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Abstract

This paper derives the linear interpolation bias of realized volatility. To avoid the bias, the
Fourier series estimator has been proposed by Malliavin and Mancino (2002). We examine
the theoretical relationship between the Fourier estimator and realized volatility and show
that the latter is the most efficient estimator in the class of the former.
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1 Introduction

Development of computer power and data recording systems allows us to use
more high-frequency data than ever before. Such high-frequency data lend
validity to a method based on quadratic variation formula, which is called
realized volatility in the finance and econometrics literature. Because of the
facility of handling, tick-by-tick data, which are usually unevenly sampled,
are transformed into regularly spaced data through a certain interpolation.
However, that interpolation method reduces the number of data and intro-
duces the bias. Through Monte Carlo simulations, Barucci and Renò (2002)
demonstrates that linear interpolation introduces a downward bias to re-
alized volatilities. This paper theoretically derives the linear interpolation
bias of realized volatility. To avoid these problems of interpolation methods,
Malliavin and Mancino (2002) proposed an estimator based on Fourier se-
ries analysis that is well suited for unevenly sampled data. In this paper,
we derive a theoretical relationship between the Fourier series estimator and
realized volatility. The latter is proved to be the most efficient estimator
in the class of the former. We confirm our theory through a Monte Carlo
simulation.

This study specifically addresses the following situation. Let pt be a
logarithmic asset price that is generated by diffusion:

dp(t) = σ(t)dW (t), 0 ≤ t ≤ T, (1)

where W (t) is a standard Brownian Motion and σ(t) is a random time de-
pendent function. That diffusion is observed at (N +1) irregular time points
{ti}N

i=0. We assume that every time difference (duration) is sufficiently small:
limN→∞ supi≥1 (ti − ti−1) = 0. For purposes of simplification, we set the drift
of diffusion as 0. This simplification is acceptable not only because it means
an efficient market in financial economics, but also because, mathematically,
the martingale component swamps the predictable portion over short time
intervals. In such a situation, we study the nonparametric estimators of inte-
grated volatility

∫ T

0
σ2(t)dt. Because we make no hypothesis on the structure

of the underlying probability space Ω, we can construct an auxiliary probabil-
ity space X where we consider σ(t) as a deterministic function, see Malliavin
and Mancino (2002).

Throughout this paper, E denotes the expectation on the probability
space X.
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2 Realized volatility from evenly spaced ob-

servations

In this section, we examine realized volatility from evenly spaced data. Un-
evenly sampled raw data are converted into evenly spaced data through in-
terpolation. We consider two interpolation methods for converting N raw
data, {p (ti)}N

i=0, to m evenly spaced data, {q (jT/m)}m
j=0:

q

(
jT

m

)
=

{
(1 − ρj) p

(
t−j
)

+ ρjp
(
t+j
)

linear interpolation
p
(
t−j
)

previous-tick interpolation
(2)

where

ρj =
(jT/m) − t−j

t+j − t−j
,

t−j = max {ti : ti ≤ jT/m} ,

t+j = min {ti : ti ≥ jT/m} ,

and where maxA and minA denote maximum and minimum elements of A,
respectively.

Using the evenly spaced data series {q (jT/m)}m
j=0, the volatility is mea-

sured by the following estimator.

σ̂2(m) =
m∑

j=1

(
q

(
jT

m

)
− q

(
(j − 1) T

m

))2

. (3)

Whereas Barucci and Renò (2002) found through Monte Carlo simulation
that linear interpolation procedures introduce bias into realized volatility
(3), we derive the theoretical linear interpolation bias as

−m

T

m∑
j=1

{
ρj−1 (1 − ρj−1)

(
t+j−1 − t−j−1

)
+ ρj (1 − ρj)

(
t+j − t−j

)} ∫ jT/m

(j−1)T/m

σ2 (t) dt.

(4)

See Appendix A for derivation of (4). Note that the downward bias (4) is
more pronounced: (a) when the time window [0, T ] is divided more finely (m
is large); (b) when the interpolated time point is far from the observed time
points (|ρj −1/2| is small); (c) in coarsely-sampled periods (t+j − t−j is large);
or (d) in the volatile period (σ2 (t) is large).

In the case of previous-tick interpolation, the realized volatility (3) is
unbiased if the diffusion is observed at t = 0 and t = T (if t0 = 0 and
tN = T ).
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3 Estimators using raw data

Malliavin and Mancino (2002) proposed a method based on Fourier series to
use unevenly sampled data. In this section, we normalized the time window
[0, T ] to [0, 2π]. The Fourier estimator of integrated volatility

∫ T

0
σ2(t)dt is

given as

σ̂2
F =

π2

K

K∑
k=1

(a2
k(dp) + b2

k(dp)), (5)

where

ak(dp) =
1

π

∫ 2π

0

cos(kt)dp(t), (6)

bk(dp) =
1

π

∫ 2π

0

sin(kt)dp(t), (7)

and K is a large integer. In practice, we compute the integrals (6) through
integration by parts, as

ak(dp) =
1

π

∫ 2π

0

cos(kt)dp(t) =
p (2π) − p (0)

π
+

1

π

∫ 2π

0

sin(kt)p(t)dt

≈ p (2π) − p (0)

π
+

1

π

N−1∑
i=0

[cos(kti) − cos(kti+1)] p(ti) (8)

because the piecewise constant is valid under assumption limN→∞ supi≥1 (ti − ti−1) =
0. Similarly, we approximate (7) by

bk(dp) ≈ 1

π

N−1∑
i=0

[sin(kti) − sin(kti+1)] p(ti). (9)

Another method using unevenly sampled observations {p (ti)}N
i=0 is an

estimator based on the quadratic variation formula:

σ̂2
R =

N∑
i=1

{∆p(ti)}2 , (10)

where ∆p(ti) = p(ti)− p(ti−1). To distinguish (10) from (3), we refer to (10)
as raw data realized volatility. The Fourier estimator (5) can be rewritten as

σ̂2
F = σ̂2

R +
∑
i�=j

∆p (ti) ∆p (tj) wij, (11)
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where

wij =
sin

(K+1)(ti−tj)

2
cos

K(ti−tj)

2

K sin
(ti−tj)

2

. (12)

See Appendix B for the derivation. (11) and (12) imply that as K → ∞,
σ̂2

F → σ̂2
R. Because the second parts of (11) are uncorrelated to σ̂2

R,

V
(
σ̂2

F

)
= V

(
σ̂2

R

)
+ V

(∑
i�=j

∆p (ti) ∆p (tj)wij

)
(13)

= V
(
σ̂2

R

)
+
∑
i�=j

{∫ ti

ti−1

σ2 (t) dt

}{∫ tj

tj−1

σ2 (t) dt

}
w2

ij > V
(
σ̂2

R

)
.

In other words, as K ↑ ∞, V (σ̂2
F ) ↓ V (σ̂2

R) . That is to say, (10) is the most
efficient estimator in the class of (5).

4 Monte Carlo study

We follow the Monte Carlo design of Barucci and Renò (2002) with little
modification: we generate a proxy for continuous observation by discretizing
the following stochastic differential equations with a time step of one second:

d log σ2 (t) = −k log σ2 (t) dt + γdWσ (t)

dp(t) = σ(t)dWp(t), 0 ≤ t ≤ T,

where Wσ and Wp are mutually independent standard Brownian motions,
k = 0.01, γ = 0.1, and T = 60 × 60 × 24 seconds (s). Time differences are
drawn from an exponential distribution with a mean of 45 s.1 We compare
the performances of estimators (3), (5), and (10). In calculations of (3), we
set m = 144, 288, and 720, corresponding to so-called daily realized volatility
based on 10-min, 5-min, and 2-min returns. Each return is computed by two
interpolation methods in (2). In (5), we set K = 10, 50, 100, 500, and [N/2]
where [·] denotes a Gaussian symbol.2 In our simulation, [N/2] is expected
to be around 60 × 60 × 24 ÷ (45 × 2) = 960.

1Although each duration is independent in our simulation, our method requires no
assumption except that supi≥1 (ti − ti−1) is small. See Engle and Russell (1998) for the
autoregressive time duration models. See e.g., Aı̈t-Sahalia and Mykland (2003) for an
example of the exponentially distributed duration.

2[N/2] is the so-called Nyquist frequency if observations are sampled evenly.

4



Figure 1: Distribution of (14). 10-min, 5-min, and 2-min denote the es-
timators (3) with m = 144, 288, and 720, respectively, through linear
and previous-tick interpolation. FE signifies the Fourier estimator (5) with
K = 10, 50, 100, 500, and [N/2]. RV denotes the raw data realized volatility
(10). The distribution is computed with 600 ‘daily’ replications.

We performed 600 replications. Figure 1 shows the distributions of nor-
malized errors

σ̂2 (m) − ∫ T

0
σ2(t)dt∫ T

0
σ2(t)dt

,
σ̂2

F − ∫ T

0
σ2(t)dt∫ T

0
σ2(t)dt

, and
σ̂2

R − ∫ T

0
σ2(t)dt∫ T

0
σ2(t)dt

. (14)

Table 1 reports the means and standard deviations of (14) from that set
of 600 replications. Increasing the number of partitions m, we can reduce
the variance of realized volatility. However, as stated in (4), in the case
of using linear interpolation, the downward bias increases. In contrast, the
realized volatility is unbiased when using previous-tick interpolation. As
stated in (13), Figure 1 and Table 1 show that as K ↑ ∞, V (σ̂2

F ) ↓ V (σ̂2
R).

Table 2 compares means of the theoretical linear interpolation bias (4) and

measurement error of σ̂2 (m)−∫ T

0
σ2(t)dt from 600 replications. Both means

are approximately consistent. We can verify the validity of (4) by these
results.

5 Concluding remarks

This study derived the linear interpolation bias of realized volatility. Re-
sults indicate that linear interpolation should not be used as the preparation
for realized volatility calculations. The theoretical relationship between the
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Table 1: Means and standard deviations of (14) from 600 ‘daily’ replications.
Standard deviations are given in parentheses. 10-min, 5-min, and 2-min
denote the estimators (3) with m = 144, 288, and 720, respectively, through
two different interpolations in (2). Fourier estimators are computed with five
different Ks. Raw data realized volatility denotes the estimator (10).

10-min -0.04734 (0.12293)
linear 5-min -0.09763 (0.08937)

2-min -0.23911 (0.05152)
10-min 0.00109 (0.13139)

previous-tick 5-min -0.00092 (0.09864)
2-min -0.00017 (0.07086)

K = 10 0.00107 (0.33051)
K = 50 -0.01371 (0.15253)

Fourier estimator K = 100 -0.00341 (0.11409)
K = 500 -0.00252 (0.06538)

K = [N/2] -0.00055 (0.05730)
raw data realized volatility -0.00094 (0.05460)

Table 2: Means of measurement errors of realized volatility (3) through linear
interpolation procedures and the theoretical linear interpolation bias (4) from
600 replications. Standard deviations are given in parentheses.

σ̂2 (m) − ∫ T

0
σ2(t)dt bias (4)

10-min -5291.56 (13682.3) -5436.57 (478.465)
5-min -10858.1 (9953.48) -10915.0 (720.160)
2-min -26675.4 (5907.82) -27360.9 (1464.48)
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Fourier series estimator proposed by Malliavin and Mancino (2002) and raw
data realized volatility implies that the latter is the most efficient estimator
in the class of the former.

A Linear interpolation bias

Using

q

(
jT

m

)
= (1 − ρj) p

(
t−j
)

+ ρjp
(
t+j
)

= (1 − ρj)

∫ t−j

0

dp (t) + ρj

∫ t+j

0

dp (t) ,

we get

E

[
q

(
jT

m

)
− q

(
(j − 1)T

m

)]2

=

[
ρ2

j

∫ t+j

0

σ2 (t) dt +
(
1 − ρ2

j

) ∫ t−j

0

σ2 (t) dt

]

−
[(

1 − (1 − ρj−1)
2) ∫ t+j−1

0

σ2 (t) dt +
(
1 − ρ2

j−1

) ∫ t−j−1

0

σ2 (t) dt

]
.

Then calculating

E
[
σ̂2 (m)

]− ∫ T

0

σ2 (t) dt

=

m∑
j=1

E

[
q

(
jT

m

)
− q

(
(j − 1)T

m

)]2

−
∫ jT/m

(j−1)T/m

σ2 (t) dt,

we obtain (4).

B Fourier estimator and realized volatility

(8) and (9) are rewritten respectively as

ak(dp) =
1

π

N∑
i=1

cos kti∆p(ti) (15)

bk(dp) =
1

π

N∑
i=1

sin kti∆p(ti). (16)
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Using (15), (16), and the addition theorem,

σ̂2
F =

π2

K

K∑
k=1

(a2
k(dp) + b2

k(dpi))

=
1

K

K∑
k=1



{

N∑
i=1

cos kti∆p(ti)

}2

+

{
N∑

i=1

sin kti∆p(ti)

}2



=
1

K

K∑
k=1

N∑
i=1

N∑
j=1

∆p (ti)∆p (tj) {cos kti cos ktj + sin kti sin ktj}

=
N∑

i=1

N∑
j=1

∆p (ti) ∆p (tj)

{∑K
k=1 cos k (ti − tj)

K

}
.

Because

K∑
k=1

cos kx =

{
K if x = 0

sin (K+1)x
2

cos Kx
2

sin x
2

otherwise,

we obtain(11).
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