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Hybrid Quarkonia on Asymmetric Lattices
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We report on a study of heavy quark bound states containing an additional excitation of the gluonic
degrees of freedom. To this end we employ the nonrelativistic QCD approach on coarse and asymmetric
lattices, where we discard vacuum polarization effects and neglect all spin-correction terms. We find
a clear hybrid signal on all our lattices (as ­ 0.15, . . . , 0.47 fm). We have studied in detail the lattice
spacing artifacts, finite volume effects, and mass dependence. Within the above approximations we
predict the lowest lying hybrid excitation in charmonium to be 1.323(13) GeV above the ground
state, where we use the1P-1S splitting to set the scale. The bottomonium hybrid was found to be
1.542(8) GeV above its ground state. [S0031-9007(99)09172-3]
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Gluonic excitations are ideal objects for investigatin
the nonperturbative nature of the gluonic degrees of fre
dom in QCD. Hybrid mesons can be thought of as hadron
bound states with an additional excitation of the gluon flu
This can give rise to states with nonconventional qua
tum numbers and has triggered an intense experimental
theoretical search for such particles. Previous predictio
for the energies of hybrid states come from phenomen
logical models [1], static potential models [2,3], and lattic
simulations with propagating quarks [4–6]. So far, lattic
QCD is the only approach in which hybrids can be treat
from first principles. However, the errors from such ca
culations on isotropic lattices are still much larger than f
conventional states. This is because the correlation fu
tions decay too rapidly when the excitation energy is ve
large with respect to the inverse lattice spacing. To obta
a similar signal-to-noise ratio one needs a much finer re
lution in the temporal direction.

While in recent years there has been much progre
in obtaining more reliable results from improved action
on spatially coarse lattices, it has also been demonstra
that anisotropic lattices can be employed to accommod
different physical scales on the same lattice. In particul
the study of glueball states on coarse and anisotro
lattices [7] has prompted us to study heavy hybrid stat
on such lattices in order to increase both the scope a
the precision of a previous calculation [8] significantly
There a nonrelativistic approach (NRQCD) was used f
the heavyb quarks on an isotropic lattice witha ø
0.08 fm. NRQCD has frequently been employed to allo
high precision measurements for thebb̄ system [9–12].
Also the combination of improved gluon actions and th
NRQCD approach for heavy quarks has already been u
to determine the spectrum of conventional quarkonia [13
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15]. Previous attempts to measure heavy hybrid states
the lattice were reviewed in [16]. An initial preliminary
study using asymmetric lattices for bottomonium hybri
was presented in [3,17].

In this paper we implemented such an efficient approa
to study in detail the lattice artifacts and finite size effec
for both thebb̄g andcc̄g hybrid. For the latter state we
obtain excellent agreement with a relativistic simulatio
on isotropic lattices [4]. As with this other study w
have neglected dynamical sea quark effects, but we h
succeeded in lowering the statistical error to about1%.

In our study we generated the gauge field configuratio
using a tadpole-improved action which has been emplo
by different groups [7,15]:

S ­ 2bj21
X

x,i.j

(
5
3

Pij 2
1
12

sRij 1 Rijd

)

2 bj
X
x,i

(
4
3

Pit 2
1
12

Rit

)
, Ui ! Uiyus . (1)

Here Pij and Rij denote the trace of the standard spat
plaquette and rectangle, respectively. Where the ind
t appears the plaquette or rectangle extends only
link into the temporal direction. This theory has tw
parameters,b andj, the second of which determines th
asymmetry of our lattices. At tree level the “aspect rati
is j ­ asyat, whereas andat are the spatial and tempora
lattice spacings, respectively. From [7] we note that t
radiative corrections to this relation are small when tadp
improvement is implemented, as described below.

The action in Eq. (1) is designed to be accurate up
O sa4

s , a2
t d classically. To account for radiative correction

all spatial gauge links,Ui , are self-consistently tadpole
improved with us ­ k0js1y3dPijj0l1y4, as suggested in
© 1999 The American Physical Society
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[18]. Such a mean-field treatment was demonstrated
reduce significantly the leading corrections, which a
due to unphysical tadpoles in lattice perturbation theo
Our scaling analysis shows that errorsO saa2

s d are indeed
negligible if the lattice spacing is sufficiently small. Sinc
we will use this action only for small temporal lattice
spacings we expectO saa2

t d errors to be very small.
Therefore we have not employed the tadpole improveme
description for the temporal gauge links. Our results f
two different aspect ratiosj justify such an assumption.

To propagate the heavy quarks through the lattice w
expand the NRQCD Hamiltonian correct toO smy2d,
where all spin-dependent terms are absent. This ac
racy was already employed in [8]. The only additiona
improvement is to correct for temporal and spatial lattic
spacing errors by adding two extra terms (c7, c8) to the
evolution equation in [10]:

H0 ­ 2
D2

2mb
, dH ­ 2c7

atD
4

16nm2
b

1 c8
a2

s Ds4d

24mb
.

(2)

In those operators all spatial links are also tadpo
improved using the sameus as for generating the configu-
rations. After this modification we take the tree-leve
values for all the coefficients in the Hamiltonian. In thi
case,c7 ­ c8 ­ 1.

For the nonrelativistic meson operators we used on
the simplest possible choices and have not tuned
overlap to optimize the signal. The gauge-invaria
construction ofS-state andP-state operators is described
in [10]. For themagnetichybrid signal studied here, we
have inserted the lattice version of the magnetic field in
theQQ̄ state (Bi ­ eijkDjDk):

1Hisxd ­ cysxdBixsxd ,
3Hjksxd ­ cysxdsjBkxsxd .

(3)

For the leading order in the NRQCD Hamiltonian, the op
erators in Eq. (3) create a whole set of degenerate sta
122, 021, 121, 221. These are the spin-singlet and spin
triplet states with zero orbital angular momentum, inclu
ing the exotic combination121. This degeneracy will
be lifted when higher order relativistic corrections are r
introduced into the NRQCD Hamiltonian. We expect th
to be a small effect, in as much as the heavy quarks
very slow in the shallow hybrid potential [3]. By the sam
argument, we expect hybrid states with additional orbit
angular momentum to be almost degenerate as it was
served in [8]. The definition of the operators in Eq. (3
has been augmented by a combination of fuzzing [19] f
the links and Jacobi smearing for the quark fields [20
No effort has been made to optimize the signal furthe
but one could do so if even higher precision is needed,
if higher excited states are to be determined. To extra
the hadron masses we simply fit the meson correlators
to
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a single exponential;

Castd ­ kHy
astdHas0dl ­ Aae2ma t . (4)

We measured correlators every 10 trajectories in t
Monte Carlo update, and for the error analysis we binn
50 such measurements into one. After this binning we s
have an ensemble of 100–1000 configurations depend
on the lattice and the state of interest. As it can be se
from the representative example of an effective mass p
in Fig. 1, the data are very good and the goodness
the single exponential fits is always bigger thanQ ­ 0.1,
which we called acceptable. In Tables I and II we prese
our results and the simulation parameters.

To determine the lattice spacinga21
t , we used the

1P-1S splitting in charmonium and bottomonium. As
expected, the values from charmonium are smaller th
those from bottomonium, because in the quenched
proximation the coupling does not run as in full QCD
At sb, jd ­ s2.4, 5d we observe a16% effect. In order
to give another estimate of quenching errors we also
termined the radial excitations,nS, and calculated the ra-
tio RSP ­ 2S-1Sy1P-1S, which can be compared with
the experimental value of 1.28 for bottomonium. A
sb, jd ­ s2.7, 5d we find RSP ­ 1.424s89d. From these
findings we quote quenching errors ofs10 20d%. Sev-
eral suggestions have been made how to measure the
tial lattice spacing [15,21], but to convert our results in
dimensionful numbers we can usea21

t throughout.
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FIG. 1. A representative effective mass plot for theS, P, and
hybrid states in bottomonium atsb, jd ­ s2.7, 5d, asmb ­ 3.15
on a93 3 40 lattice.
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TABLE I. Results for charmonium. The dimensionful numbers in the scaling region a
given in boldfaced characters. From their average we obtain1.323(13)GeV for the lowest
lying hybrid excitation from our simulation with accuracyO smy2, a4

s , a2
t d. In the last column

we give the spin averaged results from a higher order accuracyO smy6, a4
s , a2

t d.

sb, jd s1.7, 5d s1.9, 5d s2.2, 5d s2.4, 5d s2.4, 5d
Volume 43 3 40 43 3 40 83 3 40 83 3 40 83 3 40

us 0.7370 0.7568 0.7841 0.7997 0.7997
asmc 3.0 2.66 2.0 1.62 1.62,O smy6d
P-S 0.2196(18) 0.1689(26) 0.1299(13) 0.1068(21) 0.1047(42

a21
t yGeV 2.084(18) 2.709(42) 3.522(37) 4.286(86) 4.37(18)

H-S 0.5713(98) 0.4860(48) 0.3821(33) 0.3048(17) 0.3011(24)
H-SyP-S 2.602(49) 2.877(53) 2.928(53) 2.855(59) 2.87(12)
H-SyGeV 1.191(23) 1.317(24) 1.346(18) 1.306(27) 1.316(54)
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We have also tested the velocity expansion and includ
relativistic corrections up toO smy6d for some of our
lattices. At this level of accuracy we could not resolve an
significant change in our results. A more detailed analys
of the spin structure is the subject of a future project.

In this study we were mainly interested in the gluoni
excitations of heavy quarkonia. For this purpose it wa
irrelevant to adjust the quark masses to their exact valu
For some lattices we have changed the quark masses
25% and did not find any noticeable change in the rat
RH ­ s1H-1Sdys1P-1Sd.

Finite volume effects were a source of immediat
concern for us. This is because hybrid states are expec
to reside in a very flat potential [3]. The bag model als
suggests a very large bound state as the result of
gluonic excitation [22]. As shown in Fig. 2, we have
found that for spatial extents of 1.2 fm or larger th
masses of all bottomonium and charmonium states rem
constant within small statistical errors. For even small
volumes we can resolve a slight increase in the mass
the bb̄g hybrid. In other words, the spatial extent of the
hybrid excitation seems to be almost independent of t
heavy quark mass. In this sense thebb̄g hybrid is more
difficult to calculate, as we need similar volumes but fine
lattices than for charmonium.

Finally, we carried out a scaling analysis to demon
strate that discretization errors are under control. This
of utmost importance for the NRQCD approach since on
(77)
)

2)
)

TABLE II. Results for bottomonium. From the average over the scaling region we obtain1.542(8)GeV for the lowest lyingbb̄g
hybrid, when theP-S splitting is used to set the scale. In column 5 we show results with accuracyO smy6, a4

s , a2
t d.

sb, jd s2.4, 5d s2.6, 5d s2.7, 5d s2.7, 5d s2.5, 3d s2.6, 3d s2.8, 3d
Volume 83 3 40 63 3 40 93 3 40 93 3 40 63 3 40 83 3 40 103 3 40

us 0.7997 0.8139 0.8193 0.8193 0.8100 0.8193 0.8314
asmb 4.73 3.50 3.15 3.15,O smy6d 4.10 4.00 3.33

P-S 0.086 65(68) 0.074 44(65) 0.065 73(62) 0.0636(23) 0.1388(10) 0.130 68(82) 0.109 88
a21

t yGeV 5.075(43) 5.907(54) 6.690(67) 6.91(25) 3.169(25) 3.365(23) 4.002(30

H-S 0.309 88(84) 0.2591(11) 0.2275(36) 0.2305(46) 0.4882(41) 0.4568(21) 0.3852(3
H-SyP-S 3.576(30) 3.481(34) 3.462(65) 3.62(15) 3.517(39) 3.496(27) 3.506(38
H-SyGeV 1.573(14) 1.531(15) 1.522(29) 1.594(67) 1.547(18) 1.537(13) 1.542(17)
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cannot extrapolate to zero lattice spacing in this effectiv
field theory and one has to model continuum behavior a
ready for finite lattice spacings. In Fig. 3 we show th
scaling of the hybrid excitation above the ground stat
From this, one can see that we have found convincin
scaling windows for both bottomonium and charmonium
Scaling violations can be seen only on the coarsest l
tices (as . 0.36 fm for cc̄g andas . 0.19 fm for bb̄g),
but this is not totally unexpected—it is questionable ho
well our simple-minded implementation of the tadpol
prescription works to remove theO sap2a2d errors for
heavy quark systems on such coarse lattices. In the c
of bb̄g we also plot the results for two different aspec
ratios. Both results are consistent and confirm the initi
assumption of small temporal lattice spacing errors. T
quote our final result for the lowest lying hybrid excita
tions we take the averaged value of all the results in th
scaling region and employ the experimental values for th
1P-1S splitting to set the scale. We find 1.323(13) GeV
for the case of charmonium and 1.542(8) GeV for th
first gluonic excitation in bottomonium, in good agree
ment with a previous estimate of 1.68(10) GeV [8].

In conclusion, we have demonstrated the usefulne
of coarse and anisotropic lattices for the nonperturbati
study of gluonic excitations in heavy quark systems
Furthermore, this should also be considered a succe
of the NRQCD approach, which allowed us to predic
the lowest lying charmonium hybrid state at the sam
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FIG. 2. Finite volume analysis for charmonium and bottomo
nium. We plot the dimensionless energies for different stat
against the inverse spatial extent,1yL, of the lattice.

mass as from a relativistic calculation [4]. Apart from
the very accurate predictions for hybrid quarkonia, it
also interesting to notice that all of the above resul
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FIG. 3. Scaling of the hybrid excitation,H-S. We plot the
ratio RH ­ sH-SdysP-Sd against the squared spatial lattice
spacing; as ­ jat at tree level. We also show the results
from a previous calculation [8] on a symmetric lattice a
b ­ 6.0 (burst). To display the result for the lowestcc̄g
hybrid at b ­ 6.15 [4], we use their value 1.32(8) GeV and
the experimentalP-S splitting in charmonium (triangle).
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could be obtained in a comparatively short period of tim
Whereas our present calculation confirms that thebb̄g
hybrid will lie above theS 1 S threshold for decay into
B mesons, the issue whether it may be found below t
S 1 P threshold has to be decided in a simulation whe
dynamical sea quarks are included in order to control t
last remaining systematic error.
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