
A bias correction method for realized

covariance calculated using previous-tick

interpolation∗

Taro Kanatani†‡

Graduate School of Economics, Kyoto University

Yoshida Honmachi, Sakyo-Ku, Kyoto 6068501, JAPAN

Preliminary version: October 9, 2005

Abstract
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1 Introduction

1.1 Data generating process and observations

We consider q-dimensional vector of logarithmic asset price y∗(t) for t ≥
0. We assume that y∗ is a continuous stochastic volatility semimartingle

(SVSMc) with zero drift.1

y∗(t) =

∫ t

0

Θ(u)dw(u),

where Θ has elements that are all cadlag and w is a vector standard Brownian

motion. We set the drift vector as 0, for the purpose of simplification.2 We

define the instanteneous or spot covariance as

Σ(t) ≡ Θ(t)Θ(t)′,

that is to say, cross volatility between kth and lth asset is denoted as the

(k, l)th element of Σ:

Σkl (t) =

q∑
q′=1

Ωkq′ (t) Ωlq′ (t) .

Each kth asset price is observed at irregular time points

0 = tk0 < tk1 < · · · < tkj < · · ·
1See Barndorff-Nielsen and Shephard (2004) for the SVSMc.
2This simplification is acceptable not only because it means an efficient market in

financial economics, but also because, mathematically, the martingale component swamps

the predictable portion over short time intervals.
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We just impose the assumption on the observation points that the time in-

tervals are small: limNi→∞ supj≥1

(
tij − tij−1

)
= 0.

Since we concentrate on the ex post cross volatility measuring and do not

make any hypothesis on the structure of the underlying probability space Ω,

we can construct an auxiliary probability space X where we consider Σ(t)

as deterministic functions. See Malliavin and Mancino (2002). Throughout

this paper, E denotes the expectation on the probability space X.

2 Previous-tick interpolation and realized co-

volatility bias

The raw data which are unevenly spaced, are converted to evenly spaced

data in order to apply to the usual discrete time series analysis. Dacorogna,

Gençay, Müller, Olsen, and Pictet (2001) introduces some interpolation meth-

ods including previous tick interpolation. The previous-tick interpolation at

t′ is defined by the following formula.

x∗
k(t

′) = y∗
k

(
max

{
tkj : tkj ≤ t′

})
(2.1)

where max A and minA denote maximum and minimum elements of A, re-

spectively.

Let � be a fixed interval of time of length. For example, we typically

refer to � as representing a day. Then i� denotes the end point of the ith

day or the start point of the (i + 1)th day. We focus on the case where we

construct M + 1 evenly spaced data during each ith day. We define the mth
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�/M return for the ith day of kth asset as

xk
i (m) = x∗

k

(
(i − 1)� +

m�

M

)
− x∗

k

(
(i − 1)� +

(m − 1)�

M

)
.

The integrated covariance matrix
∫ i�

(i−1)�
Σ(t)dt is measured by the realized

covariation matrix

Σ̂i(M) =
M∑

m=1

xi(m)xi(m)′, (2.2)

that is to say, for each element, the integrated cross volatility
∫ i�

(i−1)�
Σkl(t)dt

is measured by

Σ̂i
kl(M) =

M∑
m=1

xk
i (m)xl

i(m). (2.3)

The bias of Σ̂i
kl(M) is ∫

Ii

Σkl (t) dt (2.4)

where

it
−
m = min

{
max

{
tkj′ : tkj′ ≤ (i − 1)� +

m�

M

}
, max

{
tlj′′ : tlj′′ ≤ (i − 1)� +

m�

M

}}
,

it
+
m = max

{
max

{
tkj′ : tkj′ ≤ (i − 1)� +

m�

M

}
, max

{
tlj′′ : tlj′′ ≤ (i − 1)� +

m�

M

}}
,

Ii =
M⋃

m=1

(
it
−
m, it

+
m

]
Notice that in the case of univariate volatility (k = l), for it

−
m = it

+
m, the re-

alized volatility through previous tick interpolation is an unbiased estimator.
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3 An unbiased realized covolatility

We define an unbiased estimator by

Σ̃i
kl(M) =

∑
(m′,m′′)∈B

xk
i (m

′)xl
i(m

′′) (3.1)

= Σ̂i
kl(M) +

∑
(m′,m′′)∈C

xk
i (m

′)xl
i(m

′′)

where

(m)k
i = min

{
m′ ≥ m : x∗

k

(
(i − 1)� +

m′�
M

)
�= x∗

k

(
(i − 1)� +

(m′ − 1)�

M

)}
,

(3.2)

Bi = {((m)k
i , (m)l

i)}M
m=1 ∪ {((m)i, (m − 1)j)}M

m=2 ∪ {((m − 1)i, (m)j)}M
m=2,

(3.3)

Ci = {(m′, m′′) ∈ B : m′ �= m′′}. (3.4)

The additional part of (3.2) corrects the bias of Σ̂i
kl(M), however increases the

variance of the estimator. In order to see trade-off between bias and variance,

we use mean intergrated squared errors (MISEs) of the two estimators. We

define MISEs of Σ̂i
kl(M) and Σ̃i

kl(M) on [0, n�] as

M̂ISEn =

n∑
i=1

(
E(Σ̂i

kl(M)) −
∫ i�

(i−1)�

Σkl(t)dt

)2

,

M̃ISEn =

n∑
i=1

(
E(Σ̃i

kl(M)) −
∫ i�

(i−1)�

Σkl(t)dt

)2

respectively. Then the following theorem can work for the comparision of the

MISEs.
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Theorem 1 Defining

δn = M̃ISEn − M̂ISEn, (3.5)

Ln =

⎧⎨⎩
n∑

i=1

∑
(m′,m′′)∈Ci

xk
i (m

′)xl
i(m

′′)

⎫⎬⎭
2

− 1

2

n∑
i=1

∑
(m′,m′′)∈Ci

{
xk

i (m
′)xl

i(m
′′)
}2

,

(3.6)

Un =

⎧⎨⎩
n∑

i=1

∑
(m′,m′′)∈Ci

xk
i (m

′)xl
i(m

′′)

⎫⎬⎭
2

−
n∑

i=1

∑
(m′,m′′)∈Ci

{
xk

i (m
′)xl

i(m
′′)
}2

,

(3.7)

then

P (Ln ≤ δn ≤ Un) → 1 (3.8)

as n → ∞

Proof. See Appendix A

This theorem allows us to judge which estimator is better from actual

data as follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
use Σ̂i

kl(M) if Ln > 0

use Σ̃i
kl(M) if Un < 0

undecided otheriwise

4 Monte Carlo study

We examine the above theory through a Monte Carlo study. Without loss of

generality, we set the number of assets as two. We follow the Monte Carlo
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design of Barucci and Renò (2002) with some modification for multivari-

ate setting: we generate proxy for continuous observations by discretizing

following stochastic differential equations with a time step of one second,⎛⎝ dp1(t)

dp2(t)

⎞⎠ =

⎛⎝ σ11 (t) σ12 (t)

σ21 (t) σ22 (t)

⎞⎠⎛⎝ dW1(t)

dW2(t)

⎞⎠ , 0 ≤ t ≤ T

dσij (t) = κij (θij − σij (t)) dt + γijdWij (t) , i, j = 1, 2.

where κij = 0.01, θij = 0.01, and γij = 0.001 for any i, j and T = 60×60×24

seconds. Time differences are drawn from an exponential distribution with

mean 45 seconds for p1 and 60 seconds for p2:
3

F
(
tik − tik−1

)
= 1 − exp

{−λi

(
tik − tik−1

)}
, i = 1, 2

where F (·) denotes a cumulative distribution function, λ1 = 1/45 and λ2 =

1/60.

We compared the performances of realized volatility ω̂ij(M) and ω̃ij(M).

In calculations of the realized volatility of ω̂ij(M) and ω̃ij(M), we set M =

24, 48, 144, 288, and 720, corresponding to so-called daily realized volatility

based on 60-min, 30-min, 10-min, 5-min and 2-min returns. We performed

300 replications.

Figure 1 shows the distribution of errors of ω̂ij(M) and ω̃ij(M):

ω̂12(M) −
∫ T

0

ω12(t)dt, and, ω̃12(M) −
∫ T

0

ω12(t)dt,

respectively.

3Of course, our method allows the duration to be correlated or autocorrelated. See

Engle and Russell (1998) for an autocorrelated duration model.
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Table 1: Sample MSE from 300 ‘daily’ replications

Sample MSE Estimated MSE

ω̂12(M) ω̃12(M) ω̂12(M) ω̃12(M)

60 min 41.303275 129.89687 41.754553 130.61587

(-0.78504928) (-0.037288398) (-0.74776088)

30 min 19.535687 58.910979 19.113176 58.579579

(-0.86612084) (-0.53913560) (-0.32698524)

10 min 9.5904564 19.267822 8.3008131 19.129370

(-1.7242417) (-0.51941316) (-1.2048285)

5 min 13.820082 9.6157110 12.080055 9.8853308

(-3.2669581) (-0.28829981) (-2.9786583)

2 min 49.961383 5.0706777 46.045708 5.0994614

(-6.9548335) (-0.29348194) (-6.6613516)

Note: Sample biases are given in parentheses.

Table 1 reports the sample MSE and bias (in parenthesis) of ω̂12(M) from

300 replications:

1

R

R∑
r=1

(
ω̂r

ij(M) −
∫ T

0

ωr
ij (t) dt

)2

and
1

R

R∑
r=1

(
ω̂r

ij(M) −
∫ T

0

ωr
ij (t) dt

)
,

where r denotes the number of replications and R = 300, and those of

ω̃12(M):

1

R

R∑
r=1

(
ω̃r

ij(M) −
∫ T

0

ωr
ij (t) dt

)2

and
1

R

R∑
r=1

(
ω̃r

ij(M) −
∫ T

0

ωr
ij (t) dt

)
,
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We define the estimated bias by

1

R

R∑
r=1

(ω̂r
12(M) − ω̃r

12(M)) ,

Estimated MSEs of ω̂12(M) and ω̃12(M) are defined by(
1

R

R∑
r=1

(
ω̂R

12(M) − ω̃r
12(M)

))2

+
1

R

R∑
r=1

(
ω̂r

12(M) − 1

R

R∑
r=1

ω̂r
12(M)

)2

,

and

1

R

R∑
r=1

(
ω̃r

12(M) − 1

R

R∑
r=1

ω̃r
12(M)

)2

,

respectively. Table 1 also reports the estimated MSE and bias (in parenthe-

sis) of ω̂12(M) and ω̃12(M) from 300 replications.

Under our simulation design, the correlation between the 1st and 2nd

asset is on average positive: ω12 (t) varies around a positive mean of 0.0002

because

ω12 (t) = σ11(t)σ21(t) + σ12(t)σ22(t)

and each σij has the mean of 0.01. As expected from the bias (2.4), the

shorter the interpolation time intervals is, the more downward biased the

previous tick interpolation realized cross volatility ω̂12 is.

5 An application for FX rate

...

9



6 Concluding remarks

...

A Proof of Theorem 1

Since each product of ΔqiΔqj is mutually uncorrelated, the variance of ω̃ij(M)

is

V (ω̃ij(M)) − V (ω̂ij(M)) = (A.1)∑
(m′,m′′)∈C

V

(
Δqi

(
m′T
M

)
Δqj

(
m′′T
M

))
,

It is obvious that V (ω̂ij(M)) < V (ω̃ij(M)). The variance of ΔqiΔqj is

V

(
Δqi

(
m′T
M

)
Δqj

(
m′′T
M

))
=

∑
A(m′,m′′)

(∫
I(k,l)

ωij(t)dt

)2

+

∫ tk

tk−1

ωii(t)dt

∫ tl

tl−1

ωjj(t)dt,

where

I(k, l) = (tik−1, t
i
k) ∩ (tjl−1, t

j
l )

A(m′, m′′) =

M⋃
m=1

((k, l)|km′−1 < k ≤ km′, lm′′−1 < l ≤ lm′′)

km = arg max
k

{tik : tik ≤ mT/M}

lm = arg max
l

{tjl : tjl ≤ mT/M}.
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See Kanatani (2004) for the calculation of it. Since

E

(
Δqi

(
m′T
M

)
Δqj

(
m′′T
M

))2

=
∑

A(m′,m′′)

2

(∫
I(k,l)

ωij(t)dt

)2

+

∫ tk

tk−1

ωii(t)dt

∫ tl

tl−1

ωjj(t)dt,

then

1

2
E

(
Δqi

(
m′T
M

)
Δqj

(
m′′T
M

))2

≤ V

(
Δqi

(
m′T
M

)
Δqj

(
m′′T
M

))
≤ E

(
Δqi

(
m′T
M

)
Δqj

(
m′′T
M

))2

.

Since

∑ 1

2
E

(
Δqi

(
m′T
M

)
Δqj

(
m′′T
M

))2

≤
∑

V

(
Δqi

(
m′T
M

)
Δqj

(
m′′T
M

))
≤
∑

E

(
Δqi

(
m′T
M

)
Δqj

(
m′′T
M

))2

using

∑
(m′,m′′)∈C

Δqi

(
m′T
M

)2

Δqj

(
m′′T
M

)2

, (A.2)

as an estimate of

∑
(m′,m′′)∈C

E

(
Δqi

(
m′T
M

)
Δqj

(
m′′T
M

))2

we can estimate lower and upper bound of V (ω̃ij(M)) − V (ω̂ij(M)).
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Figure 1: Distribution of errors

Note: 60-min(PR): ω̂12(24); 30-min(PR): ω̂12(48); 10-min(PR): ω̂12(144); 5-min(PR):

ω̂12(288); 2-min(PR): ω̂12(720); 60-min(BC): ω̃12(24); 30-min(BC): ω̃12(48); 10-min(BC):

ω̃12(144); 5-min(BC): ω̃12(288); 2-min(BC): ω̃12(720); The distribution is computed with

300 ‘daily’ replications.
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