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We report on our study of two-flavor full QCD on anisotropic lattices using O(a)-improved Wilson quarks
coupled with an RG-improved glue. The bare gauge and quark anisotropies corresponding to the renormalized
anisotropy ξ = as/at = 2 are determined as functions of β and κ, using the Wilson loop and the meson dispersion
relation at several lattice cutoffs and quark masses.

1. Introduction

Study of quark gluon plasma using finite-
temperature lattice QCD has seen a remarkable
progress over the last decade. The equation of
state (EOS) is one of the most studied topics, for
which many calculations have been reported and
have made clear the effects of dynamical quarks
[1]. However, most studies on EOS in full QCD
are made for the temporal lattice size of Nt = 4
or 6, and a reliable continuum extrapolation of
EOS is prevented by large scale violation present
for small Nt.

Recently, the CP-PACS Collaboration pro-
posed the use of anisotropic lattice for calcula-
tions of EOS. This proposal was tested for the
pure gluon system [2], for which a well-controlled
continuum extrapolation of EOS was performed
for the first time.

We wish to extend the use of anisotropic lattice
to calculations of EOS for full QCD. This requires
a tuning of the bare gauge and quark anisotropy
parameters which corresponds to a given value of
the anisotropy. In this paper we report results of
such a tuning.

∗Talk presented by T. Umeda.

2. Lattice action

We adopt an O(a)-improved Wilson quark ac-
tion coupled with an RG-improved action for
gluons. This combination of actions has been
adopted in a series of systematic investigations
at T = 0 [4]. It also shows better scaling proper-
ties in finite-temperature QCD, e.g., the expected
O(4) scaling is observed around Tc [3].

Here, we extend the study to anisotropic lat-
tices. We focus on the anisotropy ξ = as/at = 2,
where as and at are the spatial and temporal
lattice spacings, respectively. This choice of ξ
is based on a study of efficiency in calculations
of EOS as described in our previous study in
quenched QCD [2].

We consider the following gauge action which
includes plaquette, Pµν(x), and rectangle loop,
Rµν(x):

SG =

β{γ−1

G

∑

x,i>j

(cs
0Pij(x) + cs

1{Rij(x) + Rji(x)})

+γG

∑

x,k

(ct
0Pk4(x) + ct

1Rk4(x) + ct
2R4k(x))}, (1)

where cs
0 + 8cs

1 = 1 and ct
0 + 4(ct

1 + ct
2) = 1.
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Carrying out the RG improvement program of
Ref. [5] on this action, we find that a simple choice
cs
1 = ct

1 = ct
2 = −0.331, which is the same as for

the isotropic case, sufficiently improves the theory
for small anisotropy ξ ≈ 1 − 4 [6].

The quark action we study is as follows [7].

SF =
∑

x,y

q̄(x)K(x, y)q(y), (2)

K(x, y) = δx,y − κt{(1 − γ4)U4(x)δx+4̂,y

+(1 + γ4)U
†
4 (x − 4̂)δx−4̂,y}

−κs

∑

i

{(r − γi)Ui(x)δx+î,y

+(r + γi)U
†
i (x − î)δx−î,y}

−(κsct

∑

i

σ4iF4i(x) + rκscs

∑

i>j

σijFij(x))δx,y.(3)

The bare anisotropy γF of the fermion field is de-
fined by the ratio of the spatial and the temporal
hopping parameters, κt = γF κs. We set the Wil-
son parameter to be r = 1/ξ [7]. The hopping
parameters are related to the bare quark mass as
κs = 1/[2(mq + γF + 3r)]. We also define κ by
1/κ = 1/κs − 2(γF + 3r − 4). This parameter
plays the same role as κ on the isotropic lattice.
For free fermion, equating the rest and the ki-
netic masses leads to γ−1

F = ξ−1(1 + m2
q/3) when

r = 1/ξ [9].
For the field strength Fµν , we use the stan-

dard clover-leaf definition. At the tree level, the
coefficients of the clover terms, cs and ct, are
unity. We incorporate the mean-field improve-
ment, Ui → Ui/u0s (i =1,2,3) and U4 → U4/u0t,
with the spatial mean-field factor defined with the
plaquette in 1-loop perturbation theory u0s =
(1 − 1.154/β)1/4, and u0t = 1 for the temporal
mean-field.

3. Calibration procedure

To realize a consistent anisotropy, the bare
anisotropy parameters γF and γG for fermion and
gauge fields have to be calibrated, such that the
anisotropy ξF calculated in the fermionic sector
coincides with ξG calculated in the gluonic sector.

We perform this calibration as follows. Calcu-
lating (ξF , ξG) for some parameter sets of (γF , γG)

at a fixed κ and β, we make a fit of results with
linear functions of γF and γG, and locate the
point satisfying ξF = ξG = ξ, where ξ = 2 in
our case. This point is denoted as γ∗

F and γ∗
G,

which are functions of β and κ.
For the determination of ξG, we adopt

Klassen’s method [8] of matching the Wilson loop
ratios according to

Wss(x, y)

Wss(x + 1, y)
=

Wst(x, t)

Wst(x + 1, t)
, t = ξGy (4)

where Wss(x, y) and Wst(x, t) are spatial-spatial
and spatial-temporal Wilson loop, respectively.

For ξF we use the relativistic dispersion rela-
tion of mesons, and demand

E(~p)2 = m2 +
~p2

ξ2
F

+ O(~p4), (5)

where E and m are in units of at, while the spa-
tial momentum ~p is in units of as. The latter
is defined with ~p = 2π~n/Ls, ~n = (0, 0, 0), (1, 0, 0)
and its permutations. We evaluate ξF using either
pseudoscalar or vector mesons. The results are re-
ferred to as γ∗

F (PS) and γ∗
F (V ) (and also γ∗

G(PS)
and γ∗

G(V )) for the calibrated bare anisotropies.

4. Simulation details

Simulations are made with the HMC algorithm
for two flavors of degenerate quarks, using an
even-odd preconditioned BiCGStab quark solver.
The calibration is performed at β = 1.8, 1.9 and
2.0 on a 83×24, 83×24 and 103×30 lattice, respec-
tively. Six values of κ are used at each β corre-
sponding to mPS/mV ≃ 0.6, 0.7, 0.8, 0.85, 0.9 and
0.92. Measurements are performed at every 5 tra-
jectories up to 1000 – 1700 trajectories after 300
thermalization trajectiries. Errors are estimated
by the jackknife method with bins of 50 trajecto-
ries, and error propagation is used in the fitting
to ξ = 2.

If the lattice scale is estimated from the Som-
mer scale r0 = 0.5fm, the typical lattice size in
the spatial direction is about 2.0 fm (2.3 fm) at
β = 1.9, 2.0 (β = 1.8) for mPS/mV ≃ 0.8.
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Figure 1. 1/κ dependence of calibration results
at each β

5. Calibration results

Figure 1 shows the results for γ∗
G and 1/γ∗

F as
a function of 1/κ at each β. Unlike the case
of quenched calculation [9], where 1/γ∗

F shows
no linear terms in mq, linear terms are impor-
tant in full QCD even with the choice r = 1/ξ.
Therefore the results are fitted with a general
quadratic function of 1/β and 1/κ, f(β, κ) =
A + B/β + C/β2 + D/βκ + E/κ + F/κ2.

Figure 2 represents the difference between
γ∗

F (PS) and γ∗
F (V ). Non-vanishing values of this

quantity represnets an O(αa) lattice artifacts for
our action choice. We confirm that the difference
tends to zero ( less than 5 % for β ≥ 2.0) as β
is increased. We plan to use this difference to
estimate systematic errors in continuum extrap-
olations.

An extension of the present calibration to the
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Figure 2. Difference between pseudoscalar and
vector in determination of ξF

region of weaker coupling (larger β) is under way.
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