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We show that given a set of expectation values one can estimate the underlying probability dis-

tribution by use of “Schwinger-Dyson equations.”
tion of coupling constants in Monte Carlo renormalization-group calculations.

The method can be applied to obtain the evolu-
Some results for

three- and four-dimensional scalar theory are presented briefly.

This paper addresses the problem of reconstructing the
probability distribution given the expectation values. It is
a special case of the so-called moment problem. In many
cases the probability measure is such that an infinite set of
equations involving the expectation values must hold. We
will refer to these equations as Schwinger-Dyson equa-
tions! following the name given to them in quantum field
theory. The point we want to stress is how these equations
allow good approximations to the probability distribution
to be obtained.

In present day physics, this problem arises in the context
of the renormalization group? (RG). Under a RG trans-
formation the probability distribution, described by the
Euclidean action (or Hamiltonian) S, changes. Since the
original distribution is known, the expectation values with
respect to the transformed action S can be determined by
numerical techniques. In particular, Monte Carlo
methods® have been especially successful in this respect.
Now, in order to obtain S from these values, some form
of solution of the moment problem must be applied. In
some cases, the solution might not be unique. This is a
disadvantage of this type of approach, which we will com-
ment on later in the text.

Since Monte Carlo methods were originally applied in
the study of the RG,* several authors have considered the
problem and several solutions have been proposed.’
Nevertheless, the method presented in this paper has a dis-
tinguished character of elegance, generality, and simplici-
ty. Only one Monte Carlo simulation is required; the main
equations are in most cases linear; the method can be ap-
plied to any lattice theory. These are, among others, the
better advantages of our proposal.

Before entering into the description of our method we
want to mention the usefulness of determining the evolu-
tion of the couplings under the RG. In fact, most analyses
restrict themselves to the determination of the critical ex-
ponents, given their universal character. However, one
must keep in mind that the basic assumptions of the RG
concern the evolution of the couplings, from which the
physical consequences, such as the universality of the criti-
cal exponents, follow. A rich structure of domains and dif-
ferent fixed points is, however, possible and must be stud-
ied. Furthermore, from a completely different standpoint
of the lattice system as a regularized field theory, it has
been shown® that one observes simple scaling behaviors of
observables when one approaches the continuum limit
(fixed point) by performing Monte Carlo simulations

EH]

along the renormalized trajectories.

The action S describing the probability distribution
[~exp(—S)] is parametrized as a linear combination of
symmetric operators (translationally invariant and invari-
ant under internal symmetries) O;:

The number of couplings S; is, in general, infinite even for
a finite problem. Determining S is equivalent to fixing the
value of the couplings 8;. However, it is clear that any nu-
merical method can only deal with a finite number of un-
knowns; thus, one must assume that all except for a finite
number of couplings (B4, ...,Bn) are zero. This assump-
tion is certainly wrong and, even if most of the couplings
are ‘“‘small,” one must still be sure that an infinite number
of small terms is negligible.

Our method, which we will now describe for the simplest
case of a scalar field theory in a d-dimensional lattice, has
the ability to give a precise mathematical meaning to these
truncated actions. Later in this paper applications will be
given, including the physically interesting cases of three-
and four-dimensional scalar field theory.

Schwinger-Dyson equations are a consequence of the in-
variance properties of the integration measure. For lattice
scalar fields (with no constraints) the measure is invariant
under ¢(x)— ¢(x)+e(x). Neither the action nor other
operators are invariant and so their variation must com-
pensate when averaging over the field. Consider, for ex-
ample, the expectation value (¢(xq)) of the field at some
point x¢ of the lattice. If we make a change of variables of
the previous type with e(xo) =¢ and £(x) =0 for x =xo we
get

1-<¢(x0) 2

So(x )>

by equating to zero all terms linear in £. Notice that Eq.
(2) is linear in S and, thus, also in the couplings. We can
sum on Xxo to obtain an equation involving translationally
invariant quantities. If we choose the operators O; to be
monomials in the field as customarily done, we have

O Zgb(xo) d,-O,- N (3)

6¢( )
where we will refer to d; as the dimension of the operator
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0;. Using (3), Eq. (2) takes the simple form
V‘Zﬂ,d,<0,> N (4)
i

where V is the lattice volume.
An infinite set of equations can be obtained by differen-
tiating (4) with respect to B;:

d,~(0,~)=2(0,-0,-)”ﬂjdj . (5)
J

The superscript ¢ stands for “connected part.” The cou-
plings are given by the solution of (5). This solution is
unique if there exists no operator O such that (0?¢=0.7
In practice, however, one can consider only a finite num-
ber of couplings (B,...,Bnx) and, correspondingly, only

the first NV equations of (5) are used. Let Bi,...,Bn be
the solution of these equations, and let
N
S'=3% BiO; (6)

i=]

be the corresponding truncated action. In what sense is S’
an approximation to the true action S? The answer is that
S’ is out of all truncated actions (with the first N opera-
tors) the one “closest” to the true action S. The meaning
of “closest” is determined by the distance operation associ-
ated to the norm

| 14]12=(4)>, @)

where A is obtained from A4 as in Eq. (3). In fact, mini-
mizing | | S —S’| | we obtain again Eq. (5), but restricted
to N couplings and N equations. The value of
| | S —5S’| |2 at the minimum is (S —S"). Notice that Eq.
(4) can be rewritten as

(S—8"=0, ‘ (8)

so that in the case that S — S’ has some definite dimension
D, its value measures how far we sit from | |S —S'| |?
=D(S —S")=0.

It is important to notice that many more truncated ap-
proximations can be obtained from the Schwinger-Dyson
equations. They are associated with the family of norms

>,(9)

where M is any positive symmetric functional of the field.
In many cases these equations contain averages rather
than connected parts and can be useful.

Before presenting physical results obtained using Egs.
(4) and (5) for three and four space-time dimensions, we
want to present two simple cases requiring very little com-
puter time. The first case is that of a single random vari-
able —o0 < x < + oo (zero-dimensional field theory) and
the second case is the one-dimensional Gaussian model.

For the first case, defining u, =(0,) =(x") we have

1=V =Z 2np2nB2n
n

6A
S¢(x)

6A
So(y)

14| |fu=<z>:M<x,y>
x y

10)

and

(2n+1)/,12,,=2;12,,+2,,,2mﬁ2m . an
m
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The first equation is the equivalent of Eq. (4) and the
second one a combination of (4) and (5). The action is
then approximated by a polynomial in x? of degree N.
We have considered three different functions: (a)
S =coshx —1, (b) S =x*(1+x2), and (c) S =x4, the
first two being analytic at the origin with radius of conver-
gence = and 1, respectively. In the first case (a) the first
coefficients of the Taylor expansion of the function are
nicely reproduced. For N =4 the relative error in these
coefficients is 7%, 3%, 35, and +, respectively. For the
more singular cases (b) and (c) the results are presented in
Fig. 1, showing good agreement in the region where the
probability is non-negligible. These results are obtained
by using only Eq. (11), but Eq. (10) is satisfied to within
2/103, 3/100, and 3/1000 in case (a), (b), and (c), respec-
tively, and N =4.

Now we turn to the case of the Gaussian model in one
dimension. The partition function of this model is given by

Z=fI;Id¢,.exp[—zl‘,ﬂ101] ,

(12)
Olsz¢n¢n+l .
By Fourier analyzing Egs. (4) and (5) we get
de A
2f Lrope =1, (13a)
P(9) =2P%(9)4(6), (13b)

where P(6) is the Fourier transform of the propagator
{po#:’, and B(8) the transform of B;. A given truncation of
the problem is

N N—1

B(8) =3 cos(if)p; (14)

i=0

and, correspondingly, only the first NV Fourier components
of Eq. (13b) are used. It is easy to see, however, that the
only simultaneous solution of (13a) and (13b) is the true
solution B(8) =Y = cos(i6)B; since all operators O; have
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FIG. 1. Results of zero-dimensional field theory with the ac-
tion (b) S =x%/(1+x2), (c) S =x**. In Figs. 1 and 2 the exact
curves are indicated by the index 0, and the indices 2, 3, and 4
refer to the degree NV of the approximation.
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the definite dimension D =2 [see the discussion below Eq.
(8)]. In Fig. 2 we show B(6) for N=2, 3, 4 and
B(8) =6>+1.

The last part of this paper is devoted to the application
of our method to determine the evolution of coupling con-
stants under the RG. We chose the following RG
transformation:

162

x € block

¢(block) = (15)

with blocks of 27 lattice points. Only for one particular
value of A can one have a fixed point with finite expecta-
tion values.®

If we start with an action S, the transformation (15) de-
fines a renormalized action S by

(F(p(block) Vs =(F(¢))s , (16)
where F is any functional of the field and ()5 and ()5 are
expectation values in the probability measure defined by S
and S, respectively. Thus, the renormalized expectation
values can be computed through the identity (16) and our
inversion formulas (4) and (5) can be used to obtain ap-
proximations to S.

We applied the previous procedure to the cases of three-
and four-dimensional scalar theory. The operators used in
the analysis are displayed in Table I. In fact, in the three-
dimensional case B7 and Bg were set equal to zero, and in
the four-dimensional run Bs and B¢ were set to zero. The
original couplings were

Bi=—1, B,=2.756, B3=0.18 ,
an
Bi=—0.4276, Bo=—1, B3=2,

for three and four dimensions, respectively. In both cases
they correspond to the vicinity of the critical surfaces.
Then we follow the RG flows of the renormalized cou-
plings within the critical surfaces. These flows should ap-
proach the fixed points of the corresponding theories.

Our results can be summarized concisely in terms of the

T T

0 /2 L

FIG. 2. Result for one-dimensional Gaussian model.
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TABLE I. List of the operators used in the analysis of three-
and four-dimensiomil scalar theory. 4 is the unit vector in u
direction and g v==A.

o 3 o)l +4)
0: Ecpz(x)
0 éq&‘(x)
Os é¢6(x)
Os xZ #(x)(x +i+V)
Os x'§l¢<x)¢<x+,;+ v+1)
07 g;(x Yo (x +24)
2] E«)s(x)
ratios X;:
Xy =M/, = dpi+ B2 +2(8)Bs+4(§) s +dp; ;
8 (18)

where M? is the lattice squared mass and d is the dimen-
sionality of the space time. These ratios X; are indepen-
dent of A [formula (15)] and are thus free from the ambi-
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FIG. 3. Renormalized couplings (18) in (a) three-dimensional
and (b) four-dimensional scalar theory. The indices 0-3 refer to
the blocking level and the original lattice size is 32% and 16* in
three and four dimensions, respectively.
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guity of how to normalize the renormalized coupling con-
stants. The locations of the fixed points are determined by
following the RG flows of X;. For example, in Fig. 3 re-
sults are shown for X, and X3.

A more thorough analysis including several initial cou-
plings, truncations, and lattice sizes, and a detailed study
of errors and approximations will be presented elsewhere.’
The characteristics of our Monte Carlo simulation and the
renormalization of other couplings are to be found there as
well. This more elaborate analysis, however, does not alter
the main features shown in Fig. 3. In fact, our detailed
study shows that in the three-dimensional case the RG
flow approaches the nontrivial fixed point X;* given by

X% =0.136 £0.015, X¥ =0.064 + 0.006 ,
X2 = —0.0004 £0.0007, X¥ =0.082 =% 0.006 ,
X¢ =0.067 +0.006 ,

19)
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and in the four-dimensional case the flow approaches the
trivial Gaussian fixed point X¥ =X} =X} =X} =0.1°
Once the locations of fixed points are determined we can
perform precise measurements of critical indices by run-
ning Monte Carlo simulations near the fixed points. This
will also be studied in Ref. 9.!!

To conclude, we mention that our procedure can be car-
ried over for the case of gauge theories using the corre-
sponding Schwinger-Dyson equations.!?
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