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Abstract

We survey the continuous and descrete time long memory SV models.

1 Long memory in continuous time SV

1.1 Fractional BM

xt =
∫ t

0

a(t − s)dWs (1.1)

yt =
∫ t

−∞
a(t − s)dWs (1.2)

where (1.2) is the stationary process and
∫ ∞
0 a2(t)dt < +∞. Then xt = yt in

quadratic mean.

Definition 1 If a(t) = tαã(t)/Γ (1 + α) for |α| < 1/2 where ã is continuously
differentiable on [0, T ], then (1.1) and (1.2) called fractional processes.

Fractional processes can also written by

xt =
∫ t

0

c(t − s)dWαs, Wαs =
∫ s

0

(s − u)α

Γ (1 + α)
dWu

where, Wα is the so-called fractional BM of order α.

• The relation between a and c is one to one.

• Wα is not semi-martingale (see e.g.[Rog97]) but stochastic integration
w.r.t Wα can be defined.

• The processes are long memory if

lim
t→∞ tã (t) = a (∞) , 0 < α <

1
2

and 0 < a (∞) < +∞.
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Example 1

dxt = −kxtdt + σdWαt, Wαt =
∫ t

0

(t − s)α

Γ (1 + α)
dWs, x0 = 0, 0 < α <

1
2

has a solution of

xt =
∫ t

0

(t − s)α

Γ (1 + α)
dx(α)

s ,

x
(α)
t =

∫ t

0

e−k(t−s)σdWs.

– x
(α)
t is the derivative of order α of xt. See the Appendix A.

– x
(α)
t is a solution of the linear SDE: dx

(α)
t = −kx

(α)
t dt + σdWt.1

1.2 Fractional SV

dSt

St
= σtdWt (1.3)

d log σt = −k log σtdt + γdWαt (1.4)

where k > 0 and 0 ≤ α < 1/2.

• The fractional exponent α provides some degree of freedom in order of
regularity of the volatility process; the greater α, the smoother the path
of volatility process.

• The volatility process itself (not only its logarithm) has hyperbolic decay
of the correlogram.

• The persistence of volatility shocks yields leptokurtic features for returns.
It vanishes with temporal aggregation at slow hyperbolic rate of decay.2

1.3 Filtering and discrete time approximations

By Example 1, the solution of (1.4) is given by

log σt =
∫ t

0

(t − s)α

Γ (1 + α)
d log σ(α)

s (1.5)

log σ(α)
s =

∫ t

0

e−k(t−s)σdWs (1.6)

1A linear SDE:

dzt = −kztdt + σdWt

has a solution of

zt = z0

� t

0
e−k(t−s)σdWs.

2With usual CARCH or SV models, it vanish at an exponential rate (see [DN93] and
[DW96] for these issues in short memory case).
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where log σ
(α)
s follows the O-U process: d log σ

(α)
s = −k log σ

(α)
s dt + γdWt. To

descretize (1.5), divide [0, t] at time points j/n, j = 0, 1, ..., [nt]. First descretize
(1.6) as

(1 − ρL) log σ
(α)
j/n = ui/n

where ρ = exp (−k/n) and ui/n is the associated innovations process.

log σj/n ≈
j∑

i=1

(j − (i − 1))α

nαΓ (1 + α)
∆ log σ

(α)
i/n

=

[
j−1∑
i=0

(i + 1)α − iα

nαΓ (1 + α)
Li

]
log σ

(α)
i/n

=

[
j−1∑
i=0

(i + 1)α − iα

nαΓ (1 + α)
Li

]
(1 − ρL)−1 ui/n

long memory filter
[∑j−1

i=0
(i+1)α−iα

nαΓ(1+α) Li
]

short memory filter (1 − ρL)−1

2 Long memory in discrete time models

(1) FIGARCH (2) FIEGARCH (3) Long-memory SV

2.0.1 Long-memory SV

ht = (1 − L)−d
ηt, ηt ∼ NID

(
0, σ2

η

)
where ht ≡ log σ2

t .
d = 0 white noise

−1 < d < 0 stationary intermediate-memory process
0 < d < 1/2 stationary long-memory process

d = 1 random walk

3 Stylized facts about long memory

A Fractional Calculus

Denote the nth derivative Dn and the n−fold integral D−n. Then

D−1f (t) =
∫ t

0

f (x) dx
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Now if

D−nf (t) =
1

(n − 1)!

∫ t

0

(t − x)n−1
f (x) dx (A.1)

is true for n, then

D−(n+1)f (t) = D−1

[
1

(n − 1)!

∫ t

0

(t − x)n−1
f (x) dx

]

=
∫ t

0

[
1

(n − 1)!

∫ s

0

(s − x)n−1 f (x) dx

]
ds

=
1

(n − 1)!

∫ t

0

∫ s

0

(s − x)n−1
f (x) dxds

=
1

(n − 1)!

∫ t

0

∫ x

0

(s − x)n−1
f (x) dsdx

=
1
n!

∫ t

0

(t − x)n
f (x) dx

But (A.1) is true for n = 1, so it is also true for all n by induction. The fractional
integration can be defined by

D−αf (t) =
1

Γ (α)

∫ t

0

(t − x)α−1 f (x) dx.
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