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Lattice QCD Calculation of the Kaon B Parameter with the Wilson Quark Action

S. Aoki,' M. Fukugita? S. Hashimotd, N. Ishizuka! Y. Iwasaki** K. Kanaya!** Y. Kuramashi, M. Okawa;
A. Ukawa! and T. Yoshié*

(JLQCD Collaboration)

'Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
2Institute for Cosmic Ray Research, University of Tokyo, Tanashi, Tokyo 188, Japan
3Computing Research Center, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan
4Center for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
3Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan
(Received 27 May 1997; revised manuscript received 6 February) 1998

The kaonB parameter is calculated in quenched lattice QCD with the Wilson quark action. The
mixing problem of theAs = 2 four-quark operators is solved nonperturbatively with full use of chiral
Ward identities, and this method enables us to construct the weak four-quark operators exhibiting
good chiral behavior. We fin#x(NDR,2 GeV) = 0.69(7) (where NDR denotes naive dimensional
regularization) at the lattice cutoff scale @f' = 2.7-4.3 GeV. [S0031-9007(98)06929-4]

PACS numbers: 12.38.Gc, 11.30.Rd, 14.40.Aq

Reliable knowledge of thek?-K° transition matrix value from the KS quark action. We shall also revisit the
elementBg is indispensable for further advancement inperturbative method.
CP violation phenomenology, and much effort has been Let us consider a set of weak operators in the con-
expended towards this end using lattice QCD. Successfeinuum {0;} which closes under chiral rotatiof*0; =
calculations of By so far achieved [1,2] exclusively ic?jOj. These operators are given by linear combinations
employ the Kogut-Susskind quark action that respectsf a set of lattice operatorf0,}, as O; = >, ZiaO..
chiral U(1) symmetry. Whereas the verification thatWe choose the mixing coefficientg;, such that the
both Wilson and Kogut-Susskind (KS) quark actionsGreen functions of0,} with quarks in the external states
yield the identical result is an important step to givesatisfy the chiral Ward identity t®(a). This identity can
full credit to the lattice QCD calculation, the attempts be derived in a standard manner [8] and takes the form
made with the Wilson quark action have not yielded . N
much success [3-5]: the Wilson action that explicitly —2PZA<ZP“(X)0i(0)l_[¢(pk)> +
breaks chiral symmetry causes mixing among four-quark o k
operators of different chiral structure, and hence ensuring R .
the correct chiral behavior of th&s = 2 operators is a Ciaj<0j(0)l_[ ¢(Pk)> -
substantially more complicated problem. Early studies k
have shown that the mixing problem is not adequately " N -
treated by perturbation theory, leading to an “incorrect iz<0i(0)n¢(l’k)5alﬁ(m)> +0(a) =0, (1)
answer” for the matrix element [3]. Attempts were then ! k#l
made to solve the mixing problem nonperturbatively withwhere p, is the momentum of the external quag, and
the aid of chiral perturbation theory [4]. Unfortunately, p = (m — ém)/Z, are constants to be determined from
they were not successful since the calculation containghe Ward identities for the axial vector currents [9], and
large systematic uncertainties arising from higher ordep¢ is the pseudoscalar density of flawar
effects that survive the continuum limit. More recently a The four-quark operator relevant t8x is given by
proposal has been made [5] to improve the chiral behaviof,y 44 = VV + AA whereV = S5yud andA = 5y, X
of the As = 2 operator with the use of nonperturbative ys4.  Then, Oyyiasa = VV + AA and Oyy = VA
renormalization (NPR) [6], and encouraging results havdorm a minimal set of the operators that closes under
been reported [7]. A3 = diag(1,—1,0) chiral rotation. Taking account of
In this Letter we propose an alternative nonperturbativeCPS symmetry (note that we take, = m; in this article)
method to solve the operator mixing problem using chira[3], mixing of these operators is writte®yy s 44/2 =
Ward identities [8]. This method fully incorporates the Zyy 4 44(0g + 2101 + -+ + z404) and Ovs = Zys X
chiral properties of the Wilson action, yielding thess = 7505, where the six lattice operator3; are given in the
2 operator that shows good chiral behavior. No effectiveFierz eigenbasis byo, = (VV + AA)/2, O; = (SS +
theories are invoked to estimate the matrix element. Th&T + PP)/2, 0O, =(SS — TT/3 + PP)/2, O3 =
resultingBx we obtained shows good agreement with the(VV — AA)/2 + (SS — PP), 04 = (VV — AA)/2 —

1778 0031-900798/81(9)/1778(4)$15.00 © 1998 The American Physical Society



VOLUME 81, NUMBER 9 PHYSICAL REVIEW LETTERS 31 AGusT 1998

(SS — PP),andOs = VA with § = 5d, P = 5ysd, and TABLE I. Parameters of simulations.

T = 5y, 7,)d/2 (1 < v). 5 5o o1 o3 o5
We consider the four external quarks having an equal : - : -

momentump, and denote by ;a4 and 'y, the sum L X T 24> X 64 328 X 64 40° X 96 48 X 96

of the Green functions on the left-hand side of (1) with #conf. 300 100 50 24

external quark legs amputated. Using the projection op- 0.15862 0.15428 0.15131 0.14925

; . . - 0.15785 0.15381 0.15098 0.14901
eratorP; for the Fierz eigenbasis correspondingitg we 015708 015333 0.15066 0.14877

write T'vy+aa/Zyv+aa = I'sPs andlva/Zva = ToPo + 0.15632  0.15287  0.15034  0.14853
['yPy + --- 4 T4Pys. Writing Oyy1aava in (1) in terms K. 0.15986(3) 0.15502(2) 0.15182(2) 0.14946(3)
of lattice operators, we obtain six equations for the five,-1 (Gev) 1.95(5) 2.65(11)  3.41(20)  4.30(29)
coefficients zy,...,z5: I = ¢y + ciz1 + -+ + c525 = ags(1/a)  0.1922 0.1739 0.1596 0.1480
O(a) fori = 0,...,5. This gives an overconstrained set ma/2  0.0294(14) 0.0198(16) 0.0144(17) 0.0107(16)
of equations, and we may choose any five equations to p*a?  0.9595 0.5012 0.2988 0.2056

exactly vanish to solve;: the remaining equation should
automatically be satisfied t0(a). We choose four equa- egtimated by the single elimination jackknife method for
tions to be those foi = 1,...,4, since 0y,...,04 are 4| measured quantities.

absent in the continuum. The choice of the fifth equation, o calculations are carried out in two steps. We first

i_= 0 or 5, is more arbitrary. We have_confirmed thatcalculatezi andZyy+ a4 Using the quark Green functions
either I', = 0 or I's = 0 leads to a consistent result 10 paying finite space-time momenta. Quark propagators are
O(a) for zi,...,z4 in the regionpa =< 1. In the present  gojved in the Landau gauge for the point source located at

analysis we choosé&s = 0. The overall factorZyy+4a  the origin with the periodic boundary condition. We next
is determined by the NPR method [6]. We convert theextractBK from the ratio(R%(r = T)Ovy +as(t)KO(r =

matrix elements on the lattice into those of the modified1)>/(8/3)/<[-(0(t = DA()(AGK(t = 1)) each
minimal subtraction(MS) scheme in the continuum using Green function projected onto the zero spatial momen-
naive dimensional regularization (NDR) renormalized aty,m by fitting a plateau seen as a function raf For

p =2 GeV[10]: this calculation quark propagators are solved without
as(p) " gauge fixing employing the wall source placed at the
Bx(NDR, p) = {1 iy [—4log<—> edge where the Dirichlet boundary condition is im-
14 posed in the time direction. We obtaby at m,/2 by
- — + 8Iogz}} quadratically interpolating the data at the four hopping
3 A parameters.
(K°|Ovy+aalK°) @ We plot in Fig. 1 a typical result for the mixing
§| (OIA|IKO?2 coefficients as a function of the external quark momenta.

) .. The plot shows, as desired, only weak dependenceaf
where p denotes the momentum at which the mixing momentum in the range1 < p242 < 1.0. This enables

coefficients are evaluated. _ us to evaluate the mixing coefficients with small errors
For comparative purposes we also calculie with 4t the scalep* ~ 2 GeV, which always falls within the

one-loop perturbative mixing coefficients [11] after ap- range of a plateau for our runs At= 5.9-6.5.
plying a finite correction to convert into the NDR scheme

together with the tadpole improvement wits(1/a).

We remark here that the equations obtained in Ref. [5] . -
correspond td’; = 0 for i = 1,...,4 in which the first - mixing coefficients . 1
and the third terms in the Ward identity (1) are dropped. =zt
The NPR method satisfies the full Ward identities only in 005 r*++ +"'““"'“*n. : %
the limit of large external virtualities [5—7]. I ”"“‘oﬂo.:.'. 1

We made calculations with the Wilson quark action and 0.00 ""fo'dw-,,
the plaguette gluon action @ = 5.9-6.5 in quenched
QCD using a Fujitsu VPP500/80 at KEK. Table | I 1
summarizes our run parameters. Gauge configurations are _gs | “““‘.. _
generated with the five-hit pseudoheat-bath algorithm with shadat ‘A’A’A‘A’A"""”""‘““’

20008 = 5.9 and 6.1), 50008 = 6.3), or 80003 — mmu A

6.5) sweep intervals apart. The physical size of the lattice g . bl N
is chosen to beLa = 2.4 fm with the lattice spacing 01 Lo, 100
determined fromm, = 770 MeV. Four values of the pa

hopping parameter are adopted at eAchWe interpolate FIG. 1. Mixing coefficientsz,...,z4 plotted as a function

the result tom,a/2, which is determined fromg /m, =  of external momentum squaretba)> for K = 0.15034 at
0.648, for degeneratel and s quark masses. Errors are g = 6.3. Vertical line corresponds tp* =~ 2 GeV.
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In Fig. 2 we compare the mixing coefficients evaluated Since the origin of the large error is traced to that of the
at the scalep” (filled symbols) with the perturbative mixing coefficients, we attempt to develop an alternative
values obtained withays(1/a) (open symbols) as a method, in which the denominator of (2) is estimated
function of lattice spacing. A large value of determined  with the vacuum saturation 0Oyy4aa constructed by
by the Ward identities sharply contrasts with the one-looghe WI method (we refer to this as the WImethod).
perturbative result;; = 0. For the other coefficients, the Since the large error of the WI method arises from the
perturbative calculations agree with the nonperturbativenixing coefficients, we expect with the \)4 method that
ones in sign and rough orders of magnitude: they differ irthe fluctuations in the numerator are largely canceled by
quantitative details, however. those in the denominator. In fact, errors are substantially

Let us examine the chiral property of the reduced with the WJs method as apparent in Fig. 4. The
operator  Ovyyaa by calculating the ratio costis that the correct chiral behavior of the denominator
(K°|Ovy+aalK°)/(8/3)/101P|K)|?, which vanishes is not respected at a finite lattice spacing due to the
at my = 0 in the continuum. In Fig. 3 we show the contributions of the pseudoscalar matrix element. This
results atm, = 0 obtained by a quadratic extrapolation contribution brings the Wk result to disagree with WI at
of data inm, = (1/K — 1/K.)/2, where WI stands a finite lattice spacing, but the discrepancy tends to vanish
for our method using chiral Ward identities and PT forin the continuum limit. A linear extrapolation im yields
tadpole-improved one-loop perturbation theory (numbers8x(NDR,2 GeV) = 0.562(64).
are given in Table Il). The pseudoscalar densftyin This linear extrapolation, however, involves a sys-
the denominator is renormalized perturbatively for bothtematic uncertainty arising from the chiral symmetry
cases. The advantage is clearly seen with use of thiereaking termcp|(0|P|K°)|?> in the denominator, where
Ward identities, the ratio becoming consistent with zerocp = Z?:lfizi with f; as the coefficients of vac-
at the lattice spacingi,a < 0.3(a < 0.08 fm). In the uum saturation. The perturbative contribution tg
perturbative approach, the chiral behavior is recoveredtarts at a two-loop and is of(g*(1/a)); the diver-
only after extrapolation to the continuum limit, where we gence of the matrix elemer0|P|K°) o« [g2(1/a)]*/'!.
adopted a linear dependencemexpected for the Wilson Hence, ¢p|(0|P|K°)|> receives contributions of the
guark action in the extrapolation shown in Fig. 3. form [g2(1/a)]'"*/*" which diminishes only as a frac-

Our final results forBx(NDR, 2 GeV) are presented in tional power of 1/loga. To assess the systematic
Fig. 4 as a function of lattice spacing (see Table Il forerror associated with this effect, we estimate the
numerical details). The method based on WI gives awo-loop contribution to cp by squaring the typi-
value well convergent from a lattice spacing®fa = cal magnitude of the one-loop terms ig;: e.g.,
0.3. Unfortunately the large errors do not allow us to |, 1"""[al\,[—s(l/a)]| < 0.08 at B =59 from Fig. 2.
take a linear extrapolation to the continuum limit. We\we also estimat&0|P|K°)|/|(0]A|K°)| = 6 which yields
may instead take a constant fit of the three results at,|(0|P|k)|2/|(0|A|K%)> < 0.25. Sinceags(l/a)'¥/!
smaller lattice spacingsa(' = 2.7-4.3 GeV) and find  decreases by 30% betwegh= 5.9-6.5, over whicha
Bk(NDR,2 GeV) = 0.69(7), which is our best estimate decreases by a factor of 2, this fraction should reduce to

for the WI method. ~(0.1 after taking the continuum limit. Taking account of
010 T B e e e e
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m a
P FIG. 3. Test of the chiral behavior of
FIG. 2. Comparison of the mixing coefficients;,...,zs  (K°|Oyy4aalK°)/(8/3)/1(0IP|K)|* at m, = 0 for the WI and
evaluated atp® = 2 GeV using the Ward identity (WI, solid PT methods. The operators are renormalized at 2 GeV in the
symbols) and perturbative (PT, open symbols) methods. Th&DR scheme. The solid line is a linear extrapolation to the
coefficients are plotted as a functionmf,a. continuum limit.
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TABLE Il.  (K°|Ovv+aalK)/(8/3)/1{0|P|K)? in the chiral limit andBx(NDR,2 GeV) for
WI, WIlys, and PT methods as a function gf

(KO Oyv+aalK°)

Saph atmg =0 Bx(NDR,2 GeV)
B Wi PT Wi Wi s PT
5.9 —0.020039)  —0.0415(8) +0.38(6) +0.168(20)  —0.468(14)
6.1 —0.0068(55)  —0.0333(10)  +0.68(11)  +0.288(29)  —0.225(22)
6.3 —0.0017(74)  —0.0240(12)  +0.69(12)  +0.34233)  —0.000(21)
6.5 +0.006(10) —0.0188(17)  +0.72(18)  +0360(52)  +0.156(40)
a=0 —0.0009(31) +0.562(64)  +0.639(76)

uncertainties in the choice of coupling constant and théo control large systematic errors when attempting a
mixing coefficients at the two-loop level, we estimate thecontinuum extrapolation. We thus conservatively take the
chiral symmetry breaking contribution of the pseudoscalaresult of the WI methodBx(NDR,2 GeV) = 0.69(7) at

density that survives the continuum limit to be20%. a~! = 2.7-4.3 GeV as our final estimate of the present
We conclude Bx(NDR,2 GeV) = 0.56(6)(11) for the work. This value is compared with a JLQCD calculation
WIy,s method. with the KS actionBx(NDR, 2 GeV) = 0.628(42) at the

Intriguing in Fig. 4 is the fact that the perturbative cal- continuum limit [2], where we expect that the two values
culation (PT), which gives the completely “wrong value” should agree up t®(a).
ata # 0, yields the correct result foBx when extrapo- In conclusion, our analysis fax demonstrates the ef-
lated to the continuuna = 0. This is a long extrapola- fectiveness of the method using the chiral Ward identities
tion from negative to positive, but the linearly extrapolatedfor constructing thels = 2 operator with the correct chi-
value Bx(NDR, 2 GeV) = 0.639(76) is reasonable com- ral property. We have shown that both Wilson and KS
pared with those obtained with the WI or WImethod. actions give virtually the identical answer fBi in their
We note that this long extrapolation may bring an errorcontinuum limit. The application of this method By is
larger than quoted in the extrapolated value due to systenalso straightforward.
atic effects of0(ag?(1/a)) andO(g*(1/a)). The estima- This work is supported by the Supercomputer Project
tion of these systematic errors, however, is too complicate(No. 1) of High Energy Accelerator Research Organiza-
because the matrix elements of the mixing operators haviion (KEK), and also in part by the Grants-in-Aid of
quite different absolute values. the Ministry of Education (No. 08640349, No. 08640350,
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