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Abstract

This note proposes an iterative method for exponentially weighted

rolling regression (EWRR), which was proved to be an optimal estima-

tor of volatility by Foster and Nelson (1996). The method accelerates

the numerical evaluation of EWRR under certain circumstances. An

alternative to usual realized volatility is proposed for its application.
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1 Introduction

Various stylized facts about asset return or its volatility can be expressed

in state-space models that consist fundamentally of two stochastic differen-

tial equations: the observation equation and the state equation (see, e.g.,

Ghysels et al., 1996). In cases where a observation process is sampled at

shorter and shorter time intervals, its conditional variance at any instant can

be approximated more accurately using a simple flat-weight moving average

of squared residuals. This fact is the theoretical basis for using the stan-

dard (flat-weight) rolling regression of squared residuals as an estimator of

volatility in the context of high-frequency data.

Foster and Nelson (1996) proved that exponentially weighted rolling re-

gression (EWRR) minimizes the asymptotic variance of measurement error

when the time interval is sufficiently small. However, in its application,

flat-weight rolling regression (FWRR) was used because it can be calculated

efficiently by the conventional iterative method. This note proposes a similar

iterative method for EWRR. An alternative to the usual realized volatility

is proposed for its application.

2 Iterative Method

First we review the optimal weighted rolling regression explained in Foster

and Nelson (1996).1 Let hXt be a locally squared integrable semimartingale

1For simplification, we restrict our study to scalar and diffusion processes.
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that is adapted to the filtration {hFt}, where {hFt} is increasing and right

continuous. Time is discrete such that t = 0, h, 2h, · · · , Nh, where h and N

denote the time interval and the number of available observations, respec-

tively. In this note, we assume that the data generating process (DGP) is

described by the following state-space representation:

∆hXt = hµth + ∆hMt, E((∆hMt)
2|hFt−h) = hΩth, (1)

∆hΩt = hλth + ∆hM
∗
t , E((∆hM

∗
t )2|hFt−2h) = hΛth, (2)

∆hBt = h−1/2((∆hMt)
2 − hΩth), E((∆hBt)

2|hFt−h) = hθth, (3)

where ∆ denotes the first order difference (e.g., ∆hXt = hXt − hXt−h), hMt

and hM
∗
t are local martingales with respect to hFt−h and hFt−2h, hµt and

hΩt are hFt−h-measurable, and hλt and hΛt are hFt−2h-measurable.

Difference equations in (1) and (2) are called the observation equation

and state equation, respectively. hΩt represents volatility when hXt is the

logarithm of the asset price. In (3), the sampling error ∆hBt is defined

as the martingale difference. Note that hθt/hΩ
2
t describes the conditional

kurtosis of ∆hMt minus one because

hθt = h−1E((∆hBt)
2|hFt−h) = E((∆hMt/

√
h)4|hFt−h) − hΩ

2
t .

The estimator addressed in this study is the rolling regression of squared

residuals

hΩ̂t ≡
hT ∗(t)∑

s=hT∗(t)

hws−tzsh, zt ≡ (∆hXt − hµ̂th)2

h
,

where hT∗(t) and hT
∗(t) are the start and end times of the rolling regression,

µ̂t is an estimation of µt, and
∑

t hwth = 1. Furthermore, some additional
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assumptions on DGP and weight are required for the following asymptotic

results.2

Foster and Nelson (1996) derived the asymptotic distribution of the mea-

surement error:

h−1/4(hΩ̂t − hΩt)|FT∗
a∼ N(0, hCT∗),

where

hCT∗ = hθT∗

√
h
∑

t

hw
2
t h +

hΛT∗√
h

∑
t

hΨ
2
th,

and

hΨt =




∞∑
s=t+h,t+2h,···

hwsh if t ≥ 0,

−
t∑

s=−∞
hwsh if t < 0.

For discussion in the next section, we display variances of EWRR and backward-

looking FWRR:

hCT∗ =




1
4

(
hθT∗a

√
h + hΛT∗

a
√

h

)
if hws−t = a

2
e−a|s−t|,

hθT∗
n
√

h
+ hΛT∗n

√
h

3
if hws−t = 1

nh
· I({s ∈ [t − nh, t]}),

where I(·) denotes the indicator function.3 These variances are minimized,

respectively, when a =
√

hΛT∗/hθT∗h and n =
√

3hθT∗/hΛT∗h. Foster and
2See Foster and Nelson (1996) to review those assumptions.
3These can be verified easily by considering the sums as integrals:

∑
t

hw2
t h ∼=

∫ ∞

−∞
hw2

t dt,

∑
t

hΨ2
t h

∼=
∫ ∞

0

(∫ ∞

t
hwsds

)2

dt +
∫ 0

−∞

(∫ t

−∞
hwsds

)2

dt.
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Nelson (1996) proved that EWRR setting a =
√

hΛT∗/hθT∗h realizes the

smallest variance in all weights. If hwt is constant over time, FWRRs can be

evaluated easily because recursive calculation is possible. For example, the

backward-looking FWRR is written by the first-order difference equation:

hΩ̂t = hΩ̂t−h +
1

nh
· (zT ∗ − zT∗−h).

In fact, Foster and Nelson (1996) used two-sided FWRR in an empirical

example and in a Monte Carlo simulation.

We propose a similar iterative method for EWRR. To simplify the nota-

tion, we define EWRR as

EWRR[z|a](t) =
∑

s

a

2
e−a|s−t|zsh,

and divide EWRR into past and future portions as

EWRR[z|a](t) = P [z|a](t) + F [z|a](t), (4)

where

P [z|a](t) =
∑
s≤t

a

2
ea(s−t)zsh, and F [z|a](t) =

∑
s>t

a

2
e−a(s−t)zsh.

Thereby, we can find the iterative rule in each process as

P [z|a](t) = e−ahP [z|a](t − h) +
a

2
zth, (5)

F [z|a](t) = e−ahF [z|a](t + h) +
a

2
e−ahzt+hh. (6)

In the same manner as for flat-weight, if the weight function does not change

(i.e., a is constant) over time, these recurrence formulas improve the efficiency
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of numerical evaluation. Using (5) and (6), the two series of {P [z|a](t)}Nh
t=0,h,2h,··· ,

and {F [z|a](t)}0
t=Nh,Nh−h,Nh−2h,··· , are calculated forward and backward, re-

spectively. Then EWRR[z|a](t) is completed by (4) at each t. As N → ∞,

the theoretical computational time with the method increases at order N ,

whereas that without the method increases at order N2.

3 An Application: Comparison with Instan-

taneous Realized Volatility

We require estimates of hθT∗ and hΛT∗ to use optimal EWRR, but produc-

ing such estimates is burdensome. Even under the simplifying assumptions

that hΛt/hΩ
2
t and hθt/hΩ

2
t are constant over time, they cannot be estimated

accurately, as explained in Foster and Nelson (1996). Instead of seeking the

optimal estimator, we propose a practical usage of EWRR.

Realized volatility, which is often used as a proxy for true volatility to

measure the performance of forecasting in empirical contexts, is defined as

backward-looking FWRR,

hΩ̂t =
∑

s

1

nr
· I({s ∈ [t − nrh, t]}) · zs, (7)

where nr is constant over time. A researcher must determine window length

nr by some method. In the context of the theoretical approach outlined in

Foster and Nelson (1996), the estimator (7) implies that the researcher be-

lieves nr to be the optimal
√

3hθT∗/hΛT∗h over time. That implication is

equivalent to setting
√

hΛT∗/hθT∗h =
√

3/nrh. The variances of the asymp-
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totic measurement error of EWRR[z|√3/nrh] and backward-looking FWRR

(7) are

√
3

4

(
hθT∗

nr

√
h

+
hΛT∗nr

√
h

3

)
, and

hθT∗

nr

√
h

+
hΛT∗nr

√
h

3
, (8)

respectively. Therefore, at any t, EWRR realizes a
√

3/4 smaller measure-

ment error variance than realized volatility. Consequently, we expect that

the use of EWRR reduces mean squared error (MSE) by
√

3/4 compared to

realized volatility.

To confirm this, we performed a Monte Carlo simulation according to Fos-

ter and Nelson (1996). We generated 16,885 observations from the following

DGP:

∆ log Ωt = 0.0056 · (−0.4246 − log Ωt−1) +
√

0.012 · u2t, (9)

∆Mt =
√

Ωt · u1t, (10)

where both u1t and u2t are mutually independent, u1t ∼ i.i.d. standardized-t12,

and u2t ∼ i.i.d.N(0, 1).4

(9) implies that log Ωt is conditionally homoskedastic. This implication

is equivalent to the constancy of Λt/Ω2
t , which is specified by 0.012 in this

DGP. In (10), kurtosis of u1t is assumed to be 3.75. This assumption means

that θt/Ω2
t = 2.75 over time because θt/Ω2

t is conditional kurtosis of u1t

minus one. The constancy of Λt/Ω2
t and θt/Ω2

t implies that the optimal nr is√
3 · 2.75/0.012(≈ 26) over time.5

4The prefix h(= 1) is dropped for the remainder of this paper.
5According to French et al. (1987), that implication seems to be reasonable in reference

to U.S. stock prices.
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Table 1 shows the average MSE of realized volatility and EWRR from 600

simulations along with ratios of the two estimators’ averages of the MSEs.

Both estimators minimize the MSE at optimal nr. As expected, the ratios

are approximately
√

3/4(≈ 0.433) near the optimal nr. The ratios separate

from 0.433 when nr is far from 26. A very small nr violates the assumption

that the number of observations in the window must be sufficiently large to

hold the asymptotic theory. On the other hand, a very large nr violates the

assumption that the window length must be sufficiently short to maintain

the parameter constancy.

Although the simplifying assumptions hold in the above example, (8) sug-

gests that regardless of whether the assumptions hold or not (whether nui-

sance parameters can be estimated accurately or not), the measurement error

variances ratio is always
√

3/4. This relation holds unless not-so-restrictive

assumptions on DGP and weight (i.e., Foster and Nelson (1996), Assumptions

A–D) are violated. We infer that EWRR[(Residual)2|√3/nr] is preferable

for use in place of the usual realized volatility with window length nr in a

broad range of situations.

4 Conclusion

Using the iterative method presented herein, EWRR is as tractable as FWRR.

Nevertheless, the optimal EWRR of Foster and Nelson (1996) requires esti-

mates of nuisance parameters. Even using simplifying assumptions, estimat-

ing those parameters is an onerous problem. This note proposes a practical

9



application of EWRR: an alternative to the usual realized volatility with

window length n. EWRR[(Residual)2|√3/n] realizes a
√

3/4 smaller mea-

surement error variance than the realized volatility. Moreover, that relation

does not require overly restrictive assumptions. For that reason, instead of

realized volatility, we can use EWRR in a wide range of situations as a more

accurate and equally simple estimator.
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Table 1: Average MSE of realized volatility and EWRR

nr 1 20 26 50 100

Realized volatility 12.456 0.768 0.724 0.805 1.146

(108.154) (0.706) (0.644) (0.723) (1.138)

EWRR 8.557 0.354 0.338 0.395 0.603

(7.241) (0.258) (0.237) (0.273) (0.478)

Ratio 0.687 0.461 0.467 0.491 0.526

Note: Realized volatility and EWRR are computed as

1

nr

nr−1∑
i=0

zt−i and

√
3

2nr

∑
s

zs exp

[
−
√

3

nr

|s − t|
]

,

where zt is the squared residual at t. All means are computed through 600

replications. Standard deviations are shown in parentheses. The ‘Ratio’ row

shows ratios of the two estimators’ averages of MSEs at each nr.
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