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1 Introduction

Since Black and Scholes (1973) established the theory of option pricing,

volatility1 has played an important role not only in the derivatives pricing but

also in portfolio selection and risk management. Despite of the assumption of

constant volatility in Black and Scholes (1973)2, it is widely recognized that

volatility changes over time, and other various stylized facts about volatility

have been documented (see, e.g., Ghysels, Harvey, and Renault (1996) and

Poon and Granger (2003)). These facts have motivated many academic re-

searchers and practitioners to study the dynamics of volatility over the last

three decades. Starting with Engle (1982)’s autoregressive heteroskedasticity

(ARCH) model, various discrete time models such as Bollerslev (1986)’s gen-

eralized ARCH, Nelson (1991)’s exponential ARCH, and stochastic volatility

(SV) models have been proposed (see, e.g., Poon and Granger (2003)). On

the other hand, volatility is often modeled as a parameterized diffusion co-

efficient of continuous time diffusion process and then the parameters are

estimated via the maximum likelihood methods or general method of mo-

ments (see e.g., Lo (1988), Florens-Zmirou (1993), Sueishi (2004)). The link

between continuous and discrete time parametric models has been explicitly

demonstrated by Drost and Nijman (1993) and Drost and Werker (1996).

This paper, however, focuses on nonparametric estimation of volatility pro-

cess rather than parametric modeling of volatility structure.

In principle, the more data we can use, the more accurate the estimate

will be. However, we usually have the technological restriction on the amount

of data. Recently this restriction on some kind of financial data has been

removing by development of computer power and data recording systems.

Those kind of data are called high-frequency data. Such high-frequency data

1Throughout this paper, we use the term “volatility” to reference both variance (not
standard deviation) and covariance.

2Hull and White (1987) modifies Black and Scholes (1973)’s option pricing formula for
stochastic volatility.
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lend the validity to the method based on quadratic variation formula, that

is called as realized volatility in the finance and econometrics literature. We

concentrate on the ex post volatility measuring by these type of methods.

Barndorff-Nielsen and Shephard (2004) derives asymptotic distribution of

realized volatility matrix — the sum of outer products of high frequency vec-

tors of returns. Since their purpose is to provide the asymptotic distribution

theory, they establish the theory for data observed at equally spaced time

intervals. Andersen, Bollerslev, Diebold, and Labys (2003) provide meth-

ods of realized volatility incorporated into lower frequency volatility models.

For example, Using intradaily observations for the Deutschemark/Dollar and

Yen/Dollar spot exchange rates, they find that forecasts from a long memory

Gaussian vector autoregression for the logarithmic daily volatilities perform

admirably.

While all of the theories mentioned above are built on the evenly sampled

observations, Malliavin and Mancino (2002) proposed an estimator base on

Fourier series analysis that is well suited for unevenly sampled observations,

in other words, for tick-by-tick data without any data manipulation. One of

the most important purpose to use tick-by-tick data is to avoid the interpola-

tion bias. Because of the facility of handling, tick-by-tick (transaction) data,

which inherently arrive in irregular time intervals, are usually transformed

into regularly spaced data through a certain interpolation. However, that in-

terpolation method reduces the number of data and introduces the bias. The

bias is serious especially in cases of measuring cross volatility. Hayashi and

Yoshida (2005) proposed an unbiased nonsynchronous covariance estimator

and studied its asymptotic properties. We generalize all these quadratic-

variation-based methods and seek more accurate estimator on the basis of

mean squared error.

The layout of this paper is as follows. In Section 2 we define weighted

realized volatility as a estimator of integrated cross volatility and show that

it nests several estimators such as Fourier series estimator of Malliavin and
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Mancino (2002) and realized volatility based on interpolated returns. In Sec-

tion 3 we derive the MSE-minimizing weight and provide a feasible example

of it. Through a Monte Carlo simulation, we examine our theory in Section

4. Section 5 summarizes this paper and overviews future studies.

1.1 Data generating process and observations

We consider n-dimensional logarithmic price p (t) = (p1 (t) , · · · , pn (t))′ which

follows the stochastic differential equation:

dp (t) = Σ (t) dz (t) , 0 ≤ t ≤ T

where Σ (t) is an n × n matrix [σij (t)]i,j=1,··· ,n, and z is an n × 1 vector of

independent standard Brownian motions. We set the drift vector as 0 for the

purpose of simplification.3 We define the volatility matrix as

Ω ≡ ΣΣ′,

that is to say, cross volatility between ith and jth asset is denoted as the ij

element of Ω:

ωij (t) =

n∑
k=1

σik (t)σjk (t) .

Each ith asset price is observed at irregular time points {tik}Ni

k=0.
4 We just

impose the assumption on the observation points that the time intervals are

small: limNi→∞ supj≥1

(
tij − tij−1

)
= 0. Since we concentrate on the ex post

cross volatility measuring and do not make any hypothesis on the structure of

the underlying probability space Ω, we can construct an auxiliary probability

space X where we consider Σ(t) as deterministic functions. See Malliavin and

Mancino (2002). Throughout this paper, E denotes the expectation on the

probability space X.
3This simplification is acceptable not only because it means an efficient market in

financial economics, but also because, mathematically, the martingale component swamps
the predictable portion over short time intervals.

4For the purpose of simplification, we set ti0 = 0 and tiNi
= T.
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2 Weighted realized volatility

2.1 Representation

We define the estimator of
∫ T

0
ωij (t) dt as

ω̂ij = Δp′iWΔpj =

Ni∑
k=1

Nj∑
l=1

wklΔpi

(
tik
)
Δpj

(
tjl
)

(2.1)

where

Δpi =

⎛
⎜⎜⎝

pi (t
i
1) − pi (t

i
0)

...

pi (t
i
Ni) − pi

(
tiNi−1

)
⎞
⎟⎟⎠ , W =

⎛
⎜⎜⎝

w11 · · · w1Nj

...
. . .

...

wNi1 · · · wNiNj

⎞
⎟⎟⎠ .

We call (2.1) weighted realized volatility. (2.1) nests several estimators of the

integrated volatility
∫ T

0
ωij (t) dt. For example, if wij = 1 for any k, l,

ω̂ij =

Ni∑
k=1

Nj∑
l=1

Δpi

(
tik
)
Δpj

(
tjl
)

(2.2)

=

{
Ni∑

k=1

Δpi

(
tik
)}⎧⎨⎩

Nj∑
l=1

Δpj

(
tjl
)⎫⎬⎭

= {pi (tNi) − pi (t0)} {pj (tNj) − pj (t0)}
= {pi (T ) − pi (0)} {pj (T ) − pj (0)}

which is an unbiased but very noisy estimator of
∫ T

0
ωij (t) dt. If the window

[0, T ] is one day, (2.2) means that we measure daily (cross) volatility by using

daily return, in other words, discarding all intradaily data of {pi(t
i
k)}Ni−1

k=1 . In

this manner, the weight matrix characterizes the data for measuring volatil-

ity. In order to understand this point, we look at an another example. In

univariate settings, if W = INi
,

ω̂ii =

Ni∑
k=1

(
pi

(
tik
)− pi

(
tik−1

))2
.
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Note that this estimator uses all available observations, therefore, is expected

to be less noisy. We discuss the multivariate version of this in the subsection

2.4. Throughout the following three subsections, the examples of (2.1) are

discussed.

2.2 Interpolation and realized volatility

The raw data which are unevenly spaced, are converted to evenly spaced

data in order to apply to the usual discrete time series analysis. Dacorogna,

Gençay, Müller, Olsen, and Pictet (2001) introduces some interpolation meth-

ods including linear interpolation and previous tick interpolation.5 When

constructing M evenly spaced data {q (mT/M)}M
m=0 from {pi (t

i
k)}Ni

k=0, those

data manipulation is as follows:

qi

(
mT

M

)
=

{
(1 − ρi

m) pi (∗tim) + ρi
mpi (

∗tim) linear interpolation

pi (∗tim) previous-tick interpolation

(2.3)

where

ρi
m =

(mT/M) − ∗tim
∗tim − ∗tim

,

∗tim = max
{
tik : tik ≤ mT/M

}
,

∗tim = min
{
tik : tik ≥ mT/M

}
,

and where maxA and min A denote maximum and minimum elements of A,

respectively.

Using evenly spaced data of {qi(mT/M)}M
m=0 and {qj(mT/M)}M

m=0, the

integrated cross volatility
∫ T

0
ωij(t)dt is measured by the following estimator,

ω̂ij(M) =

M∑
m=1

(
qi

(
mT

M

)
− qi

(
(m − 1) T

M

))(
qj

(
mT

M

)
− qj

(
(m − 1) T

M

))
.

(2.4)
5Dacorogna, Gençay, Müller, Olsen, and Pictet (2001) also introduces next tick inter-

polation which is analogous to previous tick interpolation.
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In order to distinguish difference on the interpolation procedure, we introduce

the notation of ω̂L
ij(M) and ω̂P

ij(M) for liner interpolation and previous-tick

interpolation, respectively. Barucci and Renò (2002) shows through Monte

Carlo simulation that ω̂L
ii(M) has the downward bias. Kanatani (2004) cal-

culates the theoretical bias. As we use higher and higher frequency data, the

bias becomes more profound. Thus, the linear interpolation is not suitable

for calculation of realized volatility.

On the other hand, ω̂P
ii (M) is unbiased. The bias of ω̂P

ij(M) is

M∑
m=1

∫ t+m

t−m
ωij (t) dt (2.5)

where

t−m = min
{
∗tim, ∗tjm

}
,

t+m = max
{
∗tim, ∗tjm

}
.

Notice that in the case of univariate volatility (i = j), for t−m = t+m, the real-

ized volatility through previous tick interpolation is an unbiased estimator.

In order to show that the realized volatility (2.4) can be written by the

expression of the weighted realized volatility (2.1), we shall present a simple

example.

Example 1 Let us consider a simple case as shown in Figure 1: M =

3, Ni = 8. ω̂L
ii(M) can be written by the form of weighted realized volatil-
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Figure 1: Linear interpolation and Previous-tick interpolation

Note: Linear interpolation (upper) and Previous-tick interpolation (lower). Black and
white squares denote observed and interpolated data respectively.
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ity (2.1) with the weight matrix:

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 α1 0 0 0 0 0

1 1 α1 0 0 0 0 0

α1 α1 α2
1 + β2

1 β1 β1 β1 β1α2 0

0 0 β1 1 1 1 α2 0

0 0 β1 1 1 1 α2 0

0 0 β1 1 1 1 α2 0

0 0 β1α2 α2 α2 α2 α2
2 + β2

2 β2

0 0 0 0 0 0 β2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.6)

See Appendix A.1 for the detail derivation of (2.6). Since previous tick inter-

polation is a special case of the linear interpolation for αm = 0 and βm = 1,

ω̂P
ii (M) can be written by the form of weighted realized volatility (2.1) with

the weight matrix:

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.7)

2.3 Fourier series estimator of Malliavin and Mancino

(2002)

Malliavin and Mancino (2002) proposes a new method for measuring volatil-

ity by using Fourier analysis. The method is especially suitable for unevenly

sampled observations. We prove that the Fourier series estimator can be

written by the form of the weighted realized volatility. In this subsection

we normalized the time window [0, T ] to [0, 2π]. Fourier series estimator of
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Malliavin and Mancino (2002) for the integrated (cross) volatility
∫ 2π

0
ωijdt

is as follows.

ω̂F
ij =

π2

Q

Q∑
q=1

(aq(dpi)aq(dpj) + bq(dpi)bq(dpj)) (2.8)

where

aq(dpi) =
1

π

∫ 2π

0

cos(qt)dpi(t), (2.9)

bq(dpi) =
1

π

∫ 2π

0

sin(qt)dpi(t), (2.10)

and Q is a large integer. We will compute the Fourier coefficient (2.9) through

integration by parts:

aq(dpi) =
1

π

∫ 2π

0

cos(qt)dp(t)

=
pi (2π) − pi (0)

π
+

1

π

∫ 2π

0

sin(qt)pi(t)dt

≈ pi (2π) − pi (0)

π
+

1

π

Ni−1∑
j=0

[
cos(qtij) − cos(qtij+1)

]
pi(t

i
j),

since the piecewise constant is valid under assumption limN→∞ supj≥1

(
tij − tij−1

)
=

0. Similarly, we approximate (2.10) by

bq(dpi) ≈ 1

π

N−1∑
j=0

[
sin(qtij) − sin(qtij+1)

]
pi(t

i
j). (2.11)

This approximation of the integrals is proved to be equivalent to setting the

weight in (2.1) as follows.

wkl =

⎧⎪⎪⎨
⎪⎪⎩

1 if tik = tjl ,

sin
(Q+1)(tik−tjl )

2
cos

Q(tik−tjl )
2

Q sin
(tik−tjl )

2

otherwise.
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See the Appendix A.2. In the special case of univariate volatility (i = j), as

we increase the number of Fourier coefficients (Q → ∞), the weight matrix

converges to identity matrix (W → INi
). In the case of cross volatility

(i 	= j), since transaction is usually nonsynchronous, tik − tjl has some width.

Therefore, as K → ∞, wkl → 0: ω̂F
ij → 0. Thus we should not increase the

number of Fourier coefficients.

2.4 Raw data realized volatility

Another method for measuring integrated volatility
∫ T

0
ωiidt using unevenly

sampled observations {pi (t
i
k)}Ni

k=0 is

ω̂R
ii =

Ni∑
i=1

{
Δpi

(
tik
)}2

As described in Subsection 2.1, this estimator is also written by the form

of weighted realized volatility with identity matrix INi
. Kanatani (2004)

provides the relationship between raw data realized volatility and Fourier

series estimator:

ω̂F
ii → ω̂R

ii and V (ω̂F
ii ) ↓ V (ω̂R

ii ) as Q → ∞.

For measuring cross volatility, we extend the method using unevenly sam-

pled observations {pi (t
i
k)}Ni

k=0 and {pj

(
tjk
)}Nj

k=0:

ω̂R
ij =

Ni∑
k=1

Nj∑
l=1

Δpi

(
tik
)
Δpj

(
tjl
)
I (A) (2.12)

where A =
{(

tik, t
i
k−1

) ∩ (tjl , tjl−1

) 	= ∅} and I (·) denotes indicator function.

We refer to (2.12) as raw data realized (cross) volatility. (2.12) is expressed

by the form of weighted realized volatility with the weights:

wkl =

{
1 if

(
tik, t

i
k−1

) ∩ (tjl , tjl−1

) 	= ∅,
0 otherwise.
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Figure 2: Nonsynchronous observations

Note: Black and white squares denote observed data of 1st and 2nd asset respectively.

Although all estimators of cross volatility mentioned throughout the previous

subsections introduce the bias, this simple estimator is constructed to be

unbiased. Hayashi and Yoshida (2005) proves its consistency.

Example 2 Let us consider a bivariate case as shown in Figure 2: M =

3, N1 = 8, N2 = 5. ω̂R
21 can be written by the form of weighted realized

volatility (2.1) with the weight matrix:

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 0 0 1 1 1 1 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.13)

ω̂P
21(M) can be written by the form of weighted realized volatility (2.1) with
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the weight matrix:

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.14)

3 Optimal weight

3.1 MSE-minimizing weight

In this subsection, we derive the optimal weight that minimizes the MSE of

(2.1):

E

(
ω̂ij −

∫ T

0

ωij (t) dt

)2

= bias2 + V (ω̂ij) .

We define the intersection interval as

I (k, l) ≡ (tik, tik−1

) ∩ (tjl , tjl−1

)
.

We introduce a convenient notation for the element of weight matrix W as

follows {
wA

kl if I(k, l) 	= ∅,
wAC

kl otherwise.

The bias is given by

E

⎛
⎝ Ni∑

k=1

Nj∑
l=1

wklΔpi

(
tik
)
Δpj

(
tjl
)⎞⎠−

∫ T

0

ωij (t) dt

= E

(∑
wA

kl

∫ tk

tk−1

dpi (t)

∫ tl

tl−1

dpj (t)

)
−
∫ T

0

ωij (t) dt

=
∑

wA
kl

∫
I(k,l)

ωijdt −
∫ T

0

ωij (t) dt. (3.1)

13



Note that if wA
kl = 1, the bias is zero. On the other hand, the variance is

given by

V (ω̂ij)

=
∑{(∫

I(k,l)

ωijdt

)2

+

(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)}(
wA

kl

)2

+
∑(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)(
wAC

kl

)2

. (3.2)

See the Appendix A.3. It is obvious that we should set wAC

kl = 0 in order to

minimize the MSE because ωii(t) is nonnegative.

For example, compare the identity matrix with (2.14). Although diagonal

element of these two are identical, (2.14) has some non-zero off-diagonal

elements (wAC

kl 	= 0). This means that variance of previous-tick realized

volatility is larger than raw data realized volatility. As another example,

remember the weight matrices of (2.8) and (2.12) in the case of univariate

volatility. Both of them have the same diagonal elements wA
kl = 1, while

(2.8) have non-zero off-diagonal elements wAC

kl . Therefore, variance of (2.8)

is larger than that of (2.12). As Q → ∞, wAC

kl of (2.8) goes to 0, then these

two are almost same. See Kanatani (2004).

In order to minimize the MSE, we set wAC

kl = 0 and then rewrite the MSE

in matrix expression.

MSE = w′Dw + (x′ (w − 1))
2
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where

w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

wA
11
...

wA
kl
...

wA
NiNj

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v11 0 · · · · · · 0

0
. . .

. . .
...

...
. . . vkl

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 vNiNj

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∫
I(1,1)

ωijdt
...∫

I(k,l)
ωijdt
...∫

I(Ni,Nj)
ωijdt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, 1 =

⎛
⎜⎜⎝

1
...

1

⎞
⎟⎟⎠ ,

vkl =

(∫
I(k,l)

ωijdt

)2

+

(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)
.

Let

ukl =

(∫
I(k,l)

ωijdt
)2

vkl

,

then we get the following theorem.

Theorem 3 The MSE of (2.1) is globally minimized by the following weight:

wA
kl =

∫ T

0
ωijdt

∫
I(k,l)

ωijdt

vkl {1 +
∑

ukl} . (3.3)

The bias and variance obtained by using the optimal weight (3.3) are

− ∫ T

0
ωijdt

1 +
∑

ukl

and (3.4)( ∫ T

0
ωijdt

1 +
∑

ukl

)2∑
ukl, (3.5)
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respectively. The minimized MSE is(∫ T

0
ωijdt
)2

1 +
∑

ukl
. (3.6)

Proof. See Appendix A.4

In order to understand the property of the optimal weight, consider a

special case of the individual volatility (i = j). Since

vkk = 2

(∫ tk

tk−1

ωijdt

)2

and ukk =
1

2
,

W is an Ni × Ni diagonal matrix that has diagonal elements

wA
kk =

1

Ni + 2

∫ T

0
ωiidt∫ tk

tk−1
ωiidt

.

This weight increases (decreases) when
∫ tk

tk−1
ωiidt decreases (increases). This

fact implies that larger (smaller) weights are assigned in densely (coarsely)

sampled periods and that smaller (larger) weights are assigned in volatile

(less volatile) periods. The bias and variance are

−2

Ni + 2

∫ T

0

ωii (t) dt and

2Ni

(Ni + 2)2

(∫ T

0

ωii (t) dt

)2

,

respectively. The estimator is not unbiased, however, the bias shrinks at

order 1/Ni. The variance also shrinks at order 1/Ni in similar fashion to the

variance of realized variance of Barndorff-Nielsen and Shephard (2004)6.

6Barndorff-Nielsen and Shephard (2004) studies properties of sum of squared returns
in the case of evenly sampled observations. They refer to the sum of square returns as
realized variance and to square root of it as realized volatility.
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3.2 An estimator of nuisance parameters

To construct the optimal weight of Theorem 3, we must estimate
∫

I(k,l)
ωijdt.

We call it piecewise integrated volatilities (PWIV). It is essentially difficult

to estimate them. We give an example of unbiased estimators: we use

Δpi

(
tik
)
Δpj

(
tjl
)

and
{
Δpi

(
tik
)}2

,

as estimators of
∫

I(k,l)
ωijdt and

∫ tk
tk−1

ωiidt respectively. We also need an

estimate of
∫ T

0
ωij (t) dt, in Monte Carlo study of next section, we use (2.12).

By using these estimators to construct the weights, the weighted realized

volatility (2.1) is equivalent to

ω̂N
ij =

Nijω̂
R
ij

Nij + 2
(3.7)

where Nij = Ni+Nj−
∑

I
({

tik = tjl
})

. We refer to (3.7) as naively weighted

realized volatility. Although there is little difference between ω̂N
ij and ω̂R

ij

when Nij is large, we find that ω̂N
ij slightly improves the MSE compared with

ω̂R
ij in the Monte Carlo study of next section.

4 Monte Carlo study

We examine the above theory through a Monte Carlo study. Without loss of

generality, we set the number of assets as two. We follow the Monte Carlo

design of Barucci and Renò (2002) with some modification for multivari-

ate setting: we generate proxy for continuous observations by discretizing

following stochastic differential equations with a time step of one second,(
dp1(t)

dp2(t)

)
=

(
σ11 (t) σ12 (t)

σ21 (t) σ22 (t)

)(
dW1(t)

dW2(t)

)
, 0 ≤ t ≤ T

dσij (t) = κij (θij − σij (t)) dt + γijdWij (t) , i, j = 1, 2.

17



where κij = 0.01, θij = 0.01, and γij = 0.001 for any i, j and T = 60×60×24

seconds. Time differences are drawn from an exponential distribution with

mean 45 seconds for p1 and 60 seconds for p2:
7

F
(
tik − tik−1

)
= 1 − exp

{−λi

(
tik − tik−1

)}
, i = 1, 2

where F (·) denotes a cumulative distribution function, λ1 = 1/45 and λ2 =

1/60.

We compared the performances of previous tick interpolation realized

volatility ω̂P
ij(M), Fourier series estimator ω̂F

ij , raw data realized volatility

ω̂R
ij , and naively weighted realized volatility ω̂N

ij . We also observed the perfor-

mance of the estimator using the optimal weight. In calculations of previous

tick interpolation realized volatility ω̂P
ij(M), we set M = 144, 288, and 720,

corresponding to so-called daily realized volatility based on 10-min, 5-min

and 2-min returns. In calculations of Fourier series estimator ω̂F
ij , we set

Q = 10, 25, 50, 100, 250, 500, 750, and 1000. We performed 1000 replications.

Table 1 and 2 report the sample MSE and bias (in parenthesis) of each

estimator from 1000 replications:

1

1000

1000∑
r=1

(
ω̂

(r)
ij −

∫ T

0

ω
(r)
ij (t) dt

)2

and
1

1000

1000∑
r=1

(
ω̂

(r)
ij −

∫ T

0

ω
(r)
ij (t) dt

)
,

where r denotes the number of replications.

Figure 3, 4, and 5 show the distribution of normalized errors of each

estimator:

ω̂11 −
∫ T

0
ω11(t)dt∫ T

0
ω11(t)dt

,
ω̂22 −

∫ T

0
ω22(t)dt∫ T

0
ω22(t)dt

, and,
ω̂12 −

∫ T

0
ω12(t)dt∫ T

0
ω12(t)dt

,

respectively.

Because 1st asset is more high-frequency sampled (average duration is 45

seconds) than 2nd asset (average duration is 60 seconds), each estimate of∫ T

0
ω11 (t) dt is more accurate than that of

∫ T

0
ω22 (t) dt.

7Of course, our method allows the duration to be correlated or autocorrelated. See
Engle and Russell (1998) for an autocorrelated duration model.
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Table 1: Sample MSE from 1000 ‘daily’ replications

∫ T

0
ω11 (t) dt

∫ T

0
ω12 (t) dt

∫ T

0
ω22 (t) dt

10-min 11.045 8.9639 10.829

(0.0047) (-1.543) (0.0091)

5-min 5.9340 12.559 6.1286

(-0.002) (-3.059) (0.0337)

2-min 3.0546 48.079 3.4183

(-0.018) (-6.836) (0.0091)

FE 2.3386 5.8408 2.6143

(0.0090) (-0.949) (0.0171)

RV 2.0397 2.2274 2.4936

(0.0051) (-0.044) (-0.017)

NW 2.0360 2.2258 2.4892

(-0.021) (-0.055) (-0.053)

OW 0.6893 1.1077 0.9047

(-0.045) (-0.103) (-0.085)

Note: Sample biases are given in parentheses. 10-min: ω̂P
ij(144); 5-min: ω̂P

ij(288); 2-min:
ω̂P

ij(720); FE: ω̂F
11 and ω̂F

22 with Q = 1000, ω̂F
12 with Q = 100; NE: ω̂N

ij ; OW: weighted
realized volatility using optimal weights.

Under our simulation design, the correlation between the 1st and 2nd

asset is on average positive: ω12 (t) varies around a positive mean of 0.0002

because

ω12 (t) = σ11(t)σ21(t) + σ12(t)σ22(t)

and each σij has the mean of 0.01. As expected from the bias (2.5), the

shorter the interpolation time intervals is, the more downward biased the

previous tick interpolation realized cross volatility ω̂P
12 is. On the other hand,

as the partitions get finer and finer, ω̂P
11(M) and ω̂P

22(M) become more accu-
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Table 2: Sample MSE of Fourier estimators

Q
∫ T

0
ω11 (t) dt

∫ T

0
ω12 (t) dt

∫ T

0
ω22 (t) dt

10 71.593 48.191 66.515

(0.1165) (0.0013) (-0.124)

25 29.517 20.286 30.028

(0.0472) (-0.094) (-0.088)

50 15.984 9.9519 14.389

(0.0382) (-0.248) (-0.049)

100 8.2514 5.8408 7.7023

(-0.166) (-0.949) (-0.064)

250 3.8816 14.618 3.9069

(-0.027) (-3.580) (0.0488)

500 2.7194 56.515 3.0274

(-0.003) (-7.446) (0.0400)

750 2.3813 97.244 2.7696

(-0.004) (-9.819) (0.0405)

1000 2.3386 128.65 2.6143

(0.0090) (-11.31) (0.0171)

Note: Sample biases are given in parentheses.

rate. If M → ∞ (in this case, M = 60 × 60 × 24), ω̂P
11(M) and ω̂P

22(M) are

exactly consistent with ω̂R
11 and ω̂R

22, respectively.

This relationship between previous tick realized volatility and the number

of partition is similar to that between Fourier series estimator and the number

of Fourier coefficients. As mentioned in 2.3, as Q → ∞, ω̂F
11, ω̂F

22, and ω̂F
12 go

to ω̂R
11, ω̂R

22, and 0, respectively. We cannot find the optimal Q for Fourier

estimator of cross volatility unless the we know true process of volatility.

Since (2.12) is unbiased estimator of cross volatility, the sample bias is

very small. As expected from the link between naively weighted realized
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Figure 3: Distribution of normalized error (volatility of 1st asset)

Note: 10-min, 5-min, and 2-min denote ω̂P
11(M) with M = 144, 288, and 720, respectively.

“Q =” signifies the Fourier estimator ω̂F
11 with Q = 25, 50, 100, 250, 500, and 1000. RV

denotes the raw data realized volatility ω̂R
11. NW denotes the naively weighted realized

volatility ω̂N
11. OW denotes the weighted realized volatility using the optimal weight. The

distribution is computed with 1000 ‘daily’ replications.

volatility ω̂N
ij and the raw data realized volatility ω̂R

ij , although the former

is slightly more downward biased than the latter, the former has slightly

smaller sample MSE than the latter.

The optimally weighed realized volatility is overwhelming the other method.

The results of optimally weighted realized volatility show principal limit of

the weighted realized volatility. One of the most important remaining works

is to investigate the other feasible weighting schemes by using the framework

of the optimal weight.

5 Concluding remarks

In this paper we propose the definition of weighted realized volatility which

nests various estimators and show some important examples. The definition

is useful to make a comparative study on them. As a natural consequence,
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Figure 4: Distribution of normalized error (volatility of 2nd asset)

Note: 10-min, 5-min, and 2-min denote ω̂P
22(M) with M = 144, 288, and 720, respectively.

“Q =” signifies the Fourier estimator ω̂F
22 with Q = 25, 50, 100, 250, 500, and 1000. RV

denotes the raw data realized volatility ω̂R
22. NW denotes the naively weighted realized

volatility ω̂N
22. OW denotes the weighted realized volatility using the optimal weight. The

distribution is computed with 1000 ‘daily’ replications.

we derive the MSE-minimizing estimator in the class. To construct it, the

estimates of optimal weights are required. We propose a feasible example

of it. However, it is one of the remaining works to refine upon the feasible

estimator. Another remaining work is the correction of interpolation bias. It

is necessary when we can just obtain evenly spaced data which have already

been interpolated.
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Figure 5: Distribution of normalized error (cross volatility)

Note: 10-min, 5-min, and 2-min denote ω̂P
12(M) with M = 144, 288, and 720, respectively.

“Q =” signifies the Fourier estimator ω̂F
12 with Q = 25, 50, 100, 250, 500, and 1000. RV

denotes the raw data realized volatility ω̂R
12. NW denotes the naively weighted realized

volatility ω̂N
12. OW denotes the weighted realized volatility using the optimal weight. The

distribution is computed with 1000 ‘daily’ replications.

A Appendix

A.1 Weight matrix of ω̂L
ii

Using

αm + βm = 1, and

pi(t
i
k) = pi(t0) +

k∑
l=1

Δpi(t
i
l)
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we obtain

ω̂L
ii(3)

=

(
qi

(
T

3

)
− qi (0)

)2

+

(
qi

(
2T

3

)
− qi

(
T

3

))2

+

(
qi (T ) − qi

(
2T

3

))2

= {α1pi(t
i
3) + β1pi(t

i
2) − pi(t0)}2

+ {α2pi(t
i
7) + β2pi(t

i
6) − α1pi(t

i
3) − β1pi(t

i
2)}2

+ {pi(t
i
8) − α2pi(t

i
7) − β2pi(t

i
6)}2

=

{
2∑

k=1

Δpi(t
i
k) + α1Δpi(t

i
3)

}2

+

{
β1Δpi(t

i
3) +

6∑
k=3

Δpi(t
i
k) + α2Δpi(t

i
7)

}2

+
{
β2Δpi(t

i
7) + Δpi(t

i
8)
}2

. (A.1)

Each coefficient of Δpi(t
i
k)Δpi(t

i
l) in (A.1) is equivalent to the kl element of

(2.14).

A.2 Weighted realized volatility representation of Fourier

estimator

Fourier coefficients of aq(dpi) and bq(dpi) are approximated by

aq(dpi) ≈ 1

π

Ni∑
k=1

cos qtikΔpi(t
i
k)

bq(dpi) ≈ 1

π

Ni∑
k=1

sin qtikΔpi(t
i
k),
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respectively. By these approximates and the additional theorem,

ω̂F
ij =

π2

Q

Q∑
q=1

(aq(dpi)aq(dpj) + bq(dpi)bq(dpj))

=
1

Q

Q∑
q=1

⎧⎨
⎩

Ni∑
k=1

cos(qtik)Δpi(t
i
k)

Nj∑
l=1

cos(qtjl )Δpj(t
j
l )

⎫⎬
⎭

+
1

Q

Q∑
q=1

⎧⎨
⎩

Ni∑
k=1

sin(qtik)Δpi(t
i
k)

Nj∑
l=1

sin(qtjl )Δpj(t
j
l )

⎫⎬
⎭

=
1

Q

Q∑
q=1

⎧⎨
⎩

Ni∑
k=1

Nj∑
l=1

{
cos(qtik) cos(qtjl ) + sin(qtik) sin(qtjl )

}
Δpi(t

i
k)Δpj(t

j
l )

⎫⎬
⎭

=
1

Q

Q∑
q=1

⎧⎨
⎩

Ni∑
k=1

Nj∑
l=1

cos q(tik − tjl )Δpi(t
i
k)Δpj(t

j
l )

⎫⎬
⎭

=

Ni∑
k=1

Nj∑
l=1

Δpi

(
tik
)
Δpi

(
tjl
){∑Q

q=1 cos q
(
tik − tjl

)
Q

}
.

Since

Q∑
q=1

cos qx =

⎧⎨
⎩

Q if x = 0
sin

(Q+1)x
2

cos Qx
2

sin x
2

otherwise
,

we get the desired result.

A.3 Variance of ω̂ij

Using

E
(
Δpi

(
tik
)
Δpj

(
tjl
)
wA

kl

)2
=
(
wA

kl

)2{
2

(∫
I(k,l)

ωijdt

)2

+

(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)}
,
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V (ω̂ij)

= V

(∑
A

Δpi

(
tik
)
Δpj

(
tjl
)
wkl +

∑
AC

Δpi

(
tik
)
Δpj

(
tjl
)
wkl

)

= E

(∑
A

Δpi

(
tik
)
Δpj

(
tjl
)
wkl

)2

−
{

E

(∑
A

Δpi

(
tik
)
Δpj

(
tjl
)
wkl

)}2

+ E

(∑
AC

Δpi

(
tik
)
Δpj

(
tjl
)
wkl

)2

=
∑(

wA
kl

)2{(∫
I(k,l)

ωijdt

)2

+

(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)}

+

{∑
wA

kl

∫
I(k,l)

ωijdt

}2

−
{∑

wA
kl

∫
I(k,l)

ωijdt

}2

+
∑(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)(
wAC

kl

)2

=
∑(

wA
kl

)2{(∫
I(k,l)

ωijdt

)2

+

(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)}

+
∑(

wAC

kl

)2
(∫ tk

tk−1

ωiidt

)(∫ tl

tl−1

ωjjdt

)
.

A.4 Proof of Theorem 3

The first order condition is

∂MSE

∂w
= 2Dw + 2xx′w − 2xx′1,
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then we get

w = (D + xx′)−1
xx′1

=

(
D−1 − 1

1 + x′D−1x
D−1xx′D−1

)
xx′1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� T
0

ωijdt
�

I(1,1)
ωijdt

v11{1+
�

ukl}
...

� T
0 ωijdt

�
I(k,l) ωijdt

vkl{1+
�

ukl}
...

� T
0 ωijdt

�

I(Ni,Nj )
ωijdt

vNiNj
{1+

�
ukl}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The second equality follows from the updating formula. See e.g., Greene

(1999). The second order derivative matrix is

∂2MSE

∂w∂w′ = 2D + 2xx′.

This matrix is positive definite. Substituting the optimal weight into (3.1)

and (3.2), we obtain (3.4) and (3.5), respectively.
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