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Chapter 1

Introduction

1.1 Background and motivation

Since Black and Scholes (1973) established the theory of option pricing,

volatility1 has played an important role not only in the derivatives pricing but

also in portfolio selection and risk management. Despite of the assumption of

constant volatility in Black and Scholes (1973)2, it is widely recognized that

volatility changes over time, and other various stylized facts about volatility

have been documented (see, e.g., Ghysels, Harvey, and Renault (1996) and

Poon and Granger (2003)). These facts have motivated many academic re-

searchers and practitioners to study the dynamics of volatility over the last
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three decades. Starting with Engle (1982)’s autoregressive heteroskedasticity

(ARCH) model, various discrete time models such as Bollerslev (1986)’s gen-

eralized ARCH, Nelson (1991)’s exponential ARCH, and stochastic volatility

(SV) models have been proposed (see, e.g., Poon and Granger (2003)). On

the other hand, volatility is often modeled as a parameterized diffusion co-

efficient of continuous time diffusion process and then the parameters are

estimated via the maximum likelihood methods or general method of mo-

ments (see e.g., Lo (1988), Florens-Zmirou (1993), Sueishi (2004)). The link

between continuous and discrete time parametric models has been explicitly

demonstrated by Drost and Nijman (1993) and Drost and Werker (1996).

This thesis, however, focuses on nonparametric estimation of volatility pro-

cess rather than parametric modeling of volatility structure.

In principle, the more data we can use, the more accurate the estimate

will be. However, we usually have the technological restriction on the amount

of data. Recently this restriction on some kind of financial data has been

removing by development of computer power and data recording systems.

Those kind of data are called high-frequency data. Such high-frequency data

lend the validity to the method based on quadratic variation formula, that

is called as realized volatility in the finance and econometrics literature. We
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concentrate on the ex post volatility measuring by these type of methods.

Because of the facility of handling, tick-by-tick (transaction) data, which

inherently arrive in irregular time intervals, are usually transformed into reg-

ularly spaced data through a certain interpolation. However, that interpola-

tion method reduces the number of data and introduces the bias. The bias

is serious especially in cases of cross volatility measuring. We examine this

problem by proposing a new framework building on the theory of quadratic

variation.

1.2 The literature

This section briefly introduces some recent literatures related to realized

volatility and high frequency finance. Barndorff-Nielsen and Shephard (2004)

derives asymptotic distribution of realized volatility matrix — the sum of

outer products of high frequency vectors of returns. Since their purpose is

to provide the asymptotic distribution theory, they establish the theory for

data observed at equally spaced time intervals.

Andersen, Bollerslev, Diebold, and Labys (2003) provide methods of re-

alized volatility incorporated into lower frequency volatility models. For
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example, Using intradaily observations for the Deutschemark/Dollar and

Yen/Dollar spot exchange rates, they find that forecasts from a long memory

Gaussian vector autoregression for the logarithmic daily volatilities perform

admirably.

Foster and Nelson (1996) provide the asymptotic distribution theory of an

estimator of the spot (not integrated) covariance. Since it is essentially more

difficult to estimate instantaneous volatility than integrated one, Foster and

Nelson (1996)’ assumption is stronger than Barndorff-Nielsen and Shephard

(2004). See Andeou and Ghysels (2002) for the relationship between the spot

estimator of Foster and Nelson (1996) and the integrated one of Andersen,

Bollerslev, Diebold, and Labys (2003) and Barndorff-Nielsen and Shephard

(2004).

While all of the theories mentioned above are built on the evenly sam-

pled observations, Malliavin and Mancino (2002) proposed an estimator base

on Fourier series analysis that is well suited for unevenly sampled observa-

tions, in other words, for tick-by-tick data without any data manipulation.

One of the most important purpose to use tick-by-tick data is to avoid the

interpolation bias. Although it appears that the Fourier estimator is not

directly involved in the quadratic variation-like method, Kanatani (2004a)
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and Kanatani (2004c) provide the explicit link between them.

1.3 Outline of the thesis

The outline of the rest of the thesis is as follows. Chapter 2 is the revised

version of Kanatani (2004a). In this chapter, we derive the linear interpola-

tion bias of realized volatility. To avoid the bias, the Fourier series estimator

has been proposed by Malliavin and Mancino (2002). We examine the the-

oretical link between the Fourier estimator and realized volatility, and show

that the latter is the most efficient estimator in the class of the former. In

this chapter, we focus on the analysis of univariate process.

Chapter 3 is the revised version of Kanatani (2004c). In this chapter, we

define an estimator of cross-volatility (conditional covariance between two

asset returns) by weighted sum of products of two returns. This estimator

nests Fourier series estimator of Malliavin and Mancino (2002) and realized

volatility based on interpolated returns. Each estimation method is charac-

terized by weight matrix. We derive MSE-minimizing weights and introduce

a feasible example. Our method for measuring cross-volatility is well appli-

cable to tick-by-tick data.
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Chapter 4 is the revised version of Kanatani (2004b). This chapter focuses

on measuring not integrated but spot volatility. We propose an iterative

method for exponentially weighted rolling regression (EWRR), which was

proved to be an optimal estimator of volatility by Foster and Nelson (1996).

The method accelerates the numerical evaluation of EWRR under certain

circumstances. An alternative to usual realized volatility is proposed for its

application.
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Notes

1 Throughout this thesis, we use the term “volatility” to reference both

variance (not standard deviation) and covariance.

2 Hull and White (1987) modifies Black and Scholes (1973)’s option pric-

ing formula for stochastic volatility.
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Chapter 2

Estimation of univariate

integrated volatility

Because of the facility of handling, tick-by-tick data, which are usually un-

evenly sampled, are transformed into regularly spaced data through a cer-

tain interpolation. However, that interpolation method reduces the number

of data and introduces the bias. Through Monte Carlo simulations, Barucci

and Renò (2002) demonstrates that linear interpolation introduces a down-

ward bias to realized volatilities. In Section 2.2, we theoretically derives the

linear interpolation bias of realized volatility. To avoid these problems of

interpolation methods, Malliavin and Mancino (2002) proposed an estimator
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based on Fourier series analysis that is well suited for unevenly sampled data.

In Section 2.3, we derive a theoretical relationship between the Fourier series

estimator and realized volatility. The latter is proved to be the most efficient

estimator in the class of the former. In Section 2.4, we confirm our theory

through a Monte Carlo simulation. Throughout this chapter, we restrict our

attention to univariate setting. Multivariate situation will be studied in the

next chapter.

2.1 Date generating process and observed time

points

This chapter specifically addresses the following situation. Let pt be a loga-

rithmic asset price that is generated by diffusion:

dp(t) = σ(t)dW (t), 0 ≤ t ≤ T, (2.1)

where W (t) is a standard Brownian Motion and σ(t) is a random time depen-

dent function. That diffusion is observed at (N + 1) irregular time points:1

0 = t0 < t1 < · · · < ti < · · · < tN = T

17



We assume that every time difference (duration) is sufficiently small:

lim
N→∞

sup
i≥1

(ti − ti−1) = 0.

For purposes of simplification, we set the drift of diffusion as 0. This sim-

plification is acceptable not only because it means an efficient market in

financial economics, but also because, mathematically, the martingale com-

ponent swamps the predictable portion over short time intervals. In such

a situation, we study the nonparametric estimators of integrated volatility

∫ T

0
σ2(t)dt. Because we make no hypothesis on the structure of the underly-

ing probability space Ω, we can construct an auxiliary probability space X

where we consider σ(t) as a deterministic function, see Malliavin and Man-

cino (2002).

Throughout this chapter, E denotes the expectation on the probability

space X.

2.2 Realized volatility from evenly spaced ob-

servations

In this section, we examine realized volatility from evenly spaced data. Un-

evenly sampled raw data are converted into evenly spaced data through in-

18



terpolation. We consider two interpolation methods for converting N raw

data, {p (ti)}N
i=0, to m evenly spaced data, {q (jT/m)}m

j=0:

q

(
jT

m

)
=




(1 − ρj) p
(
t−j
)

+ ρjp
(
t+j
)

linear interpolation

p
(
t−j
)

previous-tick interpolation

(2.2)

where

ρj =
(jT/m) − t−j

t+j − t−j
,

t−j = max {ti : ti ≤ jT/m} ,

t+j = min {ti : ti ≥ jT/m} ,

and where maxA and min A denote maximum and minimum elements of A,

respectively.

Using the evenly spaced data series {q (jT/m)}m
j=0, the volatility is mea-

sured by the following estimator.

σ̂2(m) =

m∑
j=1

(
q

(
jT

m

)
− q

(
(j − 1)T

m

))2

. (2.3)

Whereas Barucci and Renò (2002) found through Monte Carlo simulation

that linear interpolation procedures introduce bias into realized volatility

19



(2.3), we derive the theoretical linear interpolation bias as

−m

T

m∑
j=1

{
ρj−1 (1 − ρj−1)

(
t+j−1 − t−j−1

)
+ ρj (1 − ρj)

(
t+j − t−j

)} ∫ jT/m

(j−1)T/m

σ2 (t) dt.

(2.4)

See Appendix A for derivation of (2.4). Note that the downward bias (2.4)

is more pronounced: (a) when the time window [0, T ] is divided more finely

(m is large); (b) when the interpolated time point is far from the observed

time points (|ρj − 1/2| is small); (c) in coarsely-sampled periods (t+j − t−j is

large); or (d) in the volatile period (σ2 (t) is large).

In the case of previous-tick interpolation, the realized volatility (2.3) is

unbiased since the diffusion is observed at t = 0 and t = T (t0 = 0 and

tN = T ).

2.3 Estimators using raw data

Malliavin and Mancino (2002) proposed a method based on Fourier series to

use unevenly sampled data. In this section, we normalized the time window

[0, T ] to [0, 2π]. The Fourier estimator of integrated volatility
∫ T

0
σ2(t)dt is

20



given as

σ̂2
F =

π2

K

K∑
k=1

(a2
k(dp) + b2

k(dp)), (2.5)

where

ak(dp) =
1

π

∫ 2π

0

cos(kt)dp(t), (2.6)

bk(dp) =
1

π

∫ 2π

0

sin(kt)dp(t), (2.7)

and K is a large integer. In practice, we compute the integrals (2.6) through

integration by parts, as

ak(dp) =
1

π

∫ 2π

0

cos(kt)dp(t)

=
p (2π) − p (0)

π
+

1

π

∫ 2π

0

sin(kt)p(t)dt

≈ p (2π) − p (0)

π
+

1

π

N−1∑
i=0

[cos(kti) − cos(kti+1)] p(ti) (2.8)

because the piecewise constant is valid under assumption limN→∞ supi≥1 (ti − ti−1) =

0. Similarly, we approximate (2.7) by

bk(dp) ≈ 1

π

N−1∑
i=0

[sin(kti) − sin(kti+1)] p(ti). (2.9)

Another method using unevenly sampled observations {p (ti)}N
i=0 is an

estimator based on the quadratic variation formula:

σ̂2
R =

N∑
i=1

{∆p(ti)}2 , (2.10)

21



where ∆p(ti) = p(ti) − p(ti−1). To distinguish (2.10) from (2.3), we refer

to (2.10) as raw data realized volatility. The Fourier estimator (3.8) can be

rewritten as

σ̂2
F = σ̂2

R +
∑
i�=j

∆p (ti)∆p (tj)wij, (2.11)

where

wij =
sin

(K+1)(ti−tj)

2
cos

K(ti−tj)

2

K sin
(ti−tj)

2

. (2.12)

See Appendix B for the derivation. (2.11) and (2.12) imply that as K → ∞,

σ̂2
F → σ̂2

R. Because the second parts of (2.11) are uncorrelated to σ̂2
R,

V
(
σ̂2

F

)
= V

(
σ̂2

R

)
+ V

(∑
i�=j

∆p (ti) ∆p (tj) wij

)

= V
(
σ̂2

R

)
+
∑
i�=j

{
h

∫ ti

ti−1

σ2 (t) dt

}{∫ tj

tj−1

σ2 (t) dt

}
w2

ij

> V
(
σ̂2

R

)
. (2.13)

In other words, as K ↑ ∞, V (σ̂2
F ) ↓ V (σ̂2

R) . That is to say, (2.10) is the

most efficient estimator in the class of (3.8).

2.4 Monte Carlo study

We follow the Monte Carlo design of Barucci and Renò (2002) with little

modification: we generate a proxy for continuous observation by discretizing

22



the following stochastic differential equations with a time step of one second:

d log σ2 (t) = −k log σ2 (t) dt + γdWσ (t)

dp(t) = σ(t)dWp(t), 0 ≤ t ≤ T,

where Wσ and Wp are mutually independent standard Brownian motions,

k = 0.01, γ = 0.1, and T = 60 × 60 × 24 seconds (s). Time differences

are drawn from an exponential distribution with a mean of 45 s.2 We com-

pare the performances of estimators (2.3), (3.8), and (2.10). In calculations

of (2.3), we set m = 144, 288, and 720, corresponding to so-called daily

realized volatility based on 10-min, 5-min, and 2-min returns. Each re-

turn is computed by two interpolation methods in (2.2). In (3.8), we set

K = 10, 50, 100, 500, and [N/2] where [·] denotes a Gaussian symbol.3 In

our simulation, [N/2] is expected to be around 60×60×24÷ (45 × 2) = 960.

We performed 600 replications.

Figure 2.1 shows the distributions of normalized errors

σ̂2 (m) − ∫ T

0
σ2(t)dt∫ T

0
σ2(t)dt

,
σ̂2

F − ∫ T

0
σ2(t)dt∫ T

0
σ2(t)dt

, and
σ̂2

R − ∫ T

0
σ2(t)dt∫ T

0
σ2(t)dt

. (2.14)

Table 2.1 reports the means and standard deviations of (2.14) from that

set of 600 replications. Increasing the number of partitions m, we can reduce

the variance of realized volatility. However, as stated in (2.4), in the case

23



Figure 2.1: Distribution of (2.14)

Note: 10-min, 5-min, and 2-min denote the estimators (2.3) with m =

144, 288, and 720, respectively, through linear and previous-tick interpo-

lation. FE signifies the Fourier estimator (3.8) with K = 10, 50, 100, 500,

and [N/2]. RV denotes the raw data realized volatility (2.10). The distribu-

tion is computed with 600 ‘daily’ replications.

of using linear interpolation, the downward bias increases. In contrast, the

realized volatility is unbiased when using previous-tick interpolation. As

stated in (2.13), Figure 2.1 and Table 2.1 show that as K ↑ ∞, V (σ̂2
F ) ↓

V (σ̂2
R).

Table 2.2 compares means of the theoretical linear interpolation bias (2.4)

and measurement error of σ̂2 (m) − ∫ T

0
σ2(t)dt from 600 replications. Both

means are approximately consistent. We can verify the validity of (2.4) by

24



these results.

2.5 Summary

In this chapter we derived the linear interpolation bias of realized volatility.

Results indicate that linear interpolation should not be used as the prepara-

tion for realized volatility calculations. The theoretical relationship between

the Fourier series estimator proposed by Malliavin and Mancino (2002) and

raw data realized volatility implies that the latter is the most efficient esti-

mator in the class of the former. The result of this chapter will be generalized

in the next chapter.
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Notes

1 For the purpose of simplification, we set t0 = 0 and tN = T . These

assumptions can be ignored if the number of observations is sufficiently

large.

2 Although each duration is independent in our simulation, our method

requires no assumption except that supi≥1 (ti − ti−1) is small. See Engle

and Russell (1998) for the autoregressive time duration models. See e.g.,

Äıt-Sahalia and Mykland (2003) for an example of the exponentially

distributed duration.

3 [N/2] is the so-called Nyquist frequency if observations are sampled

evenly.
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Table 2.1: Means and standard deviations of (2.14) from 600 ‘daily’ replica-

tions

10-min -0.04734 (0.12293)

linear 5-min -0.09763 (0.08937)

2-min -0.23911 (0.05152)

10-min 0.00109 (0.13139)

previous-tick 5-min -0.00092 (0.09864)

2-min -0.00017 (0.07086)

K = 10 0.00107 (0.33051)

K = 50 -0.01371 (0.15253)

Fourier estimator K = 100 -0.00341 (0.11409)

K = 500 -0.00252 (0.06538)

K = [N/2] -0.00055 (0.05730)

raw data realized volatility -0.00094 (0.05460)

Note: Standard deviations are given in parentheses. 10-min, 5-min, and 2-

min denote the estimators (2.3) with m = 144, 288, and 720, respectively,

through two different interpolations in (2.2). Fourier estimators are com-

puted with five different Ks. Raw data realized volatility denotes the esti-

mator (2.10).
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Table 2.2: Linear interpolation bias

σ̂2 (m) − ∫ T

0
σ2(t)dt bias (2.4)

10-min -5291.56 (13682.3) -5436.57 (478.465)

5-min -10858.1 (9953.48) -10915.0 (720.160)

2-min -26675.4 (5907.82) -27360.9 (1464.48)

Note: Means of measurement errors of realized volatility (2.3) through linear

interpolation procedures and the theoretical linear interpolation bias (2.4)

from 600 replications. Standard deviations are given in parentheses.
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Chapter 3

Estimation of integrated cross

volatility

In this chapter we generalize the analysis to the multivariate settings and

focus on the estimation of conditional covariance between two asset returns.

The conditional covariance is referred to as cross volatility in financial liter-

atures.

In Section 3.2 we define weighted realized volatility as a estimator of

integrated cross volatility and show that it nests several estimators mentioned

in the previous chapter. In Section 3.3 we derive the MSE-minimizing weight

and provide a feasible example of it. Through a Monte Carlo simulation, we
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examine our theory in Section 3.4. Section 3.5 summarizes this chapter and

overviews future studies.

3.1 Data generating process and observations

We consider n-dimensional logarithmic price p (t) = (p1 (t) , · · · , pn (t))′ which

follows the stochastic differential equation:

dp (t) = Σ (t) dz (t) , 0 ≤ t ≤ T

where Σ (t) is an n × n matrix [σij (t)]i,j=1,··· ,n, and z is an n × 1 vector of

independent standard Brownian motions. We set the drift vector as 0, as

well as the previous chapter.1 We define the volatility matrix as

Ω ≡ ΣΣ′,

that is to say, cross volatility between ith and jth asset is denoted as the ij

element of Ω:

ωij (t) =
n∑

k=1

σik (t)σjk (t) .

Each ith asset price is observed at irregular time points {tik}Ni

k=0.
2 We just

impose the assumption on the observation points that the time intervals are

small: limNi→∞ supj≥1

(
tij − tij−1

)
= 0. Since we concentrate on the ex post
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cross volatility measuring and do not make any hypothesis on the structure of

the underlying probability space Ω, we can construct an auxiliary probability

space X where we consider Σ(t) as deterministic functions. See Malliavin

and Mancino (2002). Through this paper, E denotes the expectation on the

probability space X.

3.2 Weighted realized volatility

3.2.1 Representation

We define the estimator of
∫ T

0
ωij (t) dt as

ω̂ij = ∆p′iW∆pj =

Ni∑
k=1

Nj∑
l=1

∆pi

(
tik
)
∆pj

(
tjl
)
wkl (3.1)

where

∆pi =




pi (t
i
1) − pi (t

i
0)

...

pi (t
i
Ni) − pi

(
tiNi−1

)




, W =




w11 · · · w1Nj

...
. . .

...

wNi1 · · · wNiNj




.
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We call (3.1) weighted realized volatility. (3.1) nests several estimators of the

integrated volatility
∫ T

0
ωij (t) dt. For example, if wij = 1 for any k, l,

ω̂ij =

Ni∑
k=1

Nj∑
l=1

∆pi

(
tik
)
∆pj

(
tjl
)

(3.2)

=

{
Ni∑

k=1

∆pi

(
tik
)}


Nj∑
l=1

∆pj

(
tjl
)

= {pi (tNi) − pi (t0)} {pj (tNj) − pj (t0)}

= {pi (T ) − pi (0)} {pj (T ) − pj (0)}

which is an unbiased but very noisy estimator of
∫ T

0
ωij (t) dt. If the window

[0, T ] is one day, (3.2) means that we measure daily (cross) volatility by using

daily return, in other words, discarding all intradaily data of {pi(t
i
k)}Ni−1

k=1 . In

this manner, the weight matrix characterizes the data for measuring volatil-

ity. In order to understand this point, we look at an another example. In

univariate settings, if W = INi
,

ω̂ii =

Ni∑
k=1

(
pi

(
tik
)− pi

(
tik−1

))2
.

Note that this estimator uses all available observations, therefore, is expected

to be less noisy. We discuss the multivariate version of this in the subsection

3.2.4. Through the following three subsections, the examples of (3.1) are

discussed.
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3.2.2 Interpolation and realized volatility

The raw data which are unevenly spaced, are converted to evenly spaced

data in order to apply to the usual discrete time series analysis. Dacorogna,

Gençay, Müller, Olsen, and Pictet (2001) introduces some interpolation meth-

ods including linear interpolation and previous tick interpolation.3 When

constructing M evenly spaced data {q (mT/M)}M
j=0 from {pi (t

i
k)}Ni

k=0, those

data manipulation is as follows:

qi

(
mT

M

)
=




(1 − ρi
m) pi (∗tim) + ρi

mpi (
∗tim) linear interpolation

pi (∗tim) previous-tick interpolation

(3.3)

where

ρi
m =

(mT/M) − ∗tim
∗tim − ∗tim

,

∗tim = max
{
tik : tik ≤ mT/M

}
,

∗tim = min
{
tik : tik ≥ mT/M

}
,

and where maxA and min A denote maximum and minimum elements of A,

respectively.

Using evenly spaced data of {qi(mT/M)}M
m=0 and {qj(mT/M)}M

m=0, the
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integrated cross volatility
∫ T

0
ωij(t)dt is measured by the following estimator,

ω̂ij(M) =

M∑
m=1

(
qi

(
mT

M

)
− qi

(
(m − 1) T

M

))(
qj

(
mT

M

)
− qj

(
(m − 1) T

M

))
.

(3.4)

In order to distinguish difference on the interpolation procedure, we introduce

the notation of ω̂L
ij(M) and ω̂P

ij(M) for liner interpolation and previous-tick

interpolation, respectively. As mentioned in the previous chapter, ω̂L
ii(M)

has the downward bias. Barucci and Renò (2002) reports the linear inter-

polation bias through Monte Carlo simulations. Kanatani (2004a) calculates

the theoretical bias. As we use higher and higher frequency data, the bias

becomes more profound. Thus, the linear interpolation is not suitable for

calculation of realized volatility.

On the other hand, ω̂P
ii (M) is unbiased. The bias of ω̂P

ij(M) is

M∑
m=1

∫ t+m

t−m
ωij (t) dt (3.5)

where

t−m = min
{
max

{
tik : tik ≤ mT/M

}
, max

{
tjl : tjl ≤ mT/M

}}
,

t+m = max
{
max

{
tik : tik ≤ mT/M

}
, max

{
tjl : tjl ≤ mT/M

}}
.

Notice that in the case of univariate volatility (i = j), for t−m = t+m, the real-

ized volatility through previous tick interpolation is an unbiased estimator.
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In order to show that the realized volatility (3.4) can be written by the

expression of the weighted realized volatility (3.1), we shall present a simple

example.

Example 1 Let us consider a simple case as shown in Figure 3.1: M =

3, Ni = 8. ω̂L
ii(M) can be written by the form of weighted realized volatility

(3.1) with the weight matrix:

W =




1 1 α1 0 0 0 0 0

1 1 α1 0 0 0 0 0

α1 α1 α2
1 + β2

1 β1 β1 β1 β1α2 0

0 0 β1 1 1 1 α2 0

0 0 β1 1 1 1 α2 0

0 0 β1 1 1 1 α2 0

0 0 β1α2 α2 α2 α2 α2
2 + β2

2 β2

0 0 0 0 0 0 β2 1




. (3.6)

See Appendix C for the detail derivation of (3.6). Since previous tick inter-

polation is a special case of the linear interpolation for αm = 0 and βm = 1,

ω̂P
ii (M) can be written by the form of weighted realized volatility (3.1) with
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Figure 3.1: Linear interpolation and Previous-tick interpolation

Note: Linear interpolation (upper) and Previous-tick interpolation (lower).

Black and white squares denote observed and interpolated data respectively.
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the weight matrix:

W =




1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1




. (3.7)

3.2.3 Fourier series estimator of Malliavin and Man-

cino (2002)

Malliavin and Mancino (2002) proposed a new method for measuring volatil-

ity by using Fourier series. The method is especially suitable for unevenly

sampled observations. We prove that the Fourier series estimator can be

written by the form of the weighted realized volatility. In this subsection, we

normalized the time window [0, T ] to [0, 2π].

ω̂F
ij =

π2

Q

Q∑
q=1

(aq(dpi)aq(dpj) + bq(dpi)bq(dpj)) (3.8)
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where

aq(dpi) =
1

π

∫ 2π

0

cos(qt)dpi(t), (3.9)

bq(dpi) =
1

π

∫ 2π

0

sin(qt)dpi(t), (3.10)

and Q is a large integer. We will compute the integrals (3.9) and (3.10)

through integration by parts:

aq(dpi) =
1

π

∫ 2π

0

cos(qt)dp(t)

=
pi (2π) − pi (0)

π
+

1

π

∫ 2π

0

sin(qt)pi(t)dt

≈ pi (2π) − pi (0)

π
+

1

π

Ni−1∑
j=0

[
cos(qtij) − cos(qtij+1)

]
pi(t

i
j)

since the piecewise constant is valid under assumption limN→∞ supj≥1

(
tij − tij−1

)
=

0. Similarly, we approximate (3.10) by

bq(dpi) ≈ 1

π

N−1∑
j=0

[
sin(qtij) − sin(qtij+1)

]
pi(t

i
j). (3.11)

These approximation of the integrals is proved to be equivalent to setting

the weight in (3.1) as

wkl =




1 if tik = tjl ,

sin
(Q+1)(tik−tjl )

2
cos

Q(tik−tjl )
2

Q sin
(tik−tjl )

2

otherwise
.
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See the Appendix D. In the special case of univariate volatility (i = j), as

we increase the number of Fourier coefficients (Q → ∞), the weight matrix

converges to identity matrix (W → INi
). In the case of cross volatility

(i 	= j), since transaction is usually nonsynchronous, tik − tjl has some width.

Therefore, as K → ∞, wkl → 0: ω̂F
ij → 0. Thus we should not increase the

number of Fourier coefficients.

3.2.4 Raw data realized volatility

Another method for measuring integrated volatility using unevenly sampled

observations {pi (t
i
k)}Ni

k=0 is

ω̂R
ii =

Ni∑
i=1

{
∆pi

(
tik
)}2

This estimator is also written by the form of weighted realized volatility with

identity matrix INi
. As mentioned in the previous chapter, the relationship

between raw data realized volatility and Fourier series estimator is as follows,

ω̂F
ii → ω̂R

ii and V (ω̂F
ii ) ↓ V (ω̂R

ii ) as Q → ∞.

For measuring cross volatility, we extend the method using unevenly sam-

pled observations {pi (t
i
k)}Ni

k=0 and {pj

(
tjk
)}Nj

k=0:

ω̂R
ij =

Ni∑
k=1

Nj∑
l=1

∆pi

(
tik
)
∆pj

(
tjl
)
I (A) (3.12)
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where A =
{(

tik, t
i
k−1

) ∩ (
tjl , t

j
l−1

) 	= ∅} and I (·) denotes indicator function.

We refer to (3.12) as raw data realized (cross) volatility. (3.12) is expressed

by the form of weighted realized volatility with the weights:

wkl =




1 if
(
tik, t

i
k−1

) ∩ (
tjl , t

j
l−1

) 	= ∅,

0 otherwise

.

Although all estimators of cross volatility mentioned above introduce the

bias, this simple estimator is constructed to be unbiased.

3.3 Optimal weight

3.3.1 MSE-minimizing weight

In this subsection, we derive the optimal weight that minimizes the MSE of

(3.1):

E

(
ω̂ij −

∫ T

0

ωij (t) dt

)2

= bias2 + V (ω̂ij) .

We define the intersection interval as

I (k, l) ≡ (
tik, t

i
k−1

) ∩ (
tjl , t

j
l−1

)
.
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We introduce a convenient notation for the element of weight matrix W as

follows 


wA
kl if I(k, l) 	= ∅,

wAC

kl otherwise

.

The bias is given by

E


 Ni∑

k=1

Nj∑
l=1

∆pi

(
tik
)
∆pj

(
tjl
)
wkl


−

∫ T

0

ωij (t) dt

= E

(∑∫ tk

tk−1

dpi (t)

∫ tl

tl−1

dpj (t) wA
kl

)
−
∫ T

0

ωij (t) dt

=
∑∫

I(k,l)

ωijdtwA
kl −

∫ T

0

ωij (t) dt. (3.13)

Note that if wA
kl = 1, the bias is zero. On the other hand, the variance is

given by

V (ω̂ij)

=
∑{(∫

I(k,l)

ωijdt

)2

+

(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)}(
wA

kl

)2

+
∑(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)(
wAC

kl

)2

(3.14)

See the Appendix E. It is obvious that we should set wAC

kl = 0 in order to

minimize the MSE because ωii(t) is nonnegative.

For example, compare the identity matrix with (3.7). Although diagonal

element of these two are identical, (3.7) has some non-zero non-diagonal
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elements (wAC

kl 	= 0). This means that variance of previous-tick realized

volatility is larger than raw data realized volatility. As another example,

remember the weight matrices of (3.8) and (3.12) in the case of univariate

volatility. Both of them have the same diagonal elements wA
kl = 1, while (3.8)

have non-zero wAC

kl . Therefore, variance of (3.8) is larger than that of (3.12).

As Q → ∞, wAC

kl of (3.8) goes to 0, then these two are almost same. See

Kanatani (2004a).

In order to minimize the MSE, we set wAC

kl = 0 and then rewrite the MSE

in matrix expression.

MSE = w′Dw + (x′ (w − 1))
2
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where

w =




wA
11

...

wA
kl

...

wA
NiNj




, D =




v11 0 · · · · · · 0

0
. . .

. . .
...

...
. . . vkl

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 vNiNj




,

x =




∫
I(1,1)

ωijdt

...

∫
I(k,l)

ωijdt

...

∫
I(Ni,Nj)

ωijdt




, 1 =




1

...

1




,

vkl =

(∫
I(k,l)

ωijdt

)2

+

(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)
.

Let

ukl =

(∫
I(k,l)

ωijdt
)2

vkl

,

then we get the following theorem.

Theorem 2 The MSE of (3.1) is globally minimized by the following weight:

wA
kl =

∫ T

0
ωijdt

∫
I(k,l)

ωijdt

vkl {1 +
∑

ukl} . (3.15)
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The bias and variance obtained by using the optimal weight (3.15) are

− ∫ T

0
ωijdt

1 +
∑

ukl
and (3.16)( ∫ T

0
ωijdt

1 +
∑

ukl

)2 ∑
ukl, (3.17)

respectively. The minimized MSE is( ∫ T

0
ωijdt

1 +
∑

ukl

)2 {
1 +

∑
ukl

}
. (3.18)

Proof. See Appendix F

In order to understand the property of the optimal weight, consider a

special case of the individual volatility (i = j). Since

vkk = 2

(∫ tk

tk−1

ωijdt

)2

and ukk =
1

2
,

W is an Ni × Ni diagonal matrix that has diagonal elements

wA
kk =

1

Ni + 2

∫ T

0
ωiidt∫ tk

tk−1
ωiidt

.

This weight increases (decreases) when
∫ tk

tk−1
ωiidt decreases (increases). This

fact implies that larger (smaller) weights are assigned in densely (coarsely)

sampled periods and that smaller (larger) weights are assigned in volatile

(less volatile) periods. The bias and variance are

−2

Ni + 2

∫ T

0

ωii (t) dt and

2Ni

(Ni + 2)2

(∫ T

0

ωii (t) dt

)2

,
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respectively. The estimator is not unbiased, however, the bias shrinks at

order 1/Ni. The variance also shrinks at order 1/Ni in similar fashion to the

variance of realized variance of Barndorff-Nielsen and Shephard (2004)4.

3.3.2 An estimator of nuisance parameters

To construct the optimal weight of Theorem 2, we must estimate
∫

I(k,l)
ωijdt.

We call it piecewise integrated volatilities (PWIV). It is essentially difficult

to estimate them. We give an example of unbiased estimators: we use

∆pi

(
tik
)
∆pj

(
tjl
)

and
{
∆pi

(
tik
)}2

,

as estimators of
∫

I(k,l)
ωijdt and

∫ tk
tk−1

ωiidt respectively. We also need an

estimate of
∫ T

0
ωij (t) dt, in Monte Carlo study of next section, we use (3.12).

By using these estimators to construct the weights, the weighted realized

volatility (3.1) is equivalent to

ω̂N
ij =

Nijω̂
R
ij

Nij + 2
(3.19)

where Nij = Ni + Nj − ∑
I
({

tik = tjl
})

. We refer to (3.19) as naively

weighted realized volatility. Although, there is little difference between ω̂N
ij

and ω̂R
ij when Nij is large, we find that ω̂N

ij slightly improves the MSE

compared with ω̂R
ij in the Monte Carlo study of next section.
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3.4 Monte Carlo study

We examine the above theory through a Monte Carlo study. Without loss of

generality, we set the number of assets as two. We follow the Monte Carlo

design of Barucci and Renò (2002) with some modification for multivari-

ate setting: we generate proxy for continuous observations by discretizing

following stochastic differential equations with a time step of one second,
 dp1(t)

dp2(t)


 =


 σ11 (t) σ12 (t)

σ21 (t) σ22 (t)




 dW1(t)

dW2(t)


 , 0 ≤ t ≤ T

dσij (t) = κij (θij − σij (t)) dt + γijdWij (t) , i, j = 1, 2.

where κij = 0.01, θij = 0.01, and γij = 0.001 for any i, j and T = 60×60×24

seconds. Time differences are drawn from an exponential distribution with

mean 45 seconds for p1 and 60 seconds for p2:
5

F
(
tik − tik−1

)
= 1 − exp

{−λi

(
tik − tik−1

)}
, i = 1, 2

where F (·) denotes a cumulative distribution function, λ1 = 1/45 and λ2 =

1/60.

We compared the performances of previous tick interpolation realized

volatility ω̂P
ij(M), Fourier series estimator ω̂F

ij , raw data realized volatility
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ω̂R
ij , and naively weighted realized volatility ω̂N

ij . We also observed the perfor-

mance of the estimator using the optimal weight. In calculations of previous

tick interpolation realized volatility ω̂P
ij(M), we set M = 144, 288, and 720,

corresponding to so-called daily realized volatility based on 10-min, 5-min

and 2-min returns. In calculations of Fourier series estimator ω̂F
ij , we set

Q = 10, 25, 50, 100, 250, 500, 750, and 1000. We performed 100 replications.

Table 3.1 and 3.2 report the sample MSE and bias (in parenthesis) of

each estimator from 100 replications:

1

100

100∑
r=1

(
ω̂

(r)
ij −

∫ T

0

ω
(r)
ij (t) dt

)2

and
1

100

100∑
r=1

(
ω̂

(r)
ij −

∫ T

0

ω
(r)
ij (t) dt

)
,

where r denotes the number of replications.

Figure 3.2, 3.3, and 3.4 show the distribution of normalized errors of each

estimator:

ω̂11 −
∫ T

0
ω11(t)dt∫ T

0
ω11(t)dt

,
ω̂22 −

∫ T

0
ω22(t)dt∫ T

0
ω22(t)dt

, and,
ω̂12 −

∫ T

0
ω12(t)dt∫ T

0
ω12(t)dt

,

respectively.

Because 1st asset is more high-frequency sampled (average duration is 45

seconds) than 2nd asset (average duration is 60 seconds), each estimate of

∫ T

0
ω11 (t) dt is more accurate than that of

∫ T

0
ω22 (t) dt.

Under our simulation design, the correlation between the 1st and 2nd
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Figure 3.2: Distribution of normalized error (volatility of 1st asset)

Note: 10-min, 5-min, and 2-min denote ω̂P
11(M) with M = 144, 288,

and 720, respectively. “Q =” signifies the Fourier estimator ω̂F
11 with

Q = 25, 50, 100, 250, 500, and 1000. RV denotes the raw data realized

volatility ω̂R
11. NW denotes the naively weighted realized volatility ω̂N

11. OW

denotes the weighted realized volatility using the optimal weight. The dis-

tribution is computed with 100 ‘daily’ replications.

asset is on average positive: ω12 (t) varies around a positive mean of 0.0002

because

ω12 (t) = σ11(t)σ21(t) + σ12(t)σ22(t)

and each σij has the mean of 0.01. As expected from the bias (3.5), the

shorter the interpolation time intervals is, the more downward biased the
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Figure 3.3: Distribution of normalized error (volatility of 2nd asset)

Note: 10-min, 5-min, and 2-min denote ω̂P
22(M) with M = 144, 288,

and 720, respectively. “Q =” signifies the Fourier estimator ω̂F
22 with

Q = 25, 50, 100, 250, 500, and 1000. RV denotes the raw data realized

volatility ω̂R
22. NW denotes the naively weighted realized volatility ω̂N

22. OW

denotes the weighted realized volatility using the optimal weight. The dis-

tribution is computed with 100 ‘daily’ replications.

previous tick interpolation realized cross volatility ω̂P
12 is. On the other hand,

as the partitions get finer and finer, ω̂P
11(M) and ω̂P

22(M) become more accu-

rate. If M → ∞ (in this case, M = 60 × 60 × 24), ω̂P
11(M) and ω̂P

22(M) are

exactly consistent with ω̂R
11 and ω̂R

22, respectively.

This relationship between previous tick realized volatility and the number

of partition is similar to that between Fourier series estimator and the number
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Figure 3.4: Distribution of normalized error (cross volatility)

Note: 10-min, 5-min, and 2-min denote ω̂P
12(M) with M = 144, 288,

and 720, respectively. “Q =” signifies the Fourier estimator ω̂F
12 with

Q = 25, 50, 100, 250, 500, and 1000. RV denotes the raw data realized

volatility ω̂R
12. NW denotes the naively weighted realized volatility ω̂N

12. OW

denotes the weighted realized volatility using the optimal weight. The dis-

tribution is computed with 100 ‘daily’ replications.

of Fourier coefficients. As mentioned in 3.2.3, as Q → ∞, ω̂F
11, ω̂F

22, and ω̂F
12

go to ω̂R
11, ω̂R

22, and 0, respectively. We cannot find the optimal Q for Fourier

estimator of cross volatility unless the we know true process of volatility.

Since (3.12) is unbiased estimator of cross volatility, the sample bias is

very small. As expected from the link between naively weighted realized

volatility ω̂N
ij and the raw data realized volatility ω̂R

ij , although the former
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is slightly more downward biased than the latter, the former has slightly

smaller sample MSE than the latter.

The optimally weighed realized volatility is overwhelming the other method.

The results of optimally weighted realized volatility show principal limit of

the weighted realized volatility. One of the most important remaining works

is to investigate the other feasible weighting schemes by using the framework

of the optimal weight.

3.5 Summary

In this chapter we propose the definition of weighted realized volatility which

nests various estimators and show some important examples. The definition

is useful to make a comparative study on them. As a natural consequence,

we derive the MSE-minimizing estimator in the class. To construct it, the

estimates of optimal weights are required. We propose a feasible example

of it. However, it is one of the remaining works to refine upon the feasible

estimator. Another remaining work is the correction of interpolation bias. It

is necessary when we can just obtain evenly spaced data which have already

been interpolated.
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Notes

1 This simplification is acceptable not only because it means an efficient

market in financial economics, but also because, mathematically, the

martingale component swamps the predictable portion over short time

intervals.

2 For the purpose of simplification, we set ti0 = 0 and tiNi
= T.

3 Dacorogna, Gençay, Müller, Olsen, and Pictet (2001) also introduces

next tick interpolation which is analogous to previous tick interpolation.

4 Barndorff-Nielsen and Shephard (2004) studies properties of sum of

squared returns in the case of evenly sampled observations. They refer

to the sum of square returns realized variance and to square root of it

as realized volatility.

5 Of course, our method allows the duration to be correlated or autocor-

related. See Engle and Russell (1998) for an autocorrelated duration

model.
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Table 3.1: Sample MSE from 100 ‘daily’ replications

∫ T

0
ω11 (t) dt

∫ T

0
ω12 (t) dt

∫ T

0
ω22 (t) dt

10-min 9.19 8.85 10.53

(-0.10) (-1.37) (0.21)

5-min 4.80 12.27 5.79

(-0.30) (-3.05) (-0.088)

2-min 2.38 47.68 3.69

(0.033) (-6.81) (0.11)

FE 2.31 5.78 2.83

(0.29) (-0.93) (2.83)

RV 2.10 2.17 2.57

(0.21) (-0.015) (0.26)

NW 2.08 2.16 2.55

(0.18) (-0.026) (0.22)

OW 0.58 0.77 0.70

(0.068) (-0.030) (0.055)

Note: Sample biases are given in parentheses. 10-min: ω̂P
ij(144); 5-min:

ω̂P
ij(288); 2-min: ω̂P

ij(720); FE: ω̂F
11 and ω̂F

22 with Q = 1000, ω̂F
12 with Q = 100;

NE: ω̂N
ij ; OW: weighted realized volatility using optimal weights.
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Table 3.2: Sample MSE of Fourier estimators

Q
∫ T

0
ω11 (t) dt

∫ T

0
ω12 (t) dt

∫ T

0
ω22 (t) dt

10 65.24 46.06 61.60

(-0.72) (-1.18) (-1.56)

25 18.40 14.64 21.94

(-0.17) (-0.17) (-0.15)

50 10.78 8.75 13.92

(-0.11) (-0.24) (-0.013)

100 6.47 5.78 7.71

(-0.40) (-0.93) (-0.12)

250 2.98 14.45 4.01

(-0.060) (-3.56) (0.13)

500 2.51 55.65 3.34

(0.17) (-7.40) (0.22)

750 2.42 95.08 3.11

(0.24) (-9.71) (0.21)

1000 2.31 127.10 2.83

(0.29) (-11.24) (0.21)

Note: Sample biases are given in parentheses.
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Chapter 4

Estimation of instantaneous

volatility

Various stylized facts about asset return or its volatility can be expressed

in state-space models that essentially consist of two stochastic differential

equations: the observation equation and the state equation (see, e.g., Ghy-

sels, Harvey, and Renault, 1996). As a diffusion is observed at shorter and

shorter time intervals, its conditional variance at any instant can be ap-

proximated with greater accuracy by a simple flat-weight moving average of

squared residuals. This is the theoretical basis for using the standard (flat-

weight) rolling regression of squared residuals as an estimator of volatility in
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the context of high-frequency data.

Foster and Nelson (1996) proved that exponentially weighted rolling re-

gression (EWRR) minimizes the asymptotic variance of measurement error

when the time interval is sufficiently small. However, in its application,

flat-weight rolling regression (FWRR) was used because it can be calculated

efficiently by the conventional iterative method. In this chapter, we propose

a similar iterative method for EWRRs. An alternative to the usual realized

volatility is proposed for its application.

4.1 Exponentially weighted rolling regression

of Foster and Nelson (1996)

First we review optimal weighted rolling regression of Foster and Nelson

(1996).1 Let hXt be a locally squared integrable semimartingale and adapted

to the filtration {hFt}, where {hFt} is increasing and right continuous; time

is discrete such that t = 0, h, 2h, · · · , Nh, where h and N denote the time in-

terval and the number of available observations, respectively. In this note, we

assume that the data generating process (DGP) is described by the following
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state-space representation:

∆hXt = hµth + ∆hMt, E((∆hMt)
2|hFt−h) = hΩth, (4.1)

∆hΩt = hλth + ∆hM
∗
t , E((∆hM

∗
t )2|hFt−2h) = hΛth, (4.2)

∆hBt = h−1/2((∆hMt)
2 − hΩth), E((∆hBt)

2|hFt−h) = hθth, (4.3)

where ∆ denotes the first order difference (e.g., ∆hXt = hXt − hXt−h), hMt

and hM
∗
t are local martingales with respect to hFt−h and hFt−2h, hµt and

hΩt are hFt−h-measurable, and hλt and hΛt are hFt−2h-measurable.

Difference equations in (4.1) and (4.2) are called the observation equation

and state equation, respectively. hΩt represents volatility when hXt is the log

of asset price. In (4.3), the sampling error ∆hBt is defined as the martingale

difference. Note that hθt/hΩ
2
t describes the conditional kurtosis of ∆hMt

minus one because

hθt = h−1E((∆hBt)
2|hFt−h) = E((∆hMt/

√
h)4|hFt−h) − hΩ

2
t .

The estimator addressed in this study is the rolling regression of squared

residuals

hΩ̂t ≡
hT ∗(t)∑

s=hT∗(t)

hws−tzsh, zt ≡ (∆hXt − hµ̂th)2

h
,

where hT∗(t) and hT
∗(t) are the start and end times of the rolling regression,

µ̂t is an estimation of µt, and
∑

t hwth = 1. Furthermore, some additional
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assumptions on DGP and weight are required for the following asymptotic

results.2

Foster and Nelson (1996) derived the asymptotic distribution of the mea-

surement error:

h−1/4(hΩ̂t − hΩt)|FT∗
a∼ N(0, hCT∗),

where

hCT∗ = hθT∗

√
h
∑

t

hw
2
t h +

hΛT∗√
h

∑
t

hΨ
2
th,

and

hΨt =




∞∑
s=t+h,t+2h,···

hwsh if t ≥ 0,

−
t∑

s=−∞
hwsh if t < 0.

For discussion in the next section, we display variances of EWRR and backward-

looking FWRR:

hCT∗ =




1
4

(
hθT∗a

√
h + hΛT∗

a
√

h

)
if hws−t = a

2
e−a|s−t|,

hθT∗
n
√

h
+ hΛT∗n

√
h

3
if hws−t = 1

nh
· I({s ∈ [t − nh, t]}),

where I(·) denotes the indicator function.3 Obviously, these variances are

minimized when a =
√

hΛT∗/hθT∗h and n =
√

3hθT∗/hΛT∗h, respectively.
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Foster and Nelson (1996) proved that the EWRR with setting a =
√

hΛT∗/hθT∗h

achieves the smallest variance in all weights. If hwt is constant over time,

FWRRs can be evaluated easily because recursive calculation is possible. For

example, the backward-looking FWRR is written by the first-order difference

equation:

hΩ̂t = hΩ̂t−h +
1

nh
· (zT ∗ − zT∗−h).

In fact, Foster and Nelson (1996) used the two-side FWRR in an empirical

example and Monte Carlo simulation.

We propose a similar iterative method for the EWRR. To simplify the

notation, we define the EWRR as

EWRR[z|a](t) =
∑

s

a

2
e−a|s−t|zsh,

and divide the EWRR into past and future portions as

EWRR[z|a](t) = P [z|a](t) + F [z|a](t), (4.4)

where

P [z|a](t) =
∑
s≤t

a

2
ea(s−t)zsh, and

F [z|a](t) =
∑
s>t

a

2
e−a(s−t)zsh.
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Thereby, we can find the iterative rule in each process as

P [z|a](t) = e−ahP [z|a](t − h) +
a

2
zth, (4.5)

F [z|a](t) = e−ahF [z|a](t + h) +
a

2
e−ahzt+hh. (4.6)

In the same manner as for the flat-weight, if the weight function does not

change (i.e., a is constant) over time, these recurrence formulas improve

the efficiency of numerical evaluation. Using (4.5) and (4.6), two series

of {P [z|a](t)}Nh
t=0,h,2h,··· , and {F [z|a](t)}0

t=Nh,Nh−h,Nh−2h,··· , are calculated for-

ward and backward respectively. Then EWRR[z|a](t) is completed by (4.4)

at each t. As N → ∞, the theoretical computational time with the method

increases at order N , whereas that without the method increases at order

N2.

4.2 An application: Comparison with instan-

taneous realized volatility

We need estimates of hθT∗ and hΛT∗ to use the optimal EWRR. However, it

is burdensome to estimate them. Even under the simplifying assumptions

that hΛt/hΩ
2
t and hθt/hΩ

2
t are constant over time, they cannot be estimated
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accurately, as explained in Foster and Nelson (1996). Instead of seeking the

optimal estimator, we propose a practical usage of EWRR.

Realized volatility4, which is often used as a proxy for true volatility to

measure the performance of forecasting in empirical contexts, is defined as

backward-looking FWRR,

hΩ̂t =
∑

s

1

nr
· I({s ∈ [t − nrh, t]}) · zs, (4.7)

where nr is constant over time. Each researcher determines window length

nr by some method. In the context of Foster and Nelson (1996)’s theory,

the estimator (4.7) implies that the researcher believes nr to be the opti-

mal
√

3hθT∗/hΛT∗h over time. This is equivalent to setting
√

hΛT∗/hθT∗h =

√
3/nrh. Variances of the asymptotic measurement error of EWRR[z|√3/nrh]

and backward-looking FWRR (4.7) are

√
3

4

(
hθT∗

nr

√
h

+
hΛT∗nr

√
h

3

)
, and

hθT∗

nr

√
h

+
hΛT∗nr

√
h

3
, (4.8)

respectively. Therefore, the EWRR achieves
√

3/4 smaller measurement er-

ror variance than realized volatility at any t. Thereby, we expect EWRR to

reduce mean squared error (MSE) by
√

3/4 compared to realized volatility.

We performed Monte Carlo simulation according to Foster and Nelson

(1996) to confirm this; we generated 16,885 observations from the following
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DGP,

∆ log Ωt = 0.0056 · (−0.4246 − log Ωt−1) +
√

0.012 · u2t, (4.9)

∆Mt =
√

Ωt · u1t, (4.10)

where both u1t and u2t are mutually independent, u1t ∼ i.i.d. standardized-t12,

and u2t ∼ i.i.d.N(0, 1).5

(4.9) implies that log Ωt is conditionally homoskedastic. This is equiv-

alent to the constancy of Λt/Ω2
t , which is specified by 0.012 in this DGP.

In (4.10), kurtosis of u1t is assumed to be 3.75. This assumption means

that θt/Ω2
t = 2.75 over time because θt/Ω2

t is conditional kurtosis of u1t mi-

nus one. The constancy of Λt/Ω2
t and θt/Ω2

t implies that the optimal nr is

√
3 · 2.75/0.012(≈ 26) over time.6

Table 4.1 reports means of the MSEs of realized volatility and the EWRR

from 600 simulations along with ratios of two estimators’ means of MSEs.

Both estimators minimize MSEs at optimal nr. As expected, the ratios are

approximately
√

3/4(≈ 0.433) near the optimal nr. The ratios separate from

0.433 when nr is far from 26. A nr that is too small violates the assumption

that the number of observations in the window must be sufficiently large

to hold the asymptotic theory. On the other hand, a nr that is too large

violates the assumption that the window length must be sufficiently short to
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maintain the parameter constancy.

Although the simplifying assumptions hold in the above example, (4.8)

suggests that regardless of whether the assumptions hold or not (whether nui-

sance parameters can be estimated accurately or not), the measurement error

variances ratio is always
√

3/4. This relation holds unless not-so-restrictive

assumptions on DGP and weight (i.e., Foster and Nelson (1996), Assump-

tions A–D) are violated. We can say that the EWRR[(Residual)2|√3/nr]

should be used instead of the usual realized volatility with window length nr

in a broad range of situations.

Table 4.1 reports means of the MSEs of realized volatility and the EWRR

from 600 simulations. Figure 4.1 shows one of the 600 simulations. The curve

shape is similar to that of function (4.8).

4.3 Summary

Because of the use of the iterative method, EWRR is as tractable as FWRR.

However, the optimal EWRR of Foster and Nelson (1996) requires estimates

of nuisance parameters. Even under the simplifying assumptions, it is a

nuisance problem to estimate these parameters. This note proposes a prac-
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Table 4.1: Means of MSEs of realized volatility and EWRR

nr 1 20 26 50 100

Realized volatility 12.456 0.768 0.724 0.805 1.146

(108.154) (0.706) (0.644) (0.723) (1.138)

EWRR 8.557 0.354 0.338 0.395 0.603

(7.241) (0.258) (0.237) (0.273) (0.478)

Ratio 0.687 0.461 0.467 0.491 0.526

Note: Realized volatility and EWRR are computed by

1

nr

nr−1∑
i=0

zt−i and

√
3

2nr

∑
s

zs exp

[
−
√

3

nr
|s − t|

]
,

where zt is the squared residual at t. All the means are computed with

600 replications. Standard deviations are given in parentheses. The row of

‘Ratio’ shows ratios of the two estimators’ means of MSEs at each nr.
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Figure 4.1: EWRR vs realized volatility

Note: MSE of Ω̂t by EWRR (solid line) and realized volatility (dashed line).

One of the 600 simulations is drawn.
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tical application of EWRR: an alternative to the usual realized volatility

with window length n. EWRR[(Residual)2|√3/n] achieves
√

3/4 smaller

measurement error variance than the realized volatility. This relation does

not require overly restrictive assumptions. Therefore, instead of the realized

volatility, we can use the EWRR in a wide range of situations as a more

accurate and equally simple estimator.
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Notes

1 For simplification, we restrict our study to scalar and diffusion pro-

cesses.

2 See Foster and Nelson (1996) for these assumptions.

3 These can be verified easily by thinking of sums as integrals:

∑
t

hw
2
t h

∼=
∫ ∞

−∞
hw

2
t dt,

∑
t

hΨ
2
th

∼=
∫ ∞

0

(∫ ∞

t
hwsds

)2

dt +

∫ 0

−∞

(∫ t

−∞
hwsds

)2

dt.

4 Although we studied realized volatility for integrated volatility in the

previous chapters, now we define realized volatility for spot volatility.

The definition of spot realized volatility follows Dacorogna, Gençay,

Müller, Olsen, and Pictet (2001).

5 The prefix h(= 1) is dropped for the remainder of this section.

6 According to French, Schwert, and Stambaugh (1987), this seems to be

reasonable in reference to U.S. stock prices.
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Appendix A

Linear interpolation bias

Each interpolated point is written as

q

(
jT

m

)
= (1 − ρj) p

(
t−j
)

+ ρjp
(
t+j
)

= (1 − ρj)

∫ t−j

0

dp (t) + ρj

∫ t+j

0

dp (t) .

See Figure A.1. Using this, we get

E

[
q

(
jT

m

)
− q

(
(j − 1)T

m

)]2

=

[
ρ2

j

∫ t+j

0

σ2 (t) dt +
(
1 − ρ2

j

) ∫ t−j

0

σ2 (t) dt

]

−
[(

1 − (1 − ρj−1)
2) ∫ t+j−1

0

σ2 (t) dt +
(
1 − ρ2

j−1

) ∫ t−j−1

0

σ2 (t) dt

]
.
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p(t)

Figure A.1: Linear interpolation
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Each ith term of the bias E[σ̂2(M)] − ∫ T

0
σ2(t)dt is

E

[{
q

(
iT

M

)
− q

(
(i − 1)T

M

)}2
]
−
∫ iT/M

(i−1)T/M

σ2(t)dt

= A − B − (C − D)

where

A = ρ2
i

∫ t+i

0

σ2(t)dt + (1 − ρ2
i )

∫ t−i

0

σ2(t)dt

B = (1 − (1 − ρi−1)
2)

∫ t+i−1

0

σ2(t)dt + (1 − ρi−1)
2

∫ t−i−1

0

σ2(t)dt

C =

∫ iT/M

0

σ2(t)dt

D =

∫ (i−1)T/M

0

σ2(t)dt

See Figure A.2. Then calculating

E
[
σ̂2 (m)

]− ∫ T

0

σ2 (t) dt

=

m∑
j=1

E

[
q

(
jT

m

)
− q

(
(j − 1)T

m

)]2

−
∫ jT/m

(j−1)T/m

σ2 (t) dt

we obtain (2.4).
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Figure A.2: Linear interpolation bias

71



Appendix B

Relationship between Fourier

estimator and raw data realized

volatility

(2.8) and (3.11) are rewritten as

ak(dp) =
1

π

N∑
i=1

cos kti∆p(ti) (B.1)

bk(dp) =
1

π

N∑
i=1

sin kti∆p(ti) (B.2)
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respectively. Using (B.1), (B.2), and the addition theorem,

σ̂2
F =

π2

K

K∑
k=1

(a2
k(dp) + b2

k(dpi))

=
1

K

K∑
k=1


{ N∑

i=1

cos kti∆p(ti)

}2

+

{
N∑

i=1

sin kti∆p(ti)

}2



=
1

K

K∑
k=1

N∑
i=1

N∑
j=1

∆p (ti) ∆p (tj) {cos kti cos ktj + sin kti sin ktj}

=
N∑

i=1

N∑
j=1

∆p (ti)∆p (tj)

{∑K
k=1 cos k (ti − tj)

K

}
.

Since

K∑
k=1

cos kx =




K if x = 0

sin
(K+1)x

2
cos Kx

2

sin x
2

otherwise

we get (2.11).
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Appendix C

Weight matrix of ω̂L
ii

Using

αm + βm = 1, and

pi(t
i
k) = pi(t0) +

k∑
l=1

∆pi(t
i
l)
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we obtain

ω̂L
ii(3)

=

(
qi

(
T

3

)
− qi (0)

)2

+

(
qi

(
2T

3

)
− qi

(
T

3

))2

+

(
qi (T ) − qi

(
2T

3

))2

= {α1pi(t
i
3) + β1pi(t

i
2) − pi(t0)}2

+ {α2pi(t
i
7) + β2pi(t

i
6) − α1pi(t

i
3) − β1pi(t

i
2)}2

+ {pi(t
i
8) − α2pi(t

i
7) − β2pi(t

i
6)}2

=

{
2∑

k=1

∆pi(t
i
k) + α1∆pi(t

i
3)

}2

+

{
β1∆pi(t

i
3) +

6∑
k=3

∆pi(t
i
k) + α2∆pi(t

i
7)

}2

+
{
β2∆pi(t

i
7) + ∆pi(t

i
8)
}2

. (C.1)

Each coefficient of ∆pi(t
i
k)∆pi(t

i
l) in (pre-wm-pol) is equivalent to the kl

element of (3.7).
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Appendix D

Weighted realized volatility

representation of Fourier

estimator

Fourier coefficients of aq(dpi) and bq(dpi) are approximated by

aq(dpi) ≈ 1

π

Ni∑
k=1

cos qtik∆pi(t
i
k)

bq(dpi) ≈ 1

π

Ni∑
k=1

sin qtik∆pi(t
i
k),
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respectively. By these approximates and the additional theorem,

ω̂F
ij =

π2

Q

Q∑
q=1

(aq(dpi)aq(dpj) + bq(dpi)bq(dpj))

=
1

Q

Q∑
q=1




Ni∑
k=1

cos(qtik)∆pi(t
i
k)

Nj∑
l=1

cos(qtjl )∆pj(t
j
l )




+
1

Q

Q∑
q=1




Ni∑
k=1

sin(qtik)∆pi(t
i
k)

Nj∑
l=1

sin(qtjl )∆pj(t
j
l )




=
1

Q

Q∑
q=1




Ni∑
k=1

Nj∑
l=1

{
cos(qtik) cos(qtjl ) + sin(qtik) sin(qtjl )

}
∆pi(t

i
k)∆pj(t

j
l )




=
1

Q

Q∑
q=1




Ni∑
k=1

Nj∑
l=1

cos q(tik − tjl )∆pi(t
i
k)∆pj(t

j
l )




=

Ni∑
k=1

Nj∑
l=1

∆pi

(
tik
)
∆pi

(
tjl
){∑Q

q=1 cos q
(
tik − tjl

)
Q

}
.

Since

Q∑
q=1

cos qx =




Q if x = 0

sin
(Q+1)x

2
cos Qx

2

sin x
2

otherwise

,

we get the desired result.
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Appendix E

Variance of ω̂ij

Using

E
(
∆pi

(
tik
)
∆pj

(
tjl
)
wA

kl

)2

=
(
wA

kl

)2

{
2

(∫
I(k,l)

ωijdt

)2

+

(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)}
,
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V (ω̂ij)

= V

(∑
A

∆pi

(
tik
)
∆pj

(
tjl
)
wkl +

∑
AC

∆pi

(
tik
)
∆pj

(
tjl
)
wkl

)

= E

(∑
A

∆pi

(
tik
)
∆pj

(
tjl
)
wkl

)2

−
{

E

(∑
A

∆pi

(
tik
)
∆pj

(
tjl
)
wkl

)}2

+ E

(∑
AC

∆pi

(
tik
)
∆pj

(
tjl
)
wkl

)2

=
∑(

wA
kl

)2

{(∫
I(k,l)

ωijdt

)2

+

(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)}

+

{∑
wA

kl

∫
I(k,l)

ωijdt

}2

−
{∑

wA
kl

∫
I(k,l)

ωijdt

}2

+
∑(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)(
wAC

kl

)2

=
∑(

wA
kl

)2

{(∫
I(k,l)

ωijdt

)2

+

(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)}

+
∑(

wAC

kl

)2
(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)
.
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Appendix F

Proof of Theorem 2

The first order condition is

∂MSE

∂w
= 2Dw + 2xx′w − 2xx′1,
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then we get

w = (D + xx′)−1
xx′1

=

(
D−1 − 1

1 + x′D−1x
D−1xx′D−1

)
xx′1

=




� T
0 ωijdt

�
I(1,1) ωijdt

v11{1+
�

ukl}
...

� T
0

ωijdt
�
I(k,l)

ωijdt

vkl{1+
�

ukl}
...

� T
0 ωijdt

�

I(Ni,Nj )
ωijdt

vNiNj
{1+

�
ukl}




.

The second equality follows from the updating formula. See e.g., Greene

(1999). The second order derivative matrix is

∂2MSE

∂w∂w′ = 2D + 2xx′.

This matrix is positive definite. Substituting the optimal weight into (3.13)

and (3.14), we obtain (3.16) and (3.17), respectively.
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