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Abstract
In this paper we propose an unbiased estimator of cross-volatility

(conditional covariance between two asset returns) when we must use
evenly spaced data which have already been manipulated by previous-
tick interpolation.
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1 Introduction

1.1 Data generating process and observations

We consider n-dimensional logarithmic price p (t) = (p1 (t) , · · · , pn (t))′ which
follows the stochastic differential equation:

dp (t) = Σ (t) dz (t) , 0 ≤ t ≤ T
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where Σ (t) is an n × n matrix [σij (t)]i,j=1,··· ,n, and z is an n × 1 vector of
independent standard Brownian motions. We set the drift vector as 0, for
the purpose of simplification.1 We define the volatility matrix as

Ω ≡ ΣΣ′,

that is to say, cross volatility between ith and jth asset is denoted as the ij
element of Ω:

ωij (t) =
n∑

k=1

σik (t)σjk (t) .

Each ith asset price is observed at irregular time points {tik}Ni

k=0.
2 We just

impose the assumption on the observation points that the time intervals are
small: limNi→∞ supj≥1

(
tij − tij−1

)
= 0. Since we concentrate on the ex post

cross volatility measuring and do not make any hypothesis on the structure of
the underlying probability space Ω, we can construct an auxiliary probability
space X where we consider Σ(t) as deterministic functions. See Malliavin and
Mancino (2002). Throughout this paper, E denotes the expectation on the
probability space X.

2 Previous-tick interpolation and realized volatil-

ity

The raw data which are unevenly spaced, are converted to evenly spaced
data in order to apply to the usual discrete time series analysis. Dacorogna,
Gençay, Müller, Olsen, and Pictet (2001) introduces some interpolation meth-
ods including previous tick interpolation. When constructing M + 1 evenly
spaced data {q (mT/M)}M

j=0 from {pi (t
i
k)}Ni

k=0, previous-tick interpolation is
defined by the following formula.

qi

(
mT

M

)
= pi

(
max

{
tik : tik ≤ mT/M

})
(2.1)

1This simplification is acceptable not only because it means an efficient market in
financial economics, but also because, mathematically, the martingale component swamps
the predictable portion over short time intervals.

2For the purpose of simplification, we set ti0 = 0 and tiNi
= T.
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where max A and minA denote maximum and minimum elements of A, re-
spectively.

Using evenly spaced data of {qi(mT/M)}M
m=0 and {qj(mT/M)}M

m=0, the

integrated cross volatility
∫ T

0
ωij(t)dt is measured by the following estimator,

ω̂ij(M) =

M∑
m=1

∆qi

(
mT

M

)
∆qj

(
mT

M

)
, (2.2)

Where ∆qi(mT/M) ≡ qi(mT/M) − qi((m − 1)T/M). The bias of ω̂ij(M) is

M∑
m=1

∫ t+m

t−m
ωij (t) dt (2.3)

where

t−m = min
{
max

{
tik : tik ≤ mT/M

}
, max

{
tjl : tjl ≤ mT/M

}}
,

t+m = max
{
max

{
tik : tik ≤ mT/M

}
, max

{
tjl : tjl ≤ mT/M

}}
.

Notice that in the case of univariate volatility (i = j), for t−m = t+m, the real-
ized volatility through previous tick interpolation is an unbiased estimator.
The variance of ω̂ij(M) is∑

A∩B

(∫
ωij(t)dt

)2

+
∑
B

∫
ωii(t)dt

∫
ωjj(t)dt,

where

I(k, l) = (tik−1, t
i
k) ∩ (tjl−1, t

j
l )

A = {(k, l)|I(k, l) �= ∅}

B =
M⋃

m=1

((k, l)|km−1 < k ≤ km, lm−1 < l ≤ lm)

km = arg max
k

{tik : tik ≤ mT/M}
lm = arg max

l
{tjl : tjl ≤ mT/M}.

See Kanatani (2004) for the calculation of it. We define an unbiased estimator
by

ω̃ij(M) =

M∑
m=2

∆2q̄i

(
mT

M

)
∆2q̄j

(
mT

M

)
−

M−1∑
m=2

∆q̄i

(
mT

M

)
∆q̄j

(
mT

M

)
.

(2.4)
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where ∆2qi(mT/M) ≡ qi(mT/M) − qi((m − 2)T/M), {q̄i(mT/M)}M
m=1 =

{qi(mT/M)|∆qi(mT/M)∆qj(mT/M) �= 0}. The variance of ω̂P
ij(M) is

∑
A

(∫
ωij(t)dt

)2

+
∑
B′

∫
ωii(t)dt

∫
ωjj(t)dt,

where

B′ =

M⋃
m=1

((k, l)|km−1 < k ≤ k′
m, lm−1 < l ≤ l′m)

k′
m = min{km : km > km−1}

l′m = min{lm : lm > lm−1}.

Since (A ∩ B) ⊂ A and B ⊂ B′, it is obvious that V (ω̂ij(M)) < V (ω̃ij(M)).

3 Monte Carlo study

We examine the above theory through a Monte Carlo study. Without loss of
generality, we set the number of assets as two. We follow the Monte Carlo
design of Barucci and Renò (2002) with some modification for multivari-
ate setting: we generate proxy for continuous observations by discretizing
following stochastic differential equations with a time step of one second,(

dp1(t)
dp2(t)

)
=

(
σ11 (t) σ12 (t)
σ21 (t) σ22 (t)

)(
dW1(t)
dW2(t)

)
, 0 ≤ t ≤ T

dσij (t) = κij (θij − σij (t)) dt + γijdWij (t) , i, j = 1, 2.

where κij = 0.01, θij = 0.01, and γij = 0.001 for any i, j and T = 60×60×24
seconds. Time differences are drawn from an exponential distribution with
mean 45 seconds for p1 and 60 seconds for p2:

3

F
(
tik − tik−1

)
= 1 − exp

{−λi

(
tik − tik−1

)}
, i = 1, 2

where F (·) denotes a cumulative distribution function, λ1 = 1/45 and λ2 =
1/60.

3Of course, our method allows the duration to be correlated or autocorrelated. See
Engle and Russell (1998) for an autocorrelated duration model.
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We compared the performances of realized volatility ω̂ij(M) and ω̃ij(M).
In calculations of the realized volatility of ω̂ij(M) and ω̃ij(M), we set M =
24, 48, 144, 288, and 720, corresponding to so-called daily realized volatility
based on 60-min, 30-min, 10-min, 5-min and 2-min returns. We performed
300 replications.

Figure 1: Distribution of errors

Note: 60-min(PR): ω̂12(24); 30-min(PR): ω̂12(48); 10-min(PR): ω̂12(144); 5-min(PR):
ω̂12(288); 2-min(PR): ω̂12(720); 60-min(BC): ω̃12(24); 30-min(BC): ω̃12(48); 10-min(BC):
ω̃12(144); 5-min(BC): ω̃12(288); 2-min(BC): ω̃12(720); The distribution is computed with
300 ‘daily’ replications.

Figure 1 shows the distribution of errors of ω̂ij(M) and ω̃ij(M):

ω̂12(M) −
∫ T

0

ω12(t)dt, and, ω̃12(M) −
∫ T

0

ω12(t)dt,

respectively.
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Table 1: Sample MSE from 300 ‘daily’ replications

Sample MSE Estimated MSE
ω̂12(M) ω̃12(M) ω̂12(M) ω̃12(M)

60 min 41.303275 129.89687 41.754553 130.61587
(-0.78504928) (-0.037288398) (-0.74776088)

30 min 19.535687 58.910979 19.113176 58.579579
(-0.86612084) (-0.53913560) (-0.32698524)

10 min 9.5904564 19.267822 8.3008131 19.129370
(-1.7242417) (-0.51941316) (-1.2048285)

5 min 13.820082 9.6157110 12.080055 9.8853308
(-3.2669581) (-0.28829981) (-2.9786583)

2 min 49.961383 5.0706777 46.045708 5.0994614
(-6.9548335) (-0.29348194) (-6.6613516)

Note: Sample biases are given in parentheses.

Table 1 reports the sample MSE and bias (in parenthesis) of ω̂12(M) from
300 replications:

1

R

R∑
r=1

(
ω̂r

ij(M) −
∫ T

0

ωr
ij (t) dt

)2

and
1

R

R∑
r=1

(
ω̂r

ij(M) −
∫ T

0

ωr
ij (t) dt

)
,

where r denotes the number of replications and R = 300, and those of
ω̃12(M):

1

R

R∑
r=1

(
ω̃r

ij(M) −
∫ T

0

ωr
ij (t) dt

)2

and
1

R

R∑
r=1

(
ω̃r

ij(M) −
∫ T

0

ωr
ij (t) dt

)
,

We define the estimated bias by

1

R

R∑
r=1

(ω̂r
12(M) − ω̃r

12(M)) ,
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Estimated MSEs of ω̂12(M) and ω̃12(M) are defined by(
1

R

R∑
r=1

(
ω̂R

12(M) − ω̃r
12(M)

))2

+
1

R

R∑
r=1

(
ω̂r

12(M) − 1

R

R∑
r=1

ω̂r
12(M)

)2

,

and

1

R

R∑
r=1

(
ω̃r

12(M) − 1

R

R∑
r=1

ω̃r
12(M)

)2

,

respectively. Table 1 also reports the estimated MSE and bias (in parenthe-
sis) of ω̂12(M) and ω̃12(M) from 300 replications.

Under our simulation design, the correlation between the 1st and 2nd
asset is on average positive: ω12 (t) varies around a positive mean of 0.0002
because

ω12 (t) = σ11(t)σ21(t) + σ12(t)σ22(t)

and each σij has the mean of 0.01. As expected from the bias (2.3), the
shorter the interpolation time intervals is, the more downward biased the
previous tick interpolation realized cross volatility ω̂12 is.
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