
numerical details). The method based on WI gives
value well convergent from a lattice spacing ofmra ø
0.3. Unfortunately the large errors do not allow us t
take a linear extrapolation to the continuum limit. W
may instead take a constant fit of the three results
smaller lattice spacings (a21 ­ 2.7 4.3 GeV) and find
BK sNDR, 2 GeVd ­ 0.69s7d, which is our best estimate
for the WI method.
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FIG. 2. Comparison of the mixing coefficientsz1, . . . , z4
evaluated atpp ø 2 GeV using the Ward identity (WI, solid
symbols) and perturbative (PT, open symbols) methods. T
coefficients are plotted as a function ofmra.
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Since the origin of the large error is traced to that of th
mixing coefficients, we attempt to develop an alternati
method, in which the denominator of (2) is estimate
with the vacuum saturation of̂OVV1AA constructed by
the WI method (we refer to this as the WIVS method).
Since the large error of the WI method arises from t
mixing coefficients, we expect with the WIVS method that
the fluctuations in the numerator are largely canceled
those in the denominator. In fact, errors are substantia
reduced with the WIVS method as apparent in Fig. 4. Th
cost is that the correct chiral behavior of the denomina
is not respected at a finite lattice spacing due to t
contributions of the pseudoscalar matrix element. Th
contribution brings the WIVS result to disagree with WI at
a finite lattice spacing, but the discrepancy tends to van
in the continuum limit. A linear extrapolation ina yields
BK sNDR, 2 GeVd ­ 0.562s64d.

This linear extrapolation, however, involves a sy
tematic uncertainty arising from the chiral symmetr
breaking termcPjk0jPjK0lj2 in the denominator, where
cP ­

P4
i­1 fizi with fi as the coefficients of vac-

uum saturation. The perturbative contribution tocP

starts at a two-loop and is ofOsg4s1yadd; the diver-
gence of the matrix elementk0jPjK0l ~ fg2s1yadg24y11.
Hence, cPjk0jPjK0lj2 receives contributions of the
form fg2s1yadg14y11 which diminishes only as a frac-
tional power of 1y loga. To assess the systemati
error associated with this effect, we estimate th
two-loop contribution to cP by squaring the typi-
cal magnitude of the one-loop terms inzi : e.g.,
jz

one-loop
i faMSs1yadgj & 0.08 at b ­ 5.9 from Fig. 2.

We also estimatejk0jPjK0ljyjk0jAjK0lj ø 6 which yields
cPjk0jPjK0lj2yjk0jAjK0lj2 & 0.25. SinceaMSs1yad14y11

decreases by 30% betweenb ­ 5.9 6.5, over whicha
decreases by a factor of 2, this fraction should reduce
ø0.1 after taking the continuum limit. Taking account o

FIG. 3. Test of the chiral behavior of
kK̄0jÔVV1AAjK0lys8y3dyjk0jP̂jK0lj2 at mq ­ 0 for the WI and
PT methods. The operators are renormalized at 2 GeV in
NDR scheme. The solid line is a linear extrapolation to th
continuum limit.
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TABLE II. kK̄0jÔVV1AAjK0lys8y3dyjk0jP̂jK0lj2 in the chiral limit andBK sNDR, 2 GeVd for
WI, WIVS, and PT methods as a function ofb.

kK̄0jÔVV1AAjK0l
8
3
jk0jP̂jK0lj2

at mq ­ 0 BK sNDR, 2 GeVd

b WI PT WI WI VS PT

5.9 20.0200s39d 20.0415s8d 10.38s6d 10.168s20d 20.468s14d
6.1 20.0068s55d 20.0333s10d 10.68s11d 10.288s29d 20.225s22d
6.3 20.0017s74d 20.0240s12d 10.69s12d 10.342s33d 20.000s21d
6.5 10.006s10d 20.0188s17d 10.72s18d 10.360s52d 10.156s40d

a ­ 0 20.0009s31d 10.562s64d 10.639s76d
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uncertainties in the choice of coupling constant and th
mixing coefficients at the two-loop level, we estimate th
chiral symmetry breaking contribution of the pseudoscal
density that survives the continuum limit to be&20%.
We conclude BK sNDR, 2 GeVd ­ 0.56s6ds11d for the
WIVS method.

Intriguing in Fig. 4 is the fact that the perturbative cal
culation (PT), which gives the completely “wrong value
at a fi 0, yields the correct result forBK when extrapo-
lated to the continuuma ­ 0. This is a long extrapola-
tion from negative to positive, but the linearly extrapolate
value BK sNDR, 2 GeVd ­ 0.639s76d is reasonable com-
pared with those obtained with the WI or WIVS method.
We note that this long extrapolation may bring an erro
larger than quoted in the extrapolated value due to syste
atic effects ofOsssag2s1yadddd andOsssg4s1yadddd. The estima-
tion of these systematic errors, however, is too complicat
because the matrix elements of the mixing operators ha
quite different absolute values.

Each of the results from the above three metho
suffers from statistical and systematic errors of 10–20
which are comparable in magnitude. Although the WIVS

and the PT methods have the advantage of small statist
errors, we recognize that this is offset by the difficult
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FIG. 4. K0-K̄0 matrix elementBK sNDR,2 GeVd plotted as
a function of the lattice spacing for the WI, WIVS, and PT
methods. The solid lines show linear extrapolations to th
continuum limit.
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to control large systematic errors when attempting
continuum extrapolation. We thus conservatively take th
result of the WI methodBK sNDR, 2 GeVd ­ 0.69s7d at
a21 ­ 2.7 4.3 GeV as our final estimate of the presen
work. This value is compared with a JLQCD calculation
with the KS action,BK sNDR, 2 GeVd ­ 0.628s42d at the
continuum limit [2], where we expect that the two values
should agree up toOsad.

In conclusion, our analysis forBK demonstrates the ef-
fectiveness of the method using the chiral Ward identitie
for constructing theDs ­ 2 operator with the correct chi-
ral property. We have shown that both Wilson and KS
actions give virtually the identical answer forBK in their
continuum limit. The application of this method toBB is
also straightforward.
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