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A finite-size test was carried out for the finite-temperature chiral phase transition in QCD for flavor
number Ny=4 and 2 on a lattice with four time slices using the Kogut-Susskind quark action at quark
mass of 0.025 in lattice units. All the evidence supports a first-order transition for Ny =4. For N;=2,
however, the data on spatial lattices up to 12° fail to yield convincing finite-size signatures for a first-

order transition at this quark mass.
PACS numbers: 12.38.Gc, 11.30.Rd

A large amount of effort and computing time have
been invested in order to elucidate the nature of the
finite-temperature phase transition of quantum chromo-
dynamics in the presence of dynamical quarks."? The
picture that emerged was that the phase transition first
weakens from the pure-gauge limit toward intermediate
quark masses, but reappears as a first-order chiral phase
transition at a small quark mass for flavor number
Ny=4 (Ref. 1) and 2 (Ref. 2). This conclusion was
based on studies''? made mostly before 1987, and the
evidence taken to indicate a first-order transition seems
insufficient by today’s standards. This is illuminated by
the recent issue concerning the order of the pure-gauge
deconfining phase transition;* while we had thought the
evidence obtained in early studies fairly clear, it turned
out to require significantly more elaborate investiga-
tions® to establish the first-order nature of the transition.

The past evidence for a first-order chiral transition in
full QCD is mostly based on the detection of metastabili-
ty and of associated two-state signals. On the lattices of
relatively small spatial sizes that have been used, howev-
er, the separation of two states is not quite obvious. The
problem is that the time of staying in one phase is com-
parable to the transition time between different phases,
which would prohibit an unambiguous interpretation for
a first-order transition. Doubt has also been cast from
finite-size studies® of the chiral transition at a moderate-
ly small quark mass of m,; =0.1 (in lattice units), which
indicate that the first-order signatures might disappear
in the thermodynamic limit.

In this situation we feel it necessary to reexamine to
what extent a first-order chiral transition can be estab-
lished for finite-temperature QCD with light dynamical
quarks for Ny=2 and 4. Our strategy for this purpose is
the use of finite-size scaling of susceptibilities.” This
method is very powerful in distinguishing a first- from a
higher-order phase transition as we have shown for the
pure-gauge deconfining transition.® Its power is demon-
strated even for the quite subtle case of the two-
dimensional Potts model.® A serious limitation for ap-
plying this test to full QCD is the computing power re-

quired to obtain data with sufficient accuracy. The
simulation is at least a few thousand times more time
consuming than the pure-gauge case, and hence we have
to be content with relatively small spatial sizes of the lat-
tice, ranging from N =43 to 123, with the temporal size
fixed at N, =4. However, we increased the statistics by
an order of magnitude over the previous studies'? at
small quark masses.

The full QCD system we study is defined by the parti-
tion function

z= [ T1duTTdz, dznexp(S, +5,) | )

with S, the standard single-plaquette gauge action, and
the Kogut-Susskind form taken for the quark action
Sq=22nD, x> Where

D, =mg+ T Zn"-#(an.n’—ﬁunﬂ _sn,n’+ﬁU:'u) > (2)

with n,, the sign factor, which corresponds to Ny=4 in
the continuum limit. For the quark mass m,, we choose
m,=0.025 in lattice units in the present analysis. The
periodic boundary condition is imposed except for the
time direction for the quark fields, which is antiperiodic.
We adopt the hybrid R algorithm'° to update the gauge
configuration, in order to treat the Ny =4 and 2 cases in
parallel, with a molecular-dynamics time step size of
A71=0.02 and one trajectory consisting of 50 time steps.
The stopping condition for the quark matrix inversion is
|[|é —Dx||%/2x3x N)N, <10 6. That this choice of pa-
rameters suffices to avoid systematic biases has been
checked against a hybrid Monte Carlo run. A time in-
terval of r=8000-10000 was typically covered at each
parameter. The observables were calculated at the end
of each trajectory (z=1). For the chiral order parame-
ter (gyx)=(trD ~') we used the noisy estimator. The
simulation for the N, =2 system is made by reducing the
coefficient of the bilinear noise term by a factor of 2.'°
The errors are estimated by the jackknife method with a
bin size of §7=950-1000.

Let us first discuss the result for Ny=4. Figure 1
shows the time history of ReQ as a function of 7 for
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FIG. 1. Time history of the Polyakov line ReQ for Ny =4 at
mg =0.025 on an N;x 4 lattice with N, =4, 6, 8, 10, and 12.

N;=4, 6, 8, 10, and 12. (The time history of 7y looks
very similar.) We observe distinct flip-flops for N; =6
and 8, extending the previous observations for N, =6."!
For N, =10 we made two runs from ordered and disor-
dered starts, since we could not observe a flip even for
t=4000. Here we see a clear two-state separation. The
behavior is similar for Ny, =12, where we detected a sin-
gle flip.!> For N;= 6 the duration of a phase is much
longer than the transition time, and fluctuations in each
phase are smaller than the gap between the two states.
With an increasing volume V=N, the distinction be-
tween the two states becomes more pronounced, and the
duration of a phase rapidly increases.

We then carry out a finite-size scaling analysis for the
susceptibility for the Polyakov line Q defined by

2a=VEK(Ren)? —(Re)?]. 3)

This analysis requires that the two phases coexist in the
sample with a proper weight, which excludes the use of
runs for N; = 10 not showing flip-flops. The lattice sizes
used in the following are hence N; =4, 6, and 8. Calcu-
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FIG. 2. The peak height of the Polyakov-line susceptibility
for Ny=4, 2, and 0 (pure gauge theory) as a function of the
spatial volume ¥ =NJ?. The lines are a fit with ya,max=c +aV.

lating curves of yq as a continuous function of 8 with the
spectral-density method,'> we estimated the maximum
height yq max of the peak of yq. The result is shown in
Fig. 2, together with a similar plot for N, =2 (to be dis-
cussed below) and for the pure SU(3) gauge theory
(Ny=0) for comparison.

The peak height is expected to scale asymptotically as
Xe.max—aV?P. Fitting the data points with this power
form gives p=0.78(4). This is less than the first-order
value p=1.7 For the small lattice sizes used here, how-
ever, a constant term in the volume dependence of xq max
is not entirely negligible. Indeed, taking yq max =c +aV?
and making a two-parameter fit for a and p for various
values of ¢ (=0), the exponent is found to fall in the
range 0.78 <p <1.1 for the reduced x> kept within
2% <1 (confidence level >0.33). We also note that the
pure SU(3) gauge theory with a first-order transition®
yields p=0.77(2) for a pure power fit and a range of
values 0.86 < p < 1.0 with a constant term for NV, =6, 8,
and 12. Therefore we consider that the size dependence
of the peak height obtained here is quite consistent with
a first-order nature of the transition.

A similar behavior is also seen in other susceptibilities,
xp for the average plaquette P and g, for the chiral order
parameter tr(1/D). Allowing for a constant term, we
obtained 0.68 < p <1.3 for yp max and 0.61 <p < 1.1 for
Xe.max With the reduced y2 < 1. Fitting all three suscepti-
bilities by the form ¢+aV? with a common exponent
yields p=0.90(16), with the reduced y?=0.10, corre-
sponding to a confidence level of 0.91.

We have also studied the reduced cumulant defined by
Challa, Landau, and Binder (CLB),"*

_1(PY

3 (pH?
The minimum value of ¥ is shown in Fig. 3 as a func-
tion of the inverse volume 1/V. While our lattice size is
not sufficiently large, the trend is apparent that ¥V nin
does not approach % as the volume increases, supporting
the existence of a discontinuity in the transition.

From this analysis we conclude that the chiral phase

V=1 (4)
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FIG. 3. The minimum value of the CLB cumulant as a
function of the inverse volume. The lines are a fit linear in 1/V
which gives —1.54(13)x107% (Ny=4), —0.95(30)x10~*
(Ny=2), and —1.14(13)x107% (N;=0) for Vimn— & at

Y =oco,

transition for the Ny=4 system is consistent with being
of first order, and that we have no reason to suspect this
conclusion.

Now we turn to the Ny=2 case. The time history of
ReQ shown in Fig. 4 for N, =4, 6, 8, and 12 exhibits
fluctuations significantly more irregular than the Ny=4
case. These fluctuations, if viewed over a short time in-
terval, might have been taken as a two-state signal (e.g.,
the initial t~2000 for N, =8). From a long run as we
carried out here, however, it is difficult to recognize a
clear metastability signal. An increase of the lattice size
does not improve the situation.

The size dependence of the peak height of the
Polyakov-line susceptibility is presented in Fig. 2 for
N;=6, 8, and 12. It is possible to fit yo max With the
first-order form c+aV (we find 0.43 for the reduced y?).
If we allow an arbitrary power of volume (rq max=c
+aV?), however, the data are fitted with a wide range of
values 0.32 < p < 1.2 with the reduced y> <1 (see Fig. 5
for a plot of the reduced x? vs p). The problem is that
the constant term is sizable, and the increase of the peak
height from N, =6 to 12 is only by a factor of 2. The
trend is similar for yp max and x.max; the exponents are
027<p<13 and 0.30<p<1.0, respectively. A
simultaneous fit of the three susceptibilities by the form
c+aV? with a common exponent gives p =0.55(33) (re-
duced 2=0.025, or confidence level 0.98).

An analysis of the CLB cumulant (Fig. 3) shows that
VL min— 2 s substantially smaller than that for N, =4,
while it still seems larger than the corresponding value
for the pure-gauge case.

From these findings we have to conclude that the
chiral phase transition for Ny=2 lacks strong evidence
for a first-order transition at least at m,; =0.025, while
our data are not inconsistent with this possibility; the
twofold increase of the susceptibility over the lattice sizes
accessible to us (V; =6-12) is not large enough to estab-
lish it convincingly. It is possible that the present quark
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FIG. 4. Time history of the Polyakov line ReQ for Ny =2 at
mg=0.025 on an N2 x4 lattice with N, =4, 6, 8, and 12.

mass is still too large. For m,; =0.025 we suggest, taking
the Ny=4 case as a guide, that a spatial lattice size of
N; =24 or larger will be needed to discriminate the order
of the Ny =2 transition on a lattice with four time slices.

The numerical computation was made on the HITAC
S820/80 computer at KEK. Generous allowance of the
computer time is gratefully acknowledged. This work is
supported in part by the Grant-in-Aid of the Ministry of
Education (No. 01460017).

1.5: T T 1
F reduced X2 3
1.0F 4
05F =
E N¢=2 3
of LD E
0 05 1.5

FIG. 5. The reduced x? vs the exponent p for the fit of
Xa.max by the form ¢ +a¥? with ¢ (= 0) a given constant. The
constant becomes negative beyond the shade for Ny=4 and 2.
The lattice sizes used for the fit are N; =4, 6, and 8 (N;=4)
and 6, 8, and 12 (N,=2, 0).



VOLUME 65, NUMBER 7

PHYSICAL REVIEW LETTERS

13 AUGUST 1990

Note added.— After submission of this paper, we ex-
tended the analysis of the Ny =2 case to a smaller quark
mass of my=0.0125. We found that the system shows
characteristics very similar to those for m, =0.025, and
we could not determine the order for this case either.
The details will be reported elsewhere.
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